# Properties

 Label 144.3.w.a.5.14 Level $144$ Weight $3$ Character 144.5 Analytic conductor $3.924$ Analytic rank $0$ Dimension $184$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$144 = 2^{4} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 144.w (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.92371580679$$ Analytic rank: $$0$$ Dimension: $$184$$ Relative dimension: $$46$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 5.14 Character $$\chi$$ $$=$$ 144.5 Dual form 144.3.w.a.29.14

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.16958 + 1.62237i) q^{2} +(-1.89172 + 2.32839i) q^{3} +(-1.26417 - 3.79498i) q^{4} +(-1.06962 - 3.99189i) q^{5} +(-1.56500 - 5.79230i) q^{6} +(2.82785 - 1.63266i) q^{7} +(7.63541 + 2.38759i) q^{8} +(-1.84282 - 8.80931i) q^{9} +O(q^{10})$$ $$q+(-1.16958 + 1.62237i) q^{2} +(-1.89172 + 2.32839i) q^{3} +(-1.26417 - 3.79498i) q^{4} +(-1.06962 - 3.99189i) q^{5} +(-1.56500 - 5.79230i) q^{6} +(2.82785 - 1.63266i) q^{7} +(7.63541 + 2.38759i) q^{8} +(-1.84282 - 8.80931i) q^{9} +(7.72733 + 2.93351i) q^{10} +(8.94164 + 2.39591i) q^{11} +(11.2276 + 4.23555i) q^{12} +(-4.06090 - 15.1555i) q^{13} +(-0.658618 + 6.49733i) q^{14} +(11.3181 + 5.06102i) q^{15} +(-12.8038 + 9.59497i) q^{16} +27.9053i q^{17} +(16.4473 + 7.31346i) q^{18} +(22.9712 - 22.9712i) q^{19} +(-13.7970 + 9.10561i) q^{20} +(-1.54801 + 9.67286i) q^{21} +(-14.3450 + 11.7044i) q^{22} +(-2.53989 + 4.39922i) q^{23} +(-20.0033 + 13.2616i) q^{24} +(6.85956 - 3.96037i) q^{25} +(29.3373 + 11.1373i) q^{26} +(23.9976 + 12.3739i) q^{27} +(-9.77077 - 8.66767i) q^{28} +(10.5697 - 39.4467i) q^{29} +(-21.4483 + 12.4429i) q^{30} +(14.7914 - 25.6195i) q^{31} +(-0.591558 - 31.9945i) q^{32} +(-22.4937 + 16.2873i) q^{33} +(-45.2728 - 32.6375i) q^{34} +(-9.54211 - 9.54211i) q^{35} +(-31.1016 + 18.1299i) q^{36} +(-22.0195 - 22.0195i) q^{37} +(10.4011 + 64.1345i) q^{38} +(42.9700 + 19.2145i) q^{39} +(1.36399 - 33.0335i) q^{40} +(12.6718 - 21.9482i) q^{41} +(-13.8824 - 13.8246i) q^{42} +(0.823192 - 3.07219i) q^{43} +(-2.21130 - 36.9622i) q^{44} +(-33.1947 + 16.7790i) q^{45} +(-4.16655 - 9.26587i) q^{46} +(-0.0912598 + 0.0526889i) q^{47} +(1.88024 - 47.9632i) q^{48} +(-19.1689 + 33.2014i) q^{49} +(-1.59762 + 15.7607i) q^{50} +(-64.9746 - 52.7890i) q^{51} +(-52.3811 + 34.5701i) q^{52} +(1.60168 - 1.60168i) q^{53} +(-48.1422 + 24.4608i) q^{54} -38.2567i q^{55} +(25.4899 - 5.71427i) q^{56} +(10.0310 + 96.9411i) q^{57} +(51.6350 + 63.2841i) q^{58} +(-5.79758 - 21.6369i) q^{59} +(4.89850 - 49.3500i) q^{60} +(-26.5709 - 7.11965i) q^{61} +(24.2645 + 53.9612i) q^{62} +(-19.5938 - 21.9027i) q^{63} +(52.5988 + 36.4604i) q^{64} +(-56.1553 + 32.4213i) q^{65} +(-0.115855 - 55.5423i) q^{66} +(14.6736 + 54.7625i) q^{67} +(105.900 - 35.2770i) q^{68} +(-5.43835 - 14.2359i) q^{69} +(26.6411 - 4.32057i) q^{70} -38.5998 q^{71} +(6.96234 - 71.6626i) q^{72} -75.9952i q^{73} +(61.4775 - 9.97022i) q^{74} +(-3.75505 + 23.4636i) q^{75} +(-116.215 - 58.1360i) q^{76} +(29.1973 - 7.82339i) q^{77} +(-81.4298 + 47.2403i) q^{78} +(65.8295 + 114.020i) q^{79} +(51.9973 + 40.8482i) q^{80} +(-74.2080 + 32.4680i) q^{81} +(20.7874 + 46.2285i) q^{82} +(10.2482 - 38.2470i) q^{83} +(38.6653 - 6.35341i) q^{84} +(111.395 - 29.8482i) q^{85} +(4.02145 + 4.92870i) q^{86} +(71.8525 + 99.2324i) q^{87} +(62.5526 + 39.6427i) q^{88} -150.778 q^{89} +(11.6021 - 73.4784i) q^{90} +(-36.2273 - 36.2273i) q^{91} +(19.9058 + 4.07749i) q^{92} +(31.6711 + 82.9050i) q^{93} +(0.0212548 - 0.209681i) q^{94} +(-116.269 - 67.1280i) q^{95} +(75.6149 + 59.1472i) q^{96} +(-16.8043 - 29.1059i) q^{97} +(-31.4455 - 69.9307i) q^{98} +(4.62844 - 83.1849i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10})$$ $$184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/144\mathbb{Z}\right)^\times$$.

 $$n$$ $$37$$ $$65$$ $$127$$ $$\chi(n)$$ $$e\left(\frac{1}{4}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.16958 + 1.62237i −0.584790 + 0.811185i
$$3$$ −1.89172 + 2.32839i −0.630572 + 0.776131i
$$4$$ −1.26417 3.79498i −0.316041 0.948745i
$$5$$ −1.06962 3.99189i −0.213925 0.798378i −0.986542 0.163506i $$-0.947720\pi$$
0.772618 0.634872i $$-0.218947\pi$$
$$6$$ −1.56500 5.79230i −0.260833 0.965384i
$$7$$ 2.82785 1.63266i 0.403978 0.233237i −0.284221 0.958759i $$-0.591735\pi$$
0.688199 + 0.725522i $$0.258402\pi$$
$$8$$ 7.63541 + 2.38759i 0.954426 + 0.298449i
$$9$$ −1.84282 8.80931i −0.204758 0.978813i
$$10$$ 7.72733 + 2.93351i 0.772733 + 0.293351i
$$11$$ 8.94164 + 2.39591i 0.812876 + 0.217810i 0.641230 0.767349i $$-0.278425\pi$$
0.171647 + 0.985159i $$0.445091\pi$$
$$12$$ 11.2276 + 4.23555i 0.935637 + 0.352963i
$$13$$ −4.06090 15.1555i −0.312377 1.16581i −0.926407 0.376523i $$-0.877119\pi$$
0.614030 0.789282i $$-0.289547\pi$$
$$14$$ −0.658618 + 6.49733i −0.0470441 + 0.464095i
$$15$$ 11.3181 + 5.06102i 0.754540 + 0.337401i
$$16$$ −12.8038 + 9.59497i −0.800236 + 0.599686i
$$17$$ 27.9053i 1.64149i 0.571294 + 0.820745i $$0.306442\pi$$
−0.571294 + 0.820745i $$0.693558\pi$$
$$18$$ 16.4473 + 7.31346i 0.913738 + 0.406303i
$$19$$ 22.9712 22.9712i 1.20901 1.20901i 0.237666 0.971347i $$-0.423618\pi$$
0.971347 0.237666i $$-0.0763823\pi$$
$$20$$ −13.7970 + 9.10561i −0.689848 + 0.455280i
$$21$$ −1.54801 + 9.67286i −0.0737149 + 0.460612i
$$22$$ −14.3450 + 11.7044i −0.652046 + 0.532020i
$$23$$ −2.53989 + 4.39922i −0.110430 + 0.191270i −0.915944 0.401307i $$-0.868556\pi$$
0.805514 + 0.592577i $$0.201889\pi$$
$$24$$ −20.0033 + 13.2616i −0.833469 + 0.552566i
$$25$$ 6.85956 3.96037i 0.274382 0.158415i
$$26$$ 29.3373 + 11.1373i 1.12836 + 0.428356i
$$27$$ 23.9976 + 12.3739i 0.888801 + 0.458293i
$$28$$ −9.77077 8.66767i −0.348956 0.309560i
$$29$$ 10.5697 39.4467i 0.364473 1.36023i −0.503661 0.863902i $$-0.668014\pi$$
0.868134 0.496330i $$-0.165320\pi$$
$$30$$ −21.4483 + 12.4429i −0.714942 + 0.414763i
$$31$$ 14.7914 25.6195i 0.477143 0.826435i −0.522514 0.852631i $$-0.675006\pi$$
0.999657 + 0.0261954i $$0.00833921\pi$$
$$32$$ −0.591558 31.9945i −0.0184862 0.999829i
$$33$$ −22.4937 + 16.2873i −0.681626 + 0.493554i
$$34$$ −45.2728 32.6375i −1.33155 0.959927i
$$35$$ −9.54211 9.54211i −0.272632 0.272632i
$$36$$ −31.1016 + 18.1299i −0.863932 + 0.503608i
$$37$$ −22.0195 22.0195i −0.595123 0.595123i 0.343888 0.939011i $$-0.388256\pi$$
−0.939011 + 0.343888i $$0.888256\pi$$
$$38$$ 10.4011 + 64.1345i 0.273714 + 1.68775i
$$39$$ 42.9700 + 19.2145i 1.10179 + 0.492679i
$$40$$ 1.36399 33.0335i 0.0340996 0.825838i
$$41$$ 12.6718 21.9482i 0.309068 0.535322i −0.669091 0.743181i $$-0.733316\pi$$
0.978159 + 0.207859i $$0.0666495\pi$$
$$42$$ −13.8824 13.8246i −0.330534 0.329158i
$$43$$ 0.823192 3.07219i 0.0191440 0.0714464i −0.955693 0.294365i $$-0.904892\pi$$
0.974837 + 0.222919i $$0.0715585\pi$$
$$44$$ −2.21130 36.9622i −0.0502568 0.840050i
$$45$$ −33.1947 + 16.7790i −0.737659 + 0.372866i
$$46$$ −4.16655 9.26587i −0.0905772 0.201432i
$$47$$ −0.0912598 + 0.0526889i −0.00194170 + 0.00112104i −0.500971 0.865464i $$-0.667024\pi$$
0.499029 + 0.866585i $$0.333690\pi$$
$$48$$ 1.88024 47.9632i 0.0391716 0.999232i
$$49$$ −19.1689 + 33.2014i −0.391201 + 0.677580i
$$50$$ −1.59762 + 15.7607i −0.0319524 + 0.315214i
$$51$$ −64.9746 52.7890i −1.27401 1.03508i
$$52$$ −52.3811 + 34.5701i −1.00733 + 0.664809i
$$53$$ 1.60168 1.60168i 0.0302203 0.0302203i −0.691835 0.722055i $$-0.743198\pi$$
0.722055 + 0.691835i $$0.243198\pi$$
$$54$$ −48.1422 + 24.4608i −0.891522 + 0.452977i
$$55$$ 38.2567i 0.695577i
$$56$$ 25.4899 5.71427i 0.455176 0.102040i
$$57$$ 10.0310 + 96.9411i 0.175982 + 1.70072i
$$58$$ 51.6350 + 63.2841i 0.890259 + 1.09110i
$$59$$ −5.79758 21.6369i −0.0982641 0.366727i 0.899230 0.437476i $$-0.144128\pi$$
−0.997494 + 0.0707495i $$0.977461\pi$$
$$60$$ 4.89850 49.3500i 0.0816417 0.822499i
$$61$$ −26.5709 7.11965i −0.435589 0.116716i 0.0343598 0.999410i $$-0.489061\pi$$
−0.469948 + 0.882694i $$0.655727\pi$$
$$62$$ 24.2645 + 53.9612i 0.391363 + 0.870342i
$$63$$ −19.5938 21.9027i −0.311013 0.347662i
$$64$$ 52.5988 + 36.4604i 0.821857 + 0.569694i
$$65$$ −56.1553 + 32.4213i −0.863928 + 0.498789i
$$66$$ −0.115855 55.5423i −0.00175537 0.841550i
$$67$$ 14.6736 + 54.7625i 0.219008 + 0.817351i 0.984717 + 0.174163i $$0.0557219\pi$$
−0.765708 + 0.643188i $$0.777611\pi$$
$$68$$ 105.900 35.2770i 1.55736 0.518779i
$$69$$ −5.43835 14.2359i −0.0788167 0.206318i
$$70$$ 26.6411 4.32057i 0.380587 0.0617224i
$$71$$ −38.5998 −0.543659 −0.271829 0.962345i $$-0.587629\pi$$
−0.271829 + 0.962345i $$0.587629\pi$$
$$72$$ 6.96234 71.6626i 0.0966992 0.995314i
$$73$$ 75.9952i 1.04103i −0.853852 0.520515i $$-0.825740\pi$$
0.853852 0.520515i $$-0.174260\pi$$
$$74$$ 61.4775 9.97022i 0.830776 0.134733i
$$75$$ −3.75505 + 23.4636i −0.0500673 + 0.312849i
$$76$$ −116.215 58.1360i −1.52914 0.764947i
$$77$$ 29.1973 7.82339i 0.379185 0.101602i
$$78$$ −81.4298 + 47.2403i −1.04397 + 0.605644i
$$79$$ 65.8295 + 114.020i 0.833285 + 1.44329i 0.895419 + 0.445225i $$0.146876\pi$$
−0.0621335 + 0.998068i $$0.519790\pi$$
$$80$$ 51.9973 + 40.8482i 0.649966 + 0.510603i
$$81$$ −74.2080 + 32.4680i −0.916148 + 0.400839i
$$82$$ 20.7874 + 46.2285i 0.253505 + 0.563762i
$$83$$ 10.2482 38.2470i 0.123473 0.460807i −0.876308 0.481752i $$-0.840001\pi$$
0.999781 + 0.0209448i $$0.00666743\pi$$
$$84$$ 38.6653 6.35341i 0.460301 0.0756359i
$$85$$ 111.395 29.8482i 1.31053 0.351155i
$$86$$ 4.02145 + 4.92870i 0.0467610 + 0.0573105i
$$87$$ 71.8525 + 99.2324i 0.825891 + 1.14060i
$$88$$ 62.5526 + 39.6427i 0.710825 + 0.450485i
$$89$$ −150.778 −1.69414 −0.847069 0.531482i $$-0.821635\pi$$
−0.847069 + 0.531482i $$0.821635\pi$$
$$90$$ 11.6021 73.4784i 0.128912 0.816426i
$$91$$ −36.2273 36.2273i −0.398102 0.398102i
$$92$$ 19.9058 + 4.07749i 0.216367 + 0.0443206i
$$93$$ 31.6711 + 82.9050i 0.340549 + 0.891452i
$$94$$ 0.0212548 0.209681i 0.000226115 0.00223065i
$$95$$ −116.269 67.1280i −1.22389 0.706611i
$$96$$ 75.6149 + 59.1472i 0.787655 + 0.616117i
$$97$$ −16.8043 29.1059i −0.173240 0.300061i 0.766310 0.642470i $$-0.222090\pi$$
−0.939551 + 0.342409i $$0.888757\pi$$
$$98$$ −31.4455 69.9307i −0.320872 0.713579i
$$99$$ 4.62844 83.1849i 0.0467519 0.840252i
$$100$$ −23.7011 21.0253i −0.237011 0.210253i
$$101$$ 94.0929 + 25.2121i 0.931613 + 0.249625i 0.692542 0.721377i $$-0.256491\pi$$
0.239070 + 0.971002i $$0.423157\pi$$
$$102$$ 161.636 43.6719i 1.58467 0.428155i
$$103$$ 174.028 + 100.475i 1.68959 + 0.975488i 0.954824 + 0.297173i $$0.0960437\pi$$
0.734771 + 0.678315i $$0.237290\pi$$
$$104$$ 5.17847 125.414i 0.0497929 1.20590i
$$105$$ 40.2688 4.16682i 0.383512 0.0396840i
$$106$$ 0.725223 + 4.47180i 0.00684173 + 0.0421868i
$$107$$ −86.4419 + 86.4419i −0.807868 + 0.807868i −0.984311 0.176443i $$-0.943541\pi$$
0.176443 + 0.984311i $$0.443541\pi$$
$$108$$ 16.6218 106.713i 0.153905 0.988086i
$$109$$ −12.5716 + 12.5716i −0.115335 + 0.115335i −0.762419 0.647084i $$-0.775988\pi$$
0.647084 + 0.762419i $$0.275988\pi$$
$$110$$ 62.0666 + 44.7443i 0.564242 + 0.406766i
$$111$$ 92.9249 9.61541i 0.837161 0.0866253i
$$112$$ −20.5418 + 48.0373i −0.183409 + 0.428904i
$$113$$ 192.534 + 111.159i 1.70384 + 0.983711i 0.941798 + 0.336180i $$0.109135\pi$$
0.762039 + 0.647531i $$0.224198\pi$$
$$114$$ −169.006 97.1064i −1.48251 0.851811i
$$115$$ 20.2779 + 5.43345i 0.176330 + 0.0472474i
$$116$$ −163.061 + 9.75531i −1.40570 + 0.0840975i
$$117$$ −126.026 + 63.7026i −1.07714 + 0.544466i
$$118$$ 41.8837 + 15.9002i 0.354947 + 0.134748i
$$119$$ 45.5599 + 78.9120i 0.382856 + 0.663126i
$$120$$ 74.3347 + 65.6659i 0.619456 + 0.547216i
$$121$$ −30.5765 17.6534i −0.252698 0.145895i
$$122$$ 42.6275 34.7808i 0.349406 0.285089i
$$123$$ 27.1326 + 71.0247i 0.220590 + 0.577436i
$$124$$ −115.924 23.7459i −0.934873 0.191499i
$$125$$ −96.2031 96.2031i −0.769625 0.769625i
$$126$$ 58.4508 6.17145i 0.463895 0.0489798i
$$127$$ −20.4752 −0.161222 −0.0806109 0.996746i $$-0.525687\pi$$
−0.0806109 + 0.996746i $$0.525687\pi$$
$$128$$ −120.671 + 42.6913i −0.942741 + 0.333526i
$$129$$ 5.59603 + 7.72843i 0.0433801 + 0.0599103i
$$130$$ 13.0788 129.024i 0.100606 0.992492i
$$131$$ −102.456 + 27.4530i −0.782107 + 0.209565i −0.627714 0.778444i $$-0.716009\pi$$
−0.154394 + 0.988009i $$0.549342\pi$$
$$132$$ 90.2456 + 64.7732i 0.683679 + 0.490706i
$$133$$ 27.4550 102.463i 0.206428 0.770401i
$$134$$ −106.007 40.2432i −0.791096 0.300322i
$$135$$ 23.7268 109.031i 0.175754 0.807639i
$$136$$ −66.6265 + 213.069i −0.489901 + 1.56668i
$$137$$ 14.4562 + 25.0388i 0.105520 + 0.182765i 0.913950 0.405826i $$-0.133016\pi$$
−0.808431 + 0.588591i $$0.799683\pi$$
$$138$$ 29.4565 + 7.82703i 0.213453 + 0.0567176i
$$139$$ −91.1143 + 24.4140i −0.655498 + 0.175640i −0.571214 0.820801i $$-0.693527\pi$$
−0.0842848 + 0.996442i $$0.526861\pi$$
$$140$$ −24.1493 + 48.2750i −0.172495 + 0.344821i
$$141$$ 0.0499573 0.312161i 0.000354307 0.00221391i
$$142$$ 45.1455 62.6231i 0.317926 0.441008i
$$143$$ 145.244i 1.01569i
$$144$$ 108.120 + 95.1106i 0.750835 + 0.660490i
$$145$$ −168.773 −1.16395
$$146$$ 123.292 + 88.8825i 0.844468 + 0.608784i
$$147$$ −41.0439 107.440i −0.279210 0.730886i
$$148$$ −55.7274 + 111.400i −0.376537 + 0.752703i
$$149$$ −52.7418 196.835i −0.353972 1.32104i −0.881773 0.471674i $$-0.843650\pi$$
0.527801 0.849368i $$-0.323017\pi$$
$$150$$ −33.6749 33.5347i −0.224499 0.223565i
$$151$$ 51.6658 29.8293i 0.342157 0.197545i −0.319068 0.947732i $$-0.603370\pi$$
0.661226 + 0.750187i $$0.270037\pi$$
$$152$$ 230.241 120.549i 1.51474 0.793084i
$$153$$ 245.827 51.4246i 1.60671 0.336108i
$$154$$ −21.4561 + 56.5188i −0.139325 + 0.367005i
$$155$$ −118.091 31.6425i −0.761880 0.204145i
$$156$$ 18.5975 187.360i 0.119215 1.20103i
$$157$$ −38.7473 144.607i −0.246798 0.921063i −0.972471 0.233023i $$-0.925138\pi$$
0.725673 0.688040i $$-0.241529\pi$$
$$158$$ −261.976 26.5558i −1.65807 0.168075i
$$159$$ 0.699415 + 6.75925i 0.00439883 + 0.0425110i
$$160$$ −127.086 + 36.5835i −0.794286 + 0.228647i
$$161$$ 16.5871i 0.103025i
$$162$$ 34.1171 158.367i 0.210600 0.977572i
$$163$$ −80.7271 + 80.7271i −0.495258 + 0.495258i −0.909958 0.414700i $$-0.863887\pi$$
0.414700 + 0.909958i $$0.363887\pi$$
$$164$$ −99.3122 20.3431i −0.605562 0.124043i
$$165$$ 89.0767 + 72.3709i 0.539859 + 0.438611i
$$166$$ 50.0646 + 61.3593i 0.301594 + 0.369634i
$$167$$ −65.8348 + 114.029i −0.394220 + 0.682810i −0.993001 0.118103i $$-0.962319\pi$$
0.598781 + 0.800913i $$0.295652\pi$$
$$168$$ −34.9145 + 70.1602i −0.207825 + 0.417620i
$$169$$ −66.8393 + 38.5897i −0.395499 + 0.228341i
$$170$$ −81.8605 + 215.634i −0.481533 + 1.26843i
$$171$$ −244.693 160.029i −1.43095 0.935842i
$$172$$ −12.6996 + 0.759765i −0.0738347 + 0.00441724i
$$173$$ 3.06102 11.4239i 0.0176937 0.0660339i −0.956515 0.291685i $$-0.905784\pi$$
0.974208 + 0.225651i $$0.0724509\pi$$
$$174$$ −245.029 + 0.511101i −1.40821 + 0.00293736i
$$175$$ 12.9319 22.3986i 0.0738963 0.127992i
$$176$$ −137.475 + 55.1182i −0.781110 + 0.313171i
$$177$$ 61.3465 + 27.4318i 0.346590 + 0.154982i
$$178$$ 176.347 244.618i 0.990715 1.37426i
$$179$$ 109.095 + 109.095i 0.609467 + 0.609467i 0.942807 0.333340i $$-0.108176\pi$$
−0.333340 + 0.942807i $$0.608176\pi$$
$$180$$ 105.639 + 104.762i 0.586886 + 0.582010i
$$181$$ 244.121 + 244.121i 1.34873 + 1.34873i 0.887039 + 0.461695i $$0.152759\pi$$
0.461695 + 0.887039i $$0.347241\pi$$
$$182$$ 101.145 16.4033i 0.555740 0.0901283i
$$183$$ 66.8419 48.3991i 0.365256 0.264476i
$$184$$ −29.8966 + 27.5256i −0.162482 + 0.149596i
$$185$$ −64.3469 + 111.452i −0.347821 + 0.602444i
$$186$$ −171.544 45.5819i −0.922282 0.245064i
$$187$$ −66.8586 + 249.520i −0.357532 + 1.33433i
$$188$$ 0.315321 + 0.279722i 0.00167724 + 0.00148788i
$$189$$ 88.0640 4.18841i 0.465947 0.0221609i
$$190$$ 244.893 110.120i 1.28891 0.579579i
$$191$$ −255.962 + 147.780i −1.34011 + 0.773715i −0.986824 0.161799i $$-0.948270\pi$$
−0.353290 + 0.935514i $$0.614937\pi$$
$$192$$ −184.396 + 53.4979i −0.960397 + 0.278635i
$$193$$ 61.7514 106.957i 0.319955 0.554179i −0.660523 0.750806i $$-0.729665\pi$$
0.980478 + 0.196627i $$0.0629987\pi$$
$$194$$ 66.8746 + 6.77890i 0.344714 + 0.0349428i
$$195$$ 30.7404 192.084i 0.157643 0.985044i
$$196$$ 150.231 + 30.7733i 0.766487 + 0.157007i
$$197$$ −12.0221 + 12.0221i −0.0610259 + 0.0610259i −0.736961 0.675935i $$-0.763740\pi$$
0.675935 + 0.736961i $$0.263740\pi$$
$$198$$ 129.543 + 104.800i 0.654260 + 0.529295i
$$199$$ 316.553i 1.59072i −0.606139 0.795359i $$-0.707283\pi$$
0.606139 0.795359i $$-0.292717\pi$$
$$200$$ 61.8313 13.8612i 0.309156 0.0693060i
$$201$$ −155.267 69.4293i −0.772472 0.345419i
$$202$$ −150.952 + 123.166i −0.747289 + 0.609732i
$$203$$ −34.5135 128.806i −0.170017 0.634512i
$$204$$ −118.195 + 313.311i −0.579385 + 1.53584i
$$205$$ −101.169 27.1081i −0.493506 0.132235i
$$206$$ −366.548 + 164.824i −1.77936 + 0.800118i
$$207$$ 43.4346 + 14.2677i 0.209829 + 0.0689261i
$$208$$ 197.411 + 155.083i 0.949092 + 0.745591i
$$209$$ 260.437 150.364i 1.24611 0.719443i
$$210$$ −40.3374 + 70.2042i −0.192083 + 0.334306i
$$211$$ 72.4384 + 270.344i 0.343310 + 1.28125i 0.894574 + 0.446919i $$0.147479\pi$$
−0.551264 + 0.834331i $$0.685854\pi$$
$$212$$ −8.10312 4.05355i −0.0382223 0.0191205i
$$213$$ 73.0198 89.8754i 0.342816 0.421950i
$$214$$ −39.1400 241.341i −0.182897 1.12776i
$$215$$ −13.1444 −0.0611366
$$216$$ 153.688 + 151.776i 0.711518 + 0.702668i
$$217$$ 96.5973i 0.445149i
$$218$$ −5.69227 35.0992i −0.0261114 0.161005i
$$219$$ 176.947 + 143.761i 0.807976 + 0.656445i
$$220$$ −145.184 + 48.3629i −0.659926 + 0.219831i
$$221$$ 422.919 113.321i 1.91366 0.512764i
$$222$$ −93.0833 + 162.004i −0.419294 + 0.729750i
$$223$$ 118.034 + 204.441i 0.529300 + 0.916774i 0.999416 + 0.0341697i $$0.0108787\pi$$
−0.470116 + 0.882605i $$0.655788\pi$$
$$224$$ −53.9089 89.5098i −0.240665 0.399597i
$$225$$ −47.5291 53.1298i −0.211240 0.236132i
$$226$$ −405.525 + 182.351i −1.79436 + 0.806862i
$$227$$ 44.3505 165.518i 0.195376 0.729155i −0.796793 0.604253i $$-0.793472\pi$$
0.992169 0.124902i $$-0.0398617\pi$$
$$228$$ 355.209 160.617i 1.55793 0.704461i
$$229$$ 281.415 75.4049i 1.22889 0.329279i 0.414740 0.909940i $$-0.363873\pi$$
0.814145 + 0.580661i $$0.197206\pi$$
$$230$$ −32.5317 + 26.5434i −0.141442 + 0.115406i
$$231$$ −37.0170 + 82.7823i −0.160247 + 0.358365i
$$232$$ 174.887 275.956i 0.753822 1.18946i
$$233$$ 231.148 0.992051 0.496025 0.868308i $$-0.334792\pi$$
0.496025 + 0.868308i $$0.334792\pi$$
$$234$$ 44.0482 278.966i 0.188240 1.19216i
$$235$$ 0.307942 + 0.307942i 0.00131039 + 0.00131039i
$$236$$ −74.7824 + 49.3543i −0.316875 + 0.209128i
$$237$$ −390.014 62.4167i −1.64563 0.263361i
$$238$$ −181.310 18.3790i −0.761808 0.0772225i
$$239$$ −58.2300 33.6191i −0.243640 0.140666i 0.373208 0.927748i $$-0.378258\pi$$
−0.616849 + 0.787082i $$0.711591\pi$$
$$240$$ −193.475 + 43.7968i −0.806145 + 0.182487i
$$241$$ −27.3230 47.3249i −0.113374 0.196369i 0.803755 0.594961i $$-0.202832\pi$$
−0.917128 + 0.398592i $$0.869499\pi$$
$$242$$ 64.4019 28.9594i 0.266124 0.119667i
$$243$$ 64.7823 234.206i 0.266594 0.963809i
$$244$$ 6.57108 + 109.836i 0.0269306 + 0.450150i
$$245$$ 153.040 + 41.0069i 0.624653 + 0.167375i
$$246$$ −146.962 39.0500i −0.597406 0.158740i
$$247$$ −441.424 254.856i −1.78714 1.03181i
$$248$$ 174.107 160.299i 0.702046 0.646368i
$$249$$ 69.6672 + 96.2143i 0.279788 + 0.386403i
$$250$$ 268.594 43.5598i 1.07438 0.174239i
$$251$$ 163.655 163.655i 0.652013 0.652013i −0.301465 0.953477i $$-0.597476\pi$$
0.953477 + 0.301465i $$0.0974756\pi$$
$$252$$ −58.3505 + 102.047i −0.231549 + 0.404947i
$$253$$ −33.2509 + 33.2509i −0.131426 + 0.131426i
$$254$$ 23.9474 33.2183i 0.0942809 0.130781i
$$255$$ −141.229 + 315.836i −0.553841 + 1.23857i
$$256$$ 71.8730 245.704i 0.280754 0.959780i
$$257$$ 252.543 + 145.806i 0.982657 + 0.567337i 0.903071 0.429491i $$-0.141307\pi$$
0.0795859 + 0.996828i $$0.474640\pi$$
$$258$$ −19.0834 + 0.0398057i −0.0739666 + 0.000154285i
$$259$$ −98.2182 26.3175i −0.379221 0.101612i
$$260$$ 194.028 + 172.123i 0.746261 + 0.662010i
$$261$$ −366.977 20.4187i −1.40604 0.0782326i
$$262$$ 75.2916 198.330i 0.287373 0.756985i
$$263$$ 5.69485 + 9.86377i 0.0216534 + 0.0375048i 0.876649 0.481130i $$-0.159774\pi$$
−0.854996 + 0.518635i $$0.826440\pi$$
$$264$$ −210.635 + 70.6543i −0.797862 + 0.267630i
$$265$$ −8.10691 4.68053i −0.0305921 0.0176624i
$$266$$ 134.123 + 164.381i 0.504220 + 0.617974i
$$267$$ 285.230 351.071i 1.06828 1.31487i
$$268$$ 189.273 124.915i 0.706242 0.466100i
$$269$$ 114.765 + 114.765i 0.426635 + 0.426635i 0.887480 0.460846i $$-0.152454\pi$$
−0.460846 + 0.887480i $$0.652454\pi$$
$$270$$ 149.139 + 166.014i 0.552365 + 0.614868i
$$271$$ 164.560 0.607233 0.303616 0.952794i $$-0.401806\pi$$
0.303616 + 0.952794i $$0.401806\pi$$
$$272$$ −267.751 357.294i −0.984379 1.31358i
$$273$$ 152.883 15.8196i 0.560011 0.0579472i
$$274$$ −57.5299 5.83165i −0.209963 0.0212834i
$$275$$ 70.8244 18.9773i 0.257543 0.0690085i
$$276$$ −47.1501 + 38.6350i −0.170834 + 0.139982i
$$277$$ −127.822 + 477.040i −0.461453 + 1.72216i 0.206938 + 0.978354i $$0.433650\pi$$
−0.668390 + 0.743811i $$0.733016\pi$$
$$278$$ 66.9569 176.375i 0.240852 0.634443i
$$279$$ −252.948 83.0901i −0.906624 0.297814i
$$280$$ −50.0753 95.6406i −0.178840 0.341573i
$$281$$ 75.0208 + 129.940i 0.266978 + 0.462420i 0.968080 0.250642i $$-0.0806415\pi$$
−0.701102 + 0.713061i $$0.747308\pi$$
$$282$$ 0.448012 + 0.446146i 0.00158869 + 0.00158208i
$$283$$ 208.213 55.7905i 0.735735 0.197139i 0.128553 0.991703i $$-0.458967\pi$$
0.607182 + 0.794563i $$0.292300\pi$$
$$284$$ 48.7965 + 146.485i 0.171819 + 0.515794i
$$285$$ 376.249 143.733i 1.32017 0.504327i
$$286$$ 235.640 + 169.875i 0.823916 + 0.593968i
$$287$$ 82.7548i 0.288344i
$$288$$ −280.760 + 64.1714i −0.974860 + 0.222817i
$$289$$ −489.708 −1.69449
$$290$$ 197.393 273.811i 0.680665 0.944177i
$$291$$ 99.5591 + 15.9331i 0.342127 + 0.0547530i
$$292$$ −288.400 + 96.0706i −0.987673 + 0.329009i
$$293$$ −107.492 401.167i −0.366868 1.36917i −0.864871 0.501995i $$-0.832600\pi$$
0.498002 0.867176i $$-0.334067\pi$$
$$294$$ 222.312 + 59.0716i 0.756163 + 0.200924i
$$295$$ −80.1708 + 46.2866i −0.271765 + 0.156904i
$$296$$ −115.554 220.702i −0.390387 0.745614i
$$297$$ 184.931 + 168.139i 0.622665 + 0.566125i
$$298$$ 381.025 + 144.648i 1.27861 + 0.485395i
$$299$$ 76.9864 + 20.6285i 0.257480 + 0.0689915i
$$300$$ 93.7911 15.4116i 0.312637 0.0513720i
$$301$$ −2.68798 10.0317i −0.00893017 0.0333279i
$$302$$ −12.0332 + 118.709i −0.0398450 + 0.393075i
$$303$$ −236.701 + 171.391i −0.781190 + 0.565647i
$$304$$ −73.7101 + 514.527i −0.242467 + 1.69252i
$$305$$ 113.683i 0.372732i
$$306$$ −204.085 + 458.967i −0.666943 + 1.49989i
$$307$$ −291.216 + 291.216i −0.948585 + 0.948585i −0.998741 0.0501560i $$-0.984028\pi$$
0.0501560 + 0.998741i $$0.484028\pi$$
$$308$$ −66.5998 100.913i −0.216233 0.327640i
$$309$$ −563.158 + 215.135i −1.82252 + 0.696231i
$$310$$ 189.453 154.579i 0.611139 0.498643i
$$311$$ −180.249 + 312.201i −0.579580 + 1.00386i 0.415948 + 0.909388i $$0.363450\pi$$
−0.995527 + 0.0944728i $$0.969883\pi$$
$$312$$ 282.217 + 249.305i 0.904541 + 0.799055i
$$313$$ −236.607 + 136.605i −0.755934 + 0.436439i −0.827834 0.560973i $$-0.810427\pi$$
0.0719001 + 0.997412i $$0.477094\pi$$
$$314$$ 279.924 + 106.267i 0.891477 + 0.338430i
$$315$$ −66.4751 + 101.644i −0.211032 + 0.322679i
$$316$$ 349.485 393.962i 1.10596 1.24672i
$$317$$ −146.207 + 545.652i −0.461221 + 1.72130i 0.207902 + 0.978150i $$0.433337\pi$$
−0.669123 + 0.743152i $$0.733330\pi$$
$$318$$ −11.7840 6.77078i −0.0370567 0.0212917i
$$319$$ 189.021 327.394i 0.592543 1.02631i
$$320$$ 89.2850 248.968i 0.279016 0.778024i
$$321$$ −37.7471 364.794i −0.117592 1.13643i
$$322$$ −26.9104 19.3999i −0.0835725 0.0602482i
$$323$$ 641.020 + 641.020i 1.98458 + 1.98458i
$$324$$ 217.027 + 240.573i 0.669835 + 0.742510i
$$325$$ −87.8772 87.8772i −0.270392 0.270392i
$$326$$ −36.5524 225.386i −0.112124 0.691368i
$$327$$ −5.48970 53.0534i −0.0167881 0.162243i
$$328$$ 149.158 137.328i 0.454749 0.418684i
$$329$$ −0.172046 + 0.297992i −0.000522936 + 0.000905751i
$$330$$ −221.595 + 59.8718i −0.671499 + 0.181430i
$$331$$ 77.7891 290.313i 0.235012 0.877078i −0.743131 0.669146i $$-0.766660\pi$$
0.978143 0.207932i $$-0.0666733\pi$$
$$332$$ −158.102 + 9.45861i −0.476211 + 0.0284898i
$$333$$ −153.399 + 234.555i −0.460658 + 0.704370i
$$334$$ −107.998 240.175i −0.323349 0.719086i
$$335$$ 202.911 117.150i 0.605703 0.349703i
$$336$$ −72.9904 138.702i −0.217233 0.412804i
$$337$$ 32.9832 57.1286i 0.0978731 0.169521i −0.812931 0.582360i $$-0.802129\pi$$
0.910804 + 0.412839i $$0.135463\pi$$
$$338$$ 15.5672 153.572i 0.0460567 0.454354i
$$339$$ −623.041 + 238.012i −1.83788 + 0.702100i
$$340$$ −254.095 385.009i −0.747339 1.13238i
$$341$$ 193.641 193.641i 0.567863 0.567863i
$$342$$ 545.814 209.815i 1.59595 0.613495i
$$343$$ 285.185i 0.831444i
$$344$$ 13.6205 21.4920i 0.0395946 0.0624768i
$$345$$ −51.0112 + 36.9364i −0.147859 + 0.107062i
$$346$$ 14.9536 + 18.3272i 0.0432186 + 0.0529688i
$$347$$ 118.599 + 442.617i 0.341784 + 1.27555i 0.896325 + 0.443398i $$0.146227\pi$$
−0.554542 + 0.832156i $$0.687106\pi$$
$$348$$ 285.752 398.125i 0.821126 1.14404i
$$349$$ −56.2276 15.0662i −0.161111 0.0431695i 0.177362 0.984146i $$-0.443244\pi$$
−0.338473 + 0.940976i $$0.609910\pi$$
$$350$$ 21.2140 + 47.1772i 0.0606115 + 0.134792i
$$351$$ 90.0806 413.945i 0.256640 1.17933i
$$352$$ 71.3664 287.501i 0.202745 0.816764i
$$353$$ −297.894 + 171.989i −0.843891 + 0.487221i −0.858585 0.512671i $$-0.828656\pi$$
0.0146940 + 0.999892i $$0.495323\pi$$
$$354$$ −116.254 + 67.4431i −0.328401 + 0.190517i
$$355$$ 41.2872 + 154.086i 0.116302 + 0.434045i
$$356$$ 190.609 + 572.201i 0.535418 + 1.60731i
$$357$$ −269.924 43.1979i −0.756091 0.121002i
$$358$$ −304.586 + 49.3969i −0.850800 + 0.137980i
$$359$$ 118.607 0.330382 0.165191 0.986262i $$-0.447176\pi$$
0.165191 + 0.986262i $$0.447176\pi$$
$$360$$ −293.516 + 48.8591i −0.815322 + 0.135720i
$$361$$ 694.356i 1.92342i
$$362$$ −681.573 + 110.535i −1.88280 + 0.305346i
$$363$$ 98.9460 37.7990i 0.272578 0.104129i
$$364$$ −91.6846 + 183.279i −0.251881 + 0.503514i
$$365$$ −303.364 + 81.2863i −0.831135 + 0.222702i
$$366$$ 0.344272 + 165.049i 0.000940635 + 0.450953i
$$367$$ 46.8771 + 81.1935i 0.127730 + 0.221236i 0.922797 0.385287i $$-0.125897\pi$$
−0.795066 + 0.606522i $$0.792564\pi$$
$$368$$ −9.69020 80.6967i −0.0263321 0.219285i
$$369$$ −216.700 71.1832i −0.587264 0.192908i
$$370$$ −105.558 234.747i −0.285291 0.634451i
$$371$$ 1.91431 7.14429i 0.00515985 0.0192568i
$$372$$ 274.586 224.997i 0.738133 0.604830i
$$373$$ −253.134 + 67.8270i −0.678643 + 0.181842i −0.581645 0.813443i $$-0.697591\pi$$
−0.0969980 + 0.995285i $$0.530924\pi$$
$$374$$ −326.616 400.302i −0.873306 1.07033i
$$375$$ 405.988 42.0096i 1.08263 0.112026i
$$376$$ −0.822605 + 0.184410i −0.00218778 + 0.000490452i
$$377$$ −640.756 −1.69962
$$378$$ −96.2027 + 147.771i −0.254504 + 0.390928i
$$379$$ 241.294 + 241.294i 0.636660 + 0.636660i 0.949730 0.313070i $$-0.101357\pi$$
−0.313070 + 0.949730i $$0.601357\pi$$
$$380$$ −107.766 + 526.100i −0.283595 + 1.38447i
$$381$$ 38.7332 47.6742i 0.101662 0.125129i
$$382$$ 59.6146 588.104i 0.156059 1.53954i
$$383$$ −600.753 346.845i −1.56855 0.905601i −0.996339 0.0854926i $$-0.972754\pi$$
−0.572208 0.820108i $$-0.693913\pi$$
$$384$$ 128.873 361.729i 0.335606 0.942002i
$$385$$ −62.4602 108.184i −0.162234 0.280998i
$$386$$ 101.300 + 225.278i 0.262435 + 0.583621i
$$387$$ −28.5809 1.59025i −0.0738525 0.00410918i
$$388$$ −89.2131 + 100.567i −0.229931 + 0.259193i
$$389$$ −485.848 130.183i −1.24897 0.334660i −0.427030 0.904237i $$-0.640440\pi$$
−0.821938 + 0.569578i $$0.807107\pi$$
$$390$$ 275.677 + 274.529i 0.706864 + 0.703921i
$$391$$ −122.762 70.8765i −0.313968 0.181270i
$$392$$ −225.633 + 207.739i −0.575595 + 0.529947i
$$393$$ 129.896 290.491i 0.330525 0.739163i
$$394$$ −5.44348 33.5651i −0.0138159 0.0851906i
$$395$$ 384.743 384.743i 0.974032 0.974032i
$$396$$ −321.536 + 87.5947i −0.811961 + 0.221199i
$$397$$ −66.3729 + 66.3729i −0.167186 + 0.167186i −0.785741 0.618555i $$-0.787718\pi$$
0.618555 + 0.785741i $$0.287718\pi$$
$$398$$ 513.566 + 370.234i 1.29037 + 0.930236i
$$399$$ 186.638 + 257.757i 0.467764 + 0.646008i
$$400$$ −49.8286 + 116.525i −0.124572 + 0.291312i
$$401$$ −169.181 97.6769i −0.421899 0.243583i 0.273991 0.961732i $$-0.411656\pi$$
−0.695889 + 0.718149i $$0.744990\pi$$
$$402$$ 294.237 170.697i 0.731933 0.424620i
$$403$$ −448.342 120.133i −1.11251 0.298096i
$$404$$ −23.2695 388.953i −0.0575978 0.962755i
$$405$$ 208.983 + 261.502i 0.516008 + 0.645683i
$$406$$ 249.337 + 94.6553i 0.614131 + 0.233141i
$$407$$ −144.134 249.648i −0.354138 0.613385i
$$408$$ −370.069 558.198i −0.907032 1.36813i
$$409$$ 223.887 + 129.261i 0.547401 + 0.316042i 0.748073 0.663616i $$-0.230979\pi$$
−0.200672 + 0.979658i $$0.564313\pi$$
$$410$$ 162.304 132.428i 0.395864 0.322995i
$$411$$ −85.6472 13.7067i −0.208387 0.0333497i
$$412$$ 161.301 787.451i 0.391508 1.91129i
$$413$$ −51.7203 51.7203i −0.125231 0.125231i
$$414$$ −73.9478 + 53.7798i −0.178618 + 0.129903i
$$415$$ −163.639 −0.394312
$$416$$ −482.490 + 138.892i −1.15983 + 0.333875i
$$417$$ 115.517 258.334i 0.277019 0.619506i
$$418$$ −60.6570 + 598.388i −0.145113 + 1.43155i
$$419$$ 514.750 137.927i 1.22852 0.329181i 0.414517 0.910041i $$-0.363950\pi$$
0.814003 + 0.580860i $$0.197284\pi$$
$$420$$ −66.7194 147.552i −0.158856 0.351313i
$$421$$ −17.9240 + 66.8934i −0.0425749 + 0.158892i −0.983941 0.178496i $$-0.942877\pi$$
0.941366 + 0.337388i $$0.109543\pi$$
$$422$$ −523.320 198.667i −1.24009 0.470774i
$$423$$ 0.632328 + 0.706840i 0.00149487 + 0.00167102i
$$424$$ 16.0536 8.40531i 0.0378623 0.0198238i
$$425$$ 110.515 + 191.418i 0.260036 + 0.450396i
$$426$$ 60.4086 + 223.582i 0.141804 + 0.524839i
$$427$$ −86.7624 + 23.2479i −0.203191 + 0.0544447i
$$428$$ 437.322 + 218.768i 1.02178 + 0.511141i
$$429$$ 338.186 + 274.761i 0.788312 + 0.640469i
$$430$$ 15.3734 21.3250i 0.0357521 0.0495931i
$$431$$ 244.536i 0.567368i 0.958918 + 0.283684i $$0.0915567\pi$$
−0.958918 + 0.283684i $$0.908443\pi$$
$$432$$ −425.987 + 71.8239i −0.986082 + 0.166259i
$$433$$ 669.665 1.54657 0.773285 0.634058i $$-0.218612\pi$$
0.773285 + 0.634058i $$0.218612\pi$$
$$434$$ 156.716 + 112.978i 0.361098 + 0.260319i
$$435$$ 319.270 392.969i 0.733953 0.903376i
$$436$$ 63.6014 + 31.8163i 0.145875 + 0.0729732i
$$437$$ 42.7111 + 159.400i 0.0977370 + 0.364759i
$$438$$ −440.187 + 118.933i −1.00499 + 0.271535i
$$439$$ −213.398 + 123.205i −0.486099 + 0.280650i −0.722955 0.690895i $$-0.757217\pi$$
0.236855 + 0.971545i $$0.423883\pi$$
$$440$$ 91.3414 292.106i 0.207594 0.663877i
$$441$$ 327.807 + 107.680i 0.743326 + 0.244173i
$$442$$ −310.789 + 818.668i −0.703143 + 1.85219i
$$443$$ 7.78561 + 2.08615i 0.0175747 + 0.00470914i 0.267596 0.963531i $$-0.413771\pi$$
−0.250021 + 0.968240i $$0.580438\pi$$
$$444$$ −153.963 340.493i −0.346763 0.766875i
$$445$$ 161.276 + 601.890i 0.362418 + 1.35256i
$$446$$ −469.728 47.6151i −1.05320 0.106760i
$$447$$ 558.082 + 249.553i 1.24851 + 0.558283i
$$448$$ 208.269 + 17.2286i 0.464886 + 0.0384567i
$$449$$ 374.634i 0.834374i −0.908821 0.417187i $$-0.863016\pi$$
0.908821 0.417187i $$-0.136984\pi$$
$$450$$ 141.785 14.9702i 0.315078 0.0332672i
$$451$$ 165.892 165.892i 0.367832 0.367832i
$$452$$ 178.453 871.185i 0.394808 1.92740i
$$453$$ −28.2828 + 176.727i −0.0624344 + 0.390125i
$$454$$ 216.660 + 265.540i 0.477225 + 0.584889i
$$455$$ −105.866 + 183.365i −0.232672 + 0.403000i
$$456$$ −154.865 + 764.135i −0.339616 + 1.67573i
$$457$$ −370.182 + 213.725i −0.810026 + 0.467669i −0.846965 0.531649i $$-0.821573\pi$$
0.0369392 + 0.999318i $$0.488239\pi$$
$$458$$ −206.803 + 544.751i −0.451534 + 1.18941i
$$459$$ −345.298 + 669.662i −0.752284 + 1.45896i
$$460$$ −5.01480 83.8230i −0.0109017 0.182224i
$$461$$ 37.0296 138.197i 0.0803246 0.299776i −0.914063 0.405572i $$-0.867072\pi$$
0.994388 + 0.105796i $$0.0337391\pi$$
$$462$$ −91.0091 156.876i −0.196989 0.339558i
$$463$$ 396.157 686.163i 0.855630 1.48199i −0.0204297 0.999791i $$-0.506503\pi$$
0.876059 0.482203i $$-0.160163\pi$$
$$464$$ 243.158 + 606.483i 0.524047 + 1.30708i
$$465$$ 297.071 215.104i 0.638863 0.462590i
$$466$$ −270.346 + 375.007i −0.580141 + 0.804737i
$$467$$ −99.2244 99.2244i −0.212472 0.212472i 0.592845 0.805317i $$-0.298005\pi$$
−0.805317 + 0.592845i $$0.798005\pi$$
$$468$$ 401.068 + 397.735i 0.856982 + 0.849861i
$$469$$ 130.903 + 130.903i 0.279111 + 0.279111i
$$470$$ −0.859758 + 0.139433i −0.00182927 + 0.000296666i
$$471$$ 410.000 + 183.336i 0.870489 + 0.389249i
$$472$$ 7.39309 179.049i 0.0156633 0.379340i
$$473$$ 14.7214 25.4982i 0.0311234 0.0539073i
$$474$$ 557.416 559.746i 1.17598 1.18090i
$$475$$ 66.5980 248.547i 0.140206 0.523257i
$$476$$ 241.874 272.657i 0.508139 0.572808i
$$477$$ −17.0613 11.1581i −0.0357679 0.0233922i
$$478$$ 122.647 55.1504i 0.256584 0.115377i
$$479$$ 740.052 427.269i 1.54499 0.892003i 0.546482 0.837471i $$-0.315967\pi$$
0.998512 0.0545314i $$-0.0173665\pi$$
$$480$$ 155.230 365.111i 0.323395 0.760649i
$$481$$ −244.298 + 423.136i −0.507895 + 0.879700i
$$482$$ 108.735 + 11.0222i 0.225591 + 0.0228676i
$$483$$ −38.6212 31.3780i −0.0799611 0.0649649i
$$484$$ −28.3404 + 138.354i −0.0585545 + 0.285855i
$$485$$ −98.2134 + 98.2134i −0.202502 + 0.202502i
$$486$$ 304.200 + 379.023i 0.625926 + 0.779883i
$$487$$ 742.172i 1.52397i −0.647597 0.761983i $$-0.724226\pi$$
0.647597 0.761983i $$-0.275774\pi$$
$$488$$ −185.881 117.802i −0.380903 0.241397i
$$489$$ −35.2516 340.677i −0.0720892 0.696681i
$$490$$ −245.521 + 200.326i −0.501063 + 0.408829i
$$491$$ 40.3803 + 150.701i 0.0822409 + 0.306927i 0.994777 0.102068i $$-0.0325460\pi$$
−0.912537 + 0.408995i $$0.865879\pi$$
$$492$$ 235.237 192.755i 0.478124 0.391778i
$$493$$ 1100.77 + 294.952i 2.23281 + 0.598279i
$$494$$ 929.752 418.078i 1.88209 0.846312i
$$495$$ −337.016 + 70.5003i −0.680840 + 0.142425i
$$496$$ 56.4323 + 469.949i 0.113775 + 0.947478i
$$497$$ −109.154 + 63.0202i −0.219626 + 0.126801i
$$498$$ −237.576 + 0.495556i −0.477061 + 0.000995093i
$$499$$ 199.066 + 742.924i 0.398929 + 1.48883i 0.814983 + 0.579485i $$0.196746\pi$$
−0.416053 + 0.909340i $$0.636587\pi$$
$$500$$ −243.472 + 486.706i −0.486945 + 0.973411i
$$501$$ −140.964 369.000i −0.281365 0.736527i
$$502$$ 74.1014 + 456.917i 0.147612 + 0.910193i
$$503$$ −342.754 −0.681419 −0.340710 0.940169i $$-0.610667\pi$$
−0.340710 + 0.940169i $$0.610667\pi$$
$$504$$ −97.3120 214.018i −0.193079 0.424639i
$$505$$ 402.576i 0.797179i
$$506$$ −15.0557 92.8348i −0.0297543 0.183468i
$$507$$ 36.5890 228.629i 0.0721677 0.450944i
$$508$$ 25.8840 + 77.7029i 0.0509528 + 0.152959i
$$509$$ −0.0380156 + 0.0101863i −7.46869e−5 + 2.00123e-5i −0.258856 0.965916i $$-0.583346\pi$$
0.258782 + 0.965936i $$0.416679\pi$$
$$510$$ −347.223 598.521i −0.680829 1.17357i
$$511$$ −124.074 214.903i −0.242807 0.420553i
$$512$$ 314.561 + 403.975i 0.614377 + 0.789013i
$$513$$ 835.499 267.011i 1.62865 0.520490i
$$514$$ −531.920 + 239.186i −1.03486 + 0.465343i
$$515$$ 214.941 802.172i 0.417362 1.55762i
$$516$$ 22.2550 31.0068i 0.0431298 0.0600908i
$$517$$ −0.942250 + 0.252475i −0.00182253 + 0.000488347i
$$518$$ 157.571 128.566i 0.304191 0.248197i
$$519$$ 20.8087 + 28.7380i 0.0400938 + 0.0553718i
$$520$$ −506.177 + 113.474i −0.973418 + 0.218219i
$$521$$ −347.290 −0.666584 −0.333292 0.942824i $$-0.608160\pi$$
−0.333292 + 0.942824i $$0.608160\pi$$
$$522$$ 462.335 571.490i 0.885700 1.09481i
$$523$$ −164.351 164.351i −0.314247 0.314247i 0.532305 0.846553i $$-0.321326\pi$$
−0.846553 + 0.532305i $$0.821326\pi$$
$$524$$ 233.705 + 354.114i 0.446002 + 0.675790i
$$525$$ 27.6894 + 72.4823i 0.0527417 + 0.138061i
$$526$$ −22.6633 2.29732i −0.0430861 0.00436752i
$$527$$ 714.921 + 412.760i 1.35659 + 0.783225i
$$528$$ 131.728 424.364i 0.249484 0.803721i
$$529$$ 251.598 + 435.780i 0.475610 + 0.823781i
$$530$$ 17.0752 7.67815i 0.0322174 0.0144871i
$$531$$ −179.922 + 90.9456i −0.338836 + 0.171272i
$$532$$ −423.554 + 25.3395i −0.796154 + 0.0476307i
$$533$$ −384.094 102.918i −0.720627 0.193091i
$$534$$ 235.968 + 873.354i 0.441888 + 1.63549i
$$535$$ 437.527 + 252.606i 0.817807 + 0.472161i
$$536$$ −18.7118 + 453.168i −0.0349100 + 0.845463i
$$537$$ −460.391 + 47.6390i −0.857338 + 0.0887132i
$$538$$ −320.417 + 51.9643i −0.595571 + 0.0965879i
$$539$$ −250.949 + 250.949i −0.465582 + 0.465582i
$$540$$ −443.766 + 47.7907i −0.821790 + 0.0885013i
$$541$$ −470.251 + 470.251i −0.869226 + 0.869226i −0.992387 0.123161i $$-0.960697\pi$$
0.123161 + 0.992387i $$0.460697\pi$$
$$542$$ −192.466 + 266.977i −0.355104 + 0.492578i
$$543$$ −1030.22 + 106.602i −1.89727 + 0.196320i
$$544$$ 892.818 16.5076i 1.64121 0.0303449i
$$545$$ 63.6311 + 36.7374i 0.116754 + 0.0674082i
$$546$$ −153.144 + 266.535i −0.280483 + 0.488160i
$$547$$ 250.124 + 67.0205i 0.457265 + 0.122524i 0.480097 0.877216i $$-0.340602\pi$$
−0.0228319 + 0.999739i $$0.507268\pi$$
$$548$$ 76.7469 86.5141i 0.140049 0.157873i
$$549$$ −13.7538 + 247.192i −0.0250525 + 0.450258i
$$550$$ −52.0465 + 137.099i −0.0946300 + 0.249271i
$$551$$ −663.341 1148.94i −1.20389 2.08519i
$$552$$ −7.53448 121.682i −0.0136494 0.220438i
$$553$$ 372.312 + 214.954i 0.673258 + 0.388706i
$$554$$ −624.436 765.311i −1.12714 1.38143i
$$555$$ −137.778 360.661i −0.248249 0.649839i
$$556$$ 207.834 + 314.914i 0.373803 + 0.566391i
$$557$$ −500.873 500.873i −0.899233 0.899233i 0.0961352 0.995368i $$-0.469352\pi$$
−0.995368 + 0.0961352i $$0.969352\pi$$
$$558$$ 430.646 313.195i 0.771767 0.561281i
$$559$$ −49.9035 −0.0892728
$$560$$ 213.731 + 30.6187i 0.381663 + 0.0546763i
$$561$$ −454.502 627.693i −0.810164 1.11888i
$$562$$ −298.553 30.2636i −0.531234 0.0538498i
$$563$$ −480.730 + 128.811i −0.853872 + 0.228794i −0.659101 0.752055i $$-0.729063\pi$$
−0.194771 + 0.980849i $$0.562396\pi$$
$$564$$ −1.24780 + 0.205036i −0.00221241 + 0.000363540i
$$565$$ 237.797 887.471i 0.420880 1.57075i
$$566$$ −153.009 + 403.050i −0.270334 + 0.712102i
$$567$$ −156.840 + 212.971i −0.276613 + 0.375610i
$$568$$ −294.725 92.1604i −0.518882 0.162254i
$$569$$ 75.7994 + 131.288i 0.133215 + 0.230735i 0.924914 0.380176i $$-0.124137\pi$$
−0.791699 + 0.610911i $$0.790803\pi$$
$$570$$ −206.865 + 778.522i −0.362921 + 1.36583i
$$571$$ −152.061 + 40.7447i −0.266307 + 0.0713568i −0.389502 0.921026i $$-0.627353\pi$$
0.123194 + 0.992383i $$0.460686\pi$$
$$572$$ −551.200 + 183.613i −0.963636 + 0.321002i
$$573$$ 140.118 875.536i 0.244534 1.52799i
$$574$$ 134.259 + 96.7884i 0.233900 + 0.168621i
$$575$$ 40.2356i 0.0699749i
$$576$$ 224.261 530.550i 0.389342 0.921093i
$$577$$ −407.893 −0.706921 −0.353460 0.935450i $$-0.614995\pi$$
−0.353460 + 0.935450i $$0.614995\pi$$
$$578$$ 572.753 794.488i 0.990922 1.37455i
$$579$$ 132.221 + 346.113i 0.228360 + 0.597777i
$$580$$ 213.356 + 640.489i 0.367856 + 1.10429i
$$581$$ −33.4637 124.888i −0.0575968 0.214954i
$$582$$ −142.292 + 142.887i −0.244487 + 0.245510i
$$583$$ 18.1591 10.4842i 0.0311477 0.0179831i
$$584$$ 181.445 580.254i 0.310694 0.993586i
$$585$$ 389.094 + 434.943i 0.665117 + 0.743493i
$$586$$ 776.562 + 294.804i 1.32519 + 0.503079i
$$587$$ −150.920 40.4388i −0.257103 0.0688906i 0.127965 0.991779i $$-0.459155\pi$$
−0.385068 + 0.922888i $$0.625822\pi$$
$$588$$ −355.848 + 291.583i −0.605183 + 0.495890i
$$589$$ −248.734 928.289i −0.422299 1.57604i
$$590$$ 18.6721 184.202i 0.0316477 0.312208i
$$591$$ −5.24977 50.7346i −0.00888285 0.0858453i
$$592$$ 493.210 + 70.6563i 0.833125 + 0.119352i
$$593$$ 99.9702i 0.168584i −0.996441 0.0842919i $$-0.973137\pi$$
0.996441 0.0842919i $$-0.0268628\pi$$
$$594$$ −489.076 + 103.375i −0.823360 + 0.174032i
$$595$$ 266.276 266.276i 0.447523 0.447523i
$$596$$ −680.311 + 448.987i −1.14146 + 0.753333i
$$597$$ 737.059 + 598.828i 1.23460 + 1.00306i
$$598$$ −123.509 + 100.774i −0.206536 + 0.168518i
$$599$$ −346.084 + 599.435i −0.577770 + 1.00073i 0.417965 + 0.908463i $$0.362744\pi$$
−0.995735 + 0.0922635i $$0.970590\pi$$
$$600$$ −84.6929 + 170.189i −0.141155 + 0.283648i
$$601$$ 757.737 437.479i 1.26079 0.727919i 0.287565 0.957761i $$-0.407154\pi$$
0.973228 + 0.229842i $$0.0738209\pi$$
$$602$$ 19.4189 + 7.37196i 0.0322573 + 0.0122458i
$$603$$ 455.379 230.182i 0.755190 0.381727i
$$604$$ −178.516 158.362i −0.295556 0.262188i
$$605$$ −37.7649 + 140.940i −0.0624213 + 0.232959i
$$606$$ −1.21914 584.471i −0.00201178 0.964474i
$$607$$ −123.138 + 213.281i −0.202863 + 0.351368i −0.949450 0.313919i $$-0.898358\pi$$
0.746587 + 0.665288i $$0.231691\pi$$
$$608$$ −748.543 721.365i −1.23116 1.18646i
$$609$$ 365.200 + 163.303i 0.599672 + 0.268150i
$$610$$ −184.436 132.962i −0.302355 0.217970i
$$611$$ 1.16912 + 1.16912i 0.00191346 + 0.00191346i
$$612$$ −505.921 867.900i −0.826669 1.41814i
$$613$$ 791.802 + 791.802i 1.29168 + 1.29168i 0.933745 + 0.357938i $$0.116520\pi$$
0.357938 + 0.933745i $$0.383480\pi$$
$$614$$ −131.859 813.060i −0.214755 1.32420i
$$615$$ 254.501 184.280i 0.413823 0.299642i
$$616$$ 241.612 + 9.97640i 0.392227 + 0.0161955i
$$617$$ −175.404 + 303.809i −0.284286 + 0.492398i −0.972436 0.233171i $$-0.925090\pi$$
0.688150 + 0.725569i $$0.258423\pi$$
$$618$$ 309.629 1165.27i 0.501018 1.88555i
$$619$$ 224.675 838.498i 0.362964 1.35460i −0.507195 0.861831i $$-0.669318\pi$$
0.870160 0.492770i $$-0.164016\pi$$
$$620$$ 29.2044 + 488.156i 0.0471039 + 0.787348i
$$621$$ −115.387 + 74.1424i −0.185808 + 0.119392i
$$622$$ −295.689 657.575i −0.475385 1.05719i
$$623$$ −426.378 + 246.169i −0.684395 + 0.395135i
$$624$$ −734.540 + 166.278i −1.17715 + 0.266470i
$$625$$ −182.122 + 315.444i −0.291395 + 0.504711i
$$626$$ 55.1069 543.635i 0.0880302 0.868427i
$$627$$ −142.568 + 890.846i −0.227381 + 1.42081i
$$628$$ −499.797 + 329.852i −0.795856 + 0.525243i
$$629$$ 614.463 614.463i 0.976889 0.976889i
$$630$$ −87.1560 226.728i −0.138343 0.359885i
$$631$$ 345.555i 0.547631i 0.961782 + 0.273815i $$0.0882857\pi$$
−0.961782 + 0.273815i $$0.911714\pi$$
$$632$$ 230.402 + 1027.76i 0.364560 + 1.62621i
$$633$$ −766.499 342.749i −1.21090 0.541467i
$$634$$ −714.249 875.386i −1.12658 1.38074i
$$635$$ 21.9007 + 81.7346i 0.0344893 + 0.128716i
$$636$$ 24.7671 11.1991i 0.0389419 0.0176086i
$$637$$ 581.026 + 155.686i 0.912129 + 0.244404i
$$638$$ 310.079 + 689.576i 0.486018 + 1.08084i
$$639$$ 71.1325 + 340.038i 0.111318 + 0.532140i
$$640$$ 299.491 + 436.041i 0.467955 + 0.681314i
$$641$$ −149.850 + 86.5157i −0.233775 + 0.134970i −0.612312 0.790616i $$-0.709760\pi$$
0.378537 + 0.925586i $$0.376427\pi$$
$$642$$ 635.979 + 365.416i 0.990622 + 0.569184i
$$643$$ −313.476 1169.91i −0.487521 1.81945i −0.568428 0.822733i $$-0.692448\pi$$
0.0809064 0.996722i $$-0.474219\pi$$
$$644$$ 62.9476 20.9688i 0.0977448 0.0325603i
$$645$$ 24.8654 30.6052i 0.0385510 0.0474500i
$$646$$ −1789.70 + 290.247i −2.77043 + 0.449299i
$$647$$ 687.033 1.06188 0.530938 0.847411i $$-0.321840\pi$$
0.530938 + 0.847411i $$0.321840\pi$$
$$648$$ −644.129 + 70.7279i −0.994026 + 0.109148i
$$649$$ 207.360i 0.319506i
$$650$$ 245.349 39.7899i 0.377460 0.0612152i
$$651$$ 224.916 + 182.735i 0.345494 + 0.280698i
$$652$$ 408.410 + 204.305i 0.626396 + 0.313352i
$$653$$ 166.251 44.5469i 0.254596 0.0682188i −0.129264 0.991610i $$-0.541261\pi$$
0.383860 + 0.923391i $$0.374595\pi$$
$$654$$ 92.4928 + 53.1438i 0.141426 + 0.0812597i
$$655$$ 219.179 + 379.629i 0.334624 + 0.579586i
$$656$$ 48.3455 + 402.605i 0.0736975 + 0.613727i
$$657$$ −669.466 + 140.046i −1.01897 + 0.213159i
$$658$$ −0.282232 0.627647i −0.000428924 0.000953871i
$$659$$ −127.944 + 477.492i −0.194148 + 0.724570i 0.798338 + 0.602210i $$0.205713\pi$$
−0.992486 + 0.122360i $$0.960954\pi$$
$$660$$ 162.038 429.533i 0.245513 0.650808i
$$661$$ −955.752 + 256.093i −1.44592 + 0.387433i −0.894602 0.446864i $$-0.852541\pi$$
−0.551316 + 0.834297i $$0.685874\pi$$
$$662$$ 380.014 + 465.747i 0.574040 + 0.703545i
$$663$$ −536.187 + 1199.09i −0.808729 + 1.80858i
$$664$$ 169.568 267.562i 0.255373 0.402955i
$$665$$ −438.388 −0.659231
$$666$$ −201.123 523.201i −0.301986 0.785587i
$$667$$ 146.689 + 146.689i 0.219923 + 0.219923i
$$668$$ 515.965 + 105.690i 0.772402 + 0.158219i
$$669$$ −699.305 111.915i −1.04530 0.167286i
$$670$$ −47.2588 + 466.213i −0.0705355 + 0.695840i
$$671$$ −220.529 127.323i −0.328658 0.189751i
$$672$$ 310.394 + 43.8059i 0.461896 + 0.0651874i
$$673$$ 22.7835 + 39.4622i 0.0338536 + 0.0586362i 0.882456 0.470395i $$-0.155889\pi$$
−0.848602 + 0.529031i $$0.822555\pi$$
$$674$$ 54.1072 + 120.328i 0.0802778 + 0.178527i
$$675$$ 213.618 10.1599i 0.316472 0.0150517i
$$676$$ 230.943 + 204.870i 0.341632 + 0.303062i
$$677$$ 316.919 + 84.9183i 0.468123 + 0.125433i 0.485167 0.874422i $$-0.338759\pi$$
−0.0170439 + 0.999855i $$0.505425\pi$$
$$678$$ 342.553 1289.18i 0.505241 1.90144i
$$679$$ −95.0401 54.8714i −0.139971 0.0808121i
$$680$$ 921.811 + 38.0625i 1.35560 + 0.0559743i
$$681$$ 301.493 + 416.379i 0.442721 + 0.611422i
$$682$$ 87.6788 + 540.637i 0.128561 + 0.792723i
$$683$$ −553.415 + 553.415i −0.810271 + 0.810271i −0.984674 0.174404i $$-0.944200\pi$$
0.174404 + 0.984674i $$0.444200\pi$$
$$684$$ −297.975 + 1130.91i −0.435636 + 1.65337i
$$685$$ 84.4895 84.4895i 0.123342 0.123342i
$$686$$ −462.676 333.547i −0.674454 0.486220i
$$687$$ −356.785 + 797.889i −0.519337 + 1.16141i
$$688$$ 18.9377 + 47.2342i 0.0275257 + 0.0686543i
$$689$$ −30.7784 17.7699i −0.0446712 0.0257909i
$$690$$ −0.262736 125.959i −0.000380776 0.182549i
$$691$$ −1061.70 284.482i −1.53647 0.411696i −0.611346 0.791363i $$-0.709372\pi$$
−0.925123 + 0.379667i $$0.876038\pi$$
$$692$$ −47.2230 + 2.82516i −0.0682413 + 0.00408260i
$$693$$ −122.724 242.791i −0.177091 0.350348i
$$694$$ −856.799 325.265i −1.23458 0.468681i
$$695$$ 194.916 + 337.604i 0.280454 + 0.485761i
$$696$$ 311.697 + 929.234i 0.447840 + 1.33511i
$$697$$ 612.472 + 353.611i 0.878726 + 0.507333i
$$698$$ 90.2056 73.6010i 0.129234 0.105445i
$$699$$ −437.266 + 538.203i −0.625560 + 0.769961i
$$700$$ −101.350 20.7606i −0.144786 0.0296579i
$$701$$ −305.590 305.590i −0.435934 0.435934i 0.454707 0.890641i $$-0.349744\pi$$
−0.890641 + 0.454707i $$0.849744\pi$$
$$702$$ 566.215 + 630.285i 0.806574 + 0.897842i
$$703$$ −1011.63 −1.43902
$$704$$ 382.964 + 452.038i 0.543983 + 0.642099i
$$705$$ −1.29955 + 0.134471i −0.00184333 + 0.000190739i
$$706$$ 69.3807 684.448i 0.0982730 0.969473i
$$707$$ 307.243 82.3255i 0.434573 0.116443i
$$708$$ 26.5509 267.487i 0.0375013 0.377807i
$$709$$ 147.786 551.544i 0.208442 0.777918i −0.779930 0.625866i $$-0.784745\pi$$
0.988373 0.152051i $$-0.0485878\pi$$
$$710$$ −298.273 113.233i −0.420103 0.159483i
$$711$$ 883.127 790.032i 1.24209 1.11116i
$$712$$ −1151.25 359.997i −1.61693 0.505614i
$$713$$ 75.1371 + 130.141i 0.105382 + 0.182526i
$$714$$ 385.781 387.394i 0.540310 0.542568i
$$715$$ −579.799 + 155.357i −0.810908 + 0.217282i
$$716$$ 276.098 551.925i 0.385612 0.770845i
$$717$$ 188.433 71.9845i 0.262808 0.100397i
$$718$$ −138.721 + 192.425i −0.193204 + 0.268001i
$$719$$ 127.191i 0.176900i −0.996081 0.0884500i $$-0.971809\pi$$
0.996081 0.0884500i $$-0.0281914\pi$$
$$720$$ 264.023 533.336i 0.366699 0.740745i
$$721$$ 656.167 0.910079
$$722$$ 1126.50 + 812.105i 1.56025 + 1.12480i
$$723$$ 161.878 + 25.9065i 0.223898 + 0.0358319i
$$724$$ 617.825 1235.04i 0.853349 1.70586i
$$725$$ −83.7200 312.447i −0.115476 0.430962i
$$726$$ −54.4014 + 204.736i −0.0749330 + 0.282005i
$$727$$ 393.884 227.409i 0.541794 0.312805i −0.204012 0.978968i $$-0.565398\pi$$
0.745806 + 0.666164i $$0.232065\pi$$
$$728$$ −190.114 363.106i −0.261146 0.498772i
$$729$$ 422.773 + 593.889i 0.579935 + 0.814663i
$$730$$ 222.933 587.240i 0.305387 0.804438i
$$731$$ 85.7307 + 22.9715i 0.117279 + 0.0314247i
$$732$$ −268.173 192.479i −0.366357 0.262950i
$$733$$ −158.947 593.197i −0.216844 0.809272i −0.985509 0.169621i $$-0.945746\pi$$
0.768665 0.639651i $$-0.220921\pi$$
$$734$$ −186.552 18.9103i −0.254158 0.0257634i
$$735$$ −384.988 + 278.763i −0.523793 + 0.379270i
$$736$$ 142.253 + 78.6602i 0.193279 + 0.106875i
$$737$$ 524.823i 0.712107i
$$738$$ 368.934 268.314i 0.499910 0.363569i
$$739$$ −223.669 + 223.669i −0.302664 + 0.302664i −0.842055 0.539391i $$-0.818654\pi$$
0.539391 + 0.842055i $$0.318654\pi$$
$$740$$ 504.304 + 103.301i 0.681492 + 0.139597i
$$741$$ 1428.45 545.692i 1.92774 0.736427i
$$742$$ 9.35174 + 11.4615i 0.0126034 + 0.0154468i
$$743$$ 243.358 421.509i 0.327535 0.567307i −0.654487 0.756073i $$-0.727116\pi$$
0.982022 + 0.188766i $$0.0604489\pi$$
$$744$$ 43.8781 + 708.631i 0.0589760 + 0.952461i
$$745$$ −729.330 + 421.079i −0.978967 + 0.565207i
$$746$$ 186.020 490.006i 0.249356 0.656844i
$$747$$ −355.815 19.7977i −0.476325 0.0265029i
$$748$$ 1031.44 61.7071i 1.37893 0.0824961i
$$749$$ −103.314 + 385.574i −0.137936 + 0.514785i
$$750$$ −406.680 + 707.795i −0.542240 + 0.943727i
$$751$$ 32.1779 55.7338i 0.0428467 0.0742127i −0.843807 0.536647i $$-0.819691\pi$$
0.886653 + 0.462434i $$0.153024\pi$$
$$752$$ 0.662921 1.55025i 0.000881544 0.00206150i
$$753$$ 71.4643 + 690.642i 0.0949061 + 0.917188i
$$754$$ 749.416 1039.54i 0.993920 1.37871i
$$755$$ −174.338 174.338i −0.230911 0.230911i
$$756$$ −127.222 328.906i −0.168284 0.435061i
$$757$$ 176.270 + 176.270i 0.232853 + 0.232853i 0.813883 0.581029i $$-0.197350\pi$$
−0.581029 + 0.813883i $$0.697350\pi$$
$$758$$ −673.681 + 109.255i −0.888761 + 0.144137i
$$759$$ −14.5199 140.322i −0.0191303 0.184878i
$$760$$ −727.488 790.153i −0.957221 1.03967i
$$761$$ 480.465 832.190i 0.631360 1.09355i −0.355914 0.934519i $$-0.615830\pi$$
0.987274 0.159029i $$-0.0508362\pi$$
$$762$$ 32.0436 + 118.598i 0.0420520 + 0.155641i
$$763$$ −15.0254 + 56.0755i −0.0196925 + 0.0734935i
$$764$$ 884.399 + 784.552i 1.15759 + 1.02690i
$$765$$ −468.223 926.309i −0.612057 1.21086i
$$766$$ 1265.34 568.981i 1.65188 0.742795i
$$767$$ −304.374 + 175.730i −0.396837 + 0.229114i
$$768$$ 436.131 + 632.150i 0.567879 + 0.823112i
$$769$$ −118.778 + 205.729i −0.154457 + 0.267528i −0.932861 0.360236i $$-0.882696\pi$$
0.778404 + 0.627764i $$0.216030\pi$$
$$770$$ 248.567 + 25.1966i 0.322814 + 0.0327228i
$$771$$ −817.232 + 312.196i −1.05996 + 0.404923i
$$772$$ −483.962 99.1346i −0.626894 0.128413i
$$773$$ −792.351 + 792.351i −1.02503 + 1.02503i −0.0253553 + 0.999679i $$0.508072\pi$$
−0.999679