Properties

Label 144.3.w.a.5.12
Level $144$
Weight $3$
Character 144.5
Analytic conductor $3.924$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.92371580679\)
Analytic rank: \(0\)
Dimension: \(184\)
Relative dimension: \(46\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 5.12
Character \(\chi\) \(=\) 144.5
Dual form 144.3.w.a.29.12

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.51447 + 1.30628i) q^{2} +(-2.22089 - 2.01684i) q^{3} +(0.587245 - 3.95666i) q^{4} +(-1.88738 - 7.04379i) q^{5} +(5.99804 + 0.153334i) q^{6} +(-8.89672 + 5.13652i) q^{7} +(4.27915 + 6.75935i) q^{8} +(0.864706 + 8.95836i) q^{9} +O(q^{10})\) \(q+(-1.51447 + 1.30628i) q^{2} +(-2.22089 - 2.01684i) q^{3} +(0.587245 - 3.95666i) q^{4} +(-1.88738 - 7.04379i) q^{5} +(5.99804 + 0.153334i) q^{6} +(-8.89672 + 5.13652i) q^{7} +(4.27915 + 6.75935i) q^{8} +(0.864706 + 8.95836i) q^{9} +(12.0596 + 8.20216i) q^{10} +(8.94555 + 2.39695i) q^{11} +(-9.28416 + 7.60292i) q^{12} +(4.68710 + 17.4925i) q^{13} +(6.76406 - 19.4008i) q^{14} +(-10.0145 + 19.4500i) q^{15} +(-15.3103 - 4.64705i) q^{16} -16.2105i q^{17} +(-13.0117 - 12.4376i) q^{18} +(-10.1733 + 10.1733i) q^{19} +(-28.9782 + 3.33128i) q^{20} +(30.1182 + 6.53561i) q^{21} +(-16.6789 + 8.05531i) q^{22} +(-15.7930 + 27.3544i) q^{23} +(4.12901 - 23.6422i) q^{24} +(-24.4021 + 14.0886i) q^{25} +(-29.9486 - 20.3692i) q^{26} +(16.1472 - 21.6395i) q^{27} +(15.0989 + 38.2177i) q^{28} +(5.89303 - 21.9931i) q^{29} +(-10.2405 - 42.5383i) q^{30} +(-4.70872 + 8.15575i) q^{31} +(29.2574 - 12.9618i) q^{32} +(-15.0328 - 23.3651i) q^{33} +(21.1755 + 24.5503i) q^{34} +(52.9721 + 52.9721i) q^{35} +(35.9530 + 1.83940i) q^{36} +(-9.86943 - 9.86943i) q^{37} +(2.11794 - 28.6963i) q^{38} +(24.8700 - 48.3020i) q^{39} +(39.5351 - 42.8989i) q^{40} +(-3.91236 + 6.77640i) q^{41} +(-54.1505 + 29.4449i) q^{42} +(-17.7682 + 66.3117i) q^{43} +(14.7371 - 33.9869i) q^{44} +(61.4688 - 22.9986i) q^{45} +(-11.8144 - 62.0576i) q^{46} +(-47.8768 + 27.6417i) q^{47} +(24.6301 + 41.1990i) q^{48} +(28.2677 - 48.9611i) q^{49} +(18.5526 - 53.2129i) q^{50} +(-32.6940 + 36.0017i) q^{51} +(71.9643 - 8.27288i) q^{52} +(-62.9261 + 62.9261i) q^{53} +(3.81292 + 53.8652i) q^{54} -67.5345i q^{55} +(-72.7900 - 38.1561i) q^{56} +(43.1115 - 2.07585i) q^{57} +(19.8044 + 41.0059i) q^{58} +(-8.22685 - 30.7030i) q^{59} +(71.0761 + 51.0460i) q^{60} +(33.4071 + 8.95140i) q^{61} +(-3.52250 - 18.5026i) q^{62} +(-53.7079 - 75.2585i) q^{63} +(-27.3777 + 57.8486i) q^{64} +(114.367 - 66.0299i) q^{65} +(53.2882 + 15.7487i) q^{66} +(-11.9773 - 44.7001i) q^{67} +(-64.1394 - 9.51952i) q^{68} +(90.2440 - 28.8990i) q^{69} +(-149.421 - 11.0281i) q^{70} -51.7767 q^{71} +(-56.8525 + 44.1791i) q^{72} +12.1298i q^{73} +(27.8393 + 2.05469i) q^{74} +(82.6089 + 17.9260i) q^{75} +(34.2779 + 46.2263i) q^{76} +(-91.8980 + 24.6240i) q^{77} +(25.4312 + 105.639i) q^{78} +(5.26645 + 9.12175i) q^{79} +(-3.83656 + 116.613i) q^{80} +(-79.5046 + 15.4927i) q^{81} +(-2.92675 - 15.3733i) q^{82} +(11.6771 - 43.5794i) q^{83} +(43.5459 - 115.329i) q^{84} +(-114.183 + 30.5953i) q^{85} +(-59.7125 - 123.637i) q^{86} +(-57.4444 + 36.9590i) q^{87} +(22.0775 + 70.7231i) q^{88} -48.2869 q^{89} +(-63.0500 + 115.126i) q^{90} +(-131.550 - 131.550i) q^{91} +(98.9574 + 78.5514i) q^{92} +(26.9064 - 8.61628i) q^{93} +(36.4001 - 104.403i) q^{94} +(90.8591 + 52.4575i) q^{95} +(-91.1192 - 30.2208i) q^{96} +(8.69864 + 15.0665i) q^{97} +(21.1465 + 111.076i) q^{98} +(-13.7375 + 82.2102i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} + O(q^{10}) \) \( 184q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} - 10q^{6} - 8q^{10} - 6q^{11} - 64q^{12} - 2q^{13} - 6q^{14} - 8q^{15} - 2q^{16} + 54q^{18} - 8q^{19} + 120q^{20} - 22q^{21} - 2q^{22} - 160q^{24} + 44q^{27} - 72q^{28} - 6q^{29} - 90q^{30} - 4q^{31} - 6q^{32} - 8q^{33} + 6q^{34} - 202q^{36} - 8q^{37} - 6q^{38} - 2q^{40} + 44q^{42} - 2q^{43} + 46q^{45} - 160q^{46} - 12q^{47} - 118q^{48} + 472q^{49} + 228q^{50} - 48q^{51} - 2q^{52} + 206q^{54} - 300q^{56} - 92q^{58} - 438q^{59} - 90q^{60} - 2q^{61} - 204q^{63} + 244q^{64} - 12q^{65} - 508q^{66} - 2q^{67} - 144q^{68} + 14q^{69} + 96q^{70} + 6q^{72} + 246q^{74} + 152q^{75} - 158q^{76} - 6q^{77} + 304q^{78} - 4q^{79} - 8q^{81} - 388q^{82} - 726q^{83} + 542q^{84} + 48q^{85} + 894q^{86} + 22q^{88} - 528q^{90} - 204q^{91} - 348q^{92} + 62q^{93} - 18q^{94} - 12q^{95} + 262q^{96} - 4q^{97} + 286q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.51447 + 1.30628i −0.757235 + 0.653142i
\(3\) −2.22089 2.01684i −0.740297 0.672280i
\(4\) 0.587245 3.95666i 0.146811 0.989165i
\(5\) −1.88738 7.04379i −0.377476 1.40876i −0.849694 0.527276i \(-0.823213\pi\)
0.472218 0.881482i \(-0.343453\pi\)
\(6\) 5.99804 + 0.153334i 0.999673 + 0.0255556i
\(7\) −8.89672 + 5.13652i −1.27096 + 0.733789i −0.975169 0.221464i \(-0.928917\pi\)
−0.295791 + 0.955253i \(0.595583\pi\)
\(8\) 4.27915 + 6.75935i 0.534894 + 0.844919i
\(9\) 0.864706 + 8.95836i 0.0960784 + 0.995374i
\(10\) 12.0596 + 8.20216i 1.20596 + 0.820216i
\(11\) 8.94555 + 2.39695i 0.813232 + 0.217905i 0.641385 0.767219i \(-0.278360\pi\)
0.171847 + 0.985124i \(0.445027\pi\)
\(12\) −9.28416 + 7.60292i −0.773680 + 0.633577i
\(13\) 4.68710 + 17.4925i 0.360546 + 1.34558i 0.873359 + 0.487076i \(0.161937\pi\)
−0.512813 + 0.858500i \(0.671397\pi\)
\(14\) 6.76406 19.4008i 0.483147 1.38577i
\(15\) −10.0145 + 19.4500i −0.667636 + 1.29667i
\(16\) −15.3103 4.64705i −0.956893 0.290441i
\(17\) 16.2105i 0.953558i −0.879023 0.476779i \(-0.841804\pi\)
0.879023 0.476779i \(-0.158196\pi\)
\(18\) −13.0117 12.4376i −0.722874 0.690979i
\(19\) −10.1733 + 10.1733i −0.535435 + 0.535435i −0.922185 0.386750i \(-0.873598\pi\)
0.386750 + 0.922185i \(0.373598\pi\)
\(20\) −28.9782 + 3.33128i −1.44891 + 0.166564i
\(21\) 30.1182 + 6.53561i 1.43420 + 0.311220i
\(22\) −16.6789 + 8.05531i −0.758131 + 0.366151i
\(23\) −15.7930 + 27.3544i −0.686654 + 1.18932i 0.286260 + 0.958152i \(0.407588\pi\)
−0.972914 + 0.231168i \(0.925745\pi\)
\(24\) 4.12901 23.6422i 0.172042 0.985090i
\(25\) −24.4021 + 14.0886i −0.976086 + 0.563543i
\(26\) −29.9486 20.3692i −1.15187 0.783430i
\(27\) 16.1472 21.6395i 0.598044 0.801464i
\(28\) 15.0989 + 38.2177i 0.539247 + 1.36492i
\(29\) 5.89303 21.9931i 0.203208 0.758383i −0.786780 0.617233i \(-0.788253\pi\)
0.989988 0.141150i \(-0.0450799\pi\)
\(30\) −10.2405 42.5383i −0.341351 1.41794i
\(31\) −4.70872 + 8.15575i −0.151894 + 0.263089i −0.931924 0.362654i \(-0.881871\pi\)
0.780030 + 0.625743i \(0.215204\pi\)
\(32\) 29.2574 12.9618i 0.914292 0.405055i
\(33\) −15.0328 23.3651i −0.455540 0.708034i
\(34\) 21.1755 + 24.5503i 0.622809 + 0.722068i
\(35\) 52.9721 + 52.9721i 1.51349 + 1.51349i
\(36\) 35.9530 + 1.83940i 0.998694 + 0.0510946i
\(37\) −9.86943 9.86943i −0.266741 0.266741i 0.561044 0.827786i \(-0.310400\pi\)
−0.827786 + 0.561044i \(0.810400\pi\)
\(38\) 2.11794 28.6963i 0.0557353 0.755165i
\(39\) 24.8700 48.3020i 0.637693 1.23851i
\(40\) 39.5351 42.8989i 0.988377 1.07247i
\(41\) −3.91236 + 6.77640i −0.0954234 + 0.165278i −0.909785 0.415079i \(-0.863754\pi\)
0.814362 + 0.580357i \(0.197087\pi\)
\(42\) −54.1505 + 29.4449i −1.28930 + 0.701069i
\(43\) −17.7682 + 66.3117i −0.413213 + 1.54213i 0.375175 + 0.926954i \(0.377582\pi\)
−0.788388 + 0.615178i \(0.789084\pi\)
\(44\) 14.7371 33.9869i 0.334935 0.772429i
\(45\) 61.4688 22.9986i 1.36597 0.511081i
\(46\) −11.8144 62.0576i −0.256836 1.34908i
\(47\) −47.8768 + 27.6417i −1.01866 + 0.588121i −0.913714 0.406357i \(-0.866799\pi\)
−0.104941 + 0.994478i \(0.533465\pi\)
\(48\) 24.6301 + 41.1990i 0.513127 + 0.858313i
\(49\) 28.2677 48.9611i 0.576893 0.999207i
\(50\) 18.5526 53.2129i 0.371053 1.06426i
\(51\) −32.6940 + 36.0017i −0.641059 + 0.705916i
\(52\) 71.9643 8.27288i 1.38393 0.159094i
\(53\) −62.9261 + 62.9261i −1.18728 + 1.18728i −0.209469 + 0.977815i \(0.567173\pi\)
−0.977815 + 0.209469i \(0.932827\pi\)
\(54\) 3.81292 + 53.8652i 0.0706097 + 0.997504i
\(55\) 67.5345i 1.22790i
\(56\) −72.7900 38.1561i −1.29982 0.681359i
\(57\) 43.1115 2.07585i 0.756343 0.0364184i
\(58\) 19.8044 + 41.0059i 0.341455 + 0.706998i
\(59\) −8.22685 30.7030i −0.139438 0.520390i −0.999940 0.0109431i \(-0.996517\pi\)
0.860502 0.509447i \(-0.170150\pi\)
\(60\) 71.0761 + 51.0460i 1.18460 + 0.850767i
\(61\) 33.4071 + 8.95140i 0.547657 + 0.146744i 0.522030 0.852927i \(-0.325175\pi\)
0.0256275 + 0.999672i \(0.491842\pi\)
\(62\) −3.52250 18.5026i −0.0568145 0.298429i
\(63\) −53.7079 75.2585i −0.852506 1.19458i
\(64\) −27.3777 + 57.8486i −0.427776 + 0.903885i
\(65\) 114.367 66.0299i 1.75949 1.01584i
\(66\) 53.2882 + 15.7487i 0.807398 + 0.238616i
\(67\) −11.9773 44.7001i −0.178766 0.667165i −0.995879 0.0906876i \(-0.971094\pi\)
0.817113 0.576477i \(-0.195573\pi\)
\(68\) −64.1394 9.51952i −0.943226 0.139993i
\(69\) 90.2440 28.8990i 1.30788 0.418826i
\(70\) −149.421 11.0281i −2.13459 0.157544i
\(71\) −51.7767 −0.729250 −0.364625 0.931154i \(-0.618803\pi\)
−0.364625 + 0.931154i \(0.618803\pi\)
\(72\) −56.8525 + 44.1791i −0.789618 + 0.613598i
\(73\) 12.1298i 0.166161i 0.996543 + 0.0830807i \(0.0264759\pi\)
−0.996543 + 0.0830807i \(0.973524\pi\)
\(74\) 27.8393 + 2.05469i 0.376206 + 0.0277661i
\(75\) 82.6089 + 17.9260i 1.10145 + 0.239014i
\(76\) 34.2779 + 46.2263i 0.451025 + 0.608241i
\(77\) −91.8980 + 24.6240i −1.19348 + 0.319792i
\(78\) 25.4312 + 105.639i 0.326041 + 1.35435i
\(79\) 5.26645 + 9.12175i 0.0666639 + 0.115465i 0.897431 0.441155i \(-0.145431\pi\)
−0.830767 + 0.556620i \(0.812098\pi\)
\(80\) −3.83656 + 116.613i −0.0479570 + 1.45766i
\(81\) −79.5046 + 15.4927i −0.981538 + 0.191268i
\(82\) −2.92675 15.3733i −0.0356921 0.187480i
\(83\) 11.6771 43.5794i 0.140687 0.525053i −0.859222 0.511603i \(-0.829052\pi\)
0.999910 0.0134499i \(-0.00428137\pi\)
\(84\) 43.5459 115.329i 0.518404 1.37297i
\(85\) −114.183 + 30.5953i −1.34333 + 0.359945i
\(86\) −59.7125 123.637i −0.694331 1.43764i
\(87\) −57.4444 + 36.9590i −0.660280 + 0.424816i
\(88\) 22.0775 + 70.7231i 0.250881 + 0.803671i
\(89\) −48.2869 −0.542550 −0.271275 0.962502i \(-0.587445\pi\)
−0.271275 + 0.962502i \(0.587445\pi\)
\(90\) −63.0500 + 115.126i −0.700555 + 1.27918i
\(91\) −131.550 131.550i −1.44561 1.44561i
\(92\) 98.9574 + 78.5514i 1.07562 + 0.853819i
\(93\) 26.9064 8.61628i 0.289316 0.0926481i
\(94\) 36.4001 104.403i 0.387236 1.11067i
\(95\) 90.8591 + 52.4575i 0.956411 + 0.552184i
\(96\) −91.1192 30.2208i −0.949158 0.314800i
\(97\) 8.69864 + 15.0665i 0.0896767 + 0.155325i 0.907374 0.420323i \(-0.138083\pi\)
−0.817698 + 0.575648i \(0.804750\pi\)
\(98\) 21.1465 + 111.076i 0.215781 + 1.13343i
\(99\) −13.7375 + 82.2102i −0.138763 + 0.830406i
\(100\) 41.4137 + 104.824i 0.414137 + 1.04824i
\(101\) 100.007 + 26.7967i 0.990164 + 0.265314i 0.717319 0.696745i \(-0.245369\pi\)
0.272844 + 0.962058i \(0.412036\pi\)
\(102\) 2.48562 97.2312i 0.0243688 0.953247i
\(103\) −101.848 58.8019i −0.988815 0.570893i −0.0838952 0.996475i \(-0.526736\pi\)
−0.904920 + 0.425582i \(0.860069\pi\)
\(104\) −98.1811 + 106.535i −0.944049 + 1.02437i
\(105\) −10.8089 224.481i −0.102942 2.13792i
\(106\) 13.1004 177.499i 0.123589 1.67452i
\(107\) 36.5715 36.5715i 0.341790 0.341790i −0.515250 0.857040i \(-0.672301\pi\)
0.857040 + 0.515250i \(0.172301\pi\)
\(108\) −76.1378 76.5965i −0.704980 0.709227i
\(109\) −115.331 + 115.331i −1.05808 + 1.05808i −0.0598768 + 0.998206i \(0.519071\pi\)
−0.998206 + 0.0598768i \(0.980929\pi\)
\(110\) 88.2193 + 102.279i 0.801993 + 0.929810i
\(111\) 2.01385 + 41.8240i 0.0181428 + 0.376793i
\(112\) 160.081 37.2981i 1.42929 0.333019i
\(113\) 51.5767 + 29.7778i 0.456431 + 0.263520i 0.710542 0.703655i \(-0.248450\pi\)
−0.254112 + 0.967175i \(0.581783\pi\)
\(114\) −62.5795 + 59.4597i −0.548943 + 0.521576i
\(115\) 222.486 + 59.6149i 1.93466 + 0.518390i
\(116\) −83.5585 36.2321i −0.720332 0.312345i
\(117\) −152.651 + 57.1146i −1.30471 + 0.488159i
\(118\) 52.5662 + 35.7522i 0.445476 + 0.302985i
\(119\) 83.2656 + 144.220i 0.699711 + 1.21193i
\(120\) −174.323 + 15.5378i −1.45269 + 0.129482i
\(121\) −30.5116 17.6159i −0.252162 0.145586i
\(122\) −62.2872 + 30.0825i −0.510550 + 0.246578i
\(123\) 22.3558 7.15904i 0.181755 0.0582036i
\(124\) 29.5043 + 23.4202i 0.237938 + 0.188873i
\(125\) 16.3828 + 16.3828i 0.131062 + 0.131062i
\(126\) 179.648 + 43.8190i 1.42578 + 0.347770i
\(127\) 12.8525 0.101201 0.0506003 0.998719i \(-0.483887\pi\)
0.0506003 + 0.998719i \(0.483887\pi\)
\(128\) −34.1040 123.373i −0.266438 0.963852i
\(129\) 173.201 111.435i 1.34264 0.863840i
\(130\) −86.9519 + 249.396i −0.668861 + 1.91843i
\(131\) −47.1473 + 12.6331i −0.359903 + 0.0964357i −0.434239 0.900798i \(-0.642983\pi\)
0.0743365 + 0.997233i \(0.476316\pi\)
\(132\) −101.276 + 45.7587i −0.767240 + 0.346656i
\(133\) 38.2534 142.764i 0.287620 1.07341i
\(134\) 76.5303 + 52.0511i 0.571122 + 0.388441i
\(135\) −182.900 72.8954i −1.35482 0.539966i
\(136\) 109.572 69.3672i 0.805680 0.510053i
\(137\) 32.4919 + 56.2776i 0.237167 + 0.410785i 0.959900 0.280342i \(-0.0904478\pi\)
−0.722733 + 0.691127i \(0.757114\pi\)
\(138\) −98.9217 + 161.651i −0.716824 + 1.17138i
\(139\) 248.716 66.6434i 1.78933 0.479449i 0.797096 0.603853i \(-0.206369\pi\)
0.992232 + 0.124404i \(0.0397020\pi\)
\(140\) 240.700 178.485i 1.71928 1.27489i
\(141\) 162.078 + 35.1707i 1.14949 + 0.249438i
\(142\) 78.4144 67.6351i 0.552214 0.476304i
\(143\) 167.715i 1.17283i
\(144\) 28.3911 141.173i 0.197160 0.980371i
\(145\) −166.037 −1.14508
\(146\) −15.8449 18.3702i −0.108527 0.125823i
\(147\) −161.526 + 51.7258i −1.09882 + 0.351876i
\(148\) −44.8458 + 33.2542i −0.303012 + 0.224691i
\(149\) −57.1310 213.216i −0.383429 1.43098i −0.840628 0.541613i \(-0.817814\pi\)
0.457198 0.889365i \(-0.348853\pi\)
\(150\) −148.525 + 80.7622i −0.990169 + 0.538415i
\(151\) −168.129 + 97.0691i −1.11343 + 0.642842i −0.939717 0.341954i \(-0.888911\pi\)
−0.173718 + 0.984795i \(0.555578\pi\)
\(152\) −112.298 25.2317i −0.738800 0.165998i
\(153\) 145.220 14.0173i 0.949147 0.0916164i
\(154\) 107.011 157.337i 0.694876 1.02167i
\(155\) 66.3345 + 17.7743i 0.427965 + 0.114673i
\(156\) −176.510 126.767i −1.13147 0.812611i
\(157\) 19.3397 + 72.1766i 0.123183 + 0.459724i 0.999768 0.0215218i \(-0.00685115\pi\)
−0.876586 + 0.481246i \(0.840184\pi\)
\(158\) −19.8915 6.93516i −0.125895 0.0438934i
\(159\) 266.664 12.8400i 1.67713 0.0807548i
\(160\) −146.520 181.619i −0.915747 1.13512i
\(161\) 324.485i 2.01544i
\(162\) 100.169 127.319i 0.618330 0.785918i
\(163\) 142.633 142.633i 0.875051 0.875051i −0.117967 0.993018i \(-0.537638\pi\)
0.993018 + 0.117967i \(0.0376376\pi\)
\(164\) 24.5144 + 19.4593i 0.149478 + 0.118654i
\(165\) −136.206 + 149.987i −0.825493 + 0.909011i
\(166\) 39.2425 + 81.2532i 0.236400 + 0.489477i
\(167\) 40.6173 70.3512i 0.243217 0.421265i −0.718412 0.695618i \(-0.755131\pi\)
0.961629 + 0.274354i \(0.0884638\pi\)
\(168\) 84.7038 + 231.546i 0.504190 + 1.37825i
\(169\) −137.660 + 79.4781i −0.814557 + 0.470285i
\(170\) 132.961 195.492i 0.782124 1.14995i
\(171\) −99.9326 82.3389i −0.584401 0.481514i
\(172\) 251.938 + 109.244i 1.46476 + 0.635138i
\(173\) −17.9239 + 66.8931i −0.103607 + 0.386665i −0.998183 0.0602491i \(-0.980810\pi\)
0.894577 + 0.446914i \(0.147477\pi\)
\(174\) 38.7189 131.012i 0.222523 0.752942i
\(175\) 144.733 250.684i 0.827044 1.43248i
\(176\) −125.820 78.2685i −0.714887 0.444707i
\(177\) −43.6522 + 84.7803i −0.246622 + 0.478985i
\(178\) 73.1291 63.0764i 0.410838 0.354362i
\(179\) 21.5662 + 21.5662i 0.120482 + 0.120482i 0.764777 0.644295i \(-0.222849\pi\)
−0.644295 + 0.764777i \(0.722849\pi\)
\(180\) −54.9005 256.717i −0.305003 1.42620i
\(181\) 97.5678 + 97.5678i 0.539048 + 0.539048i 0.923249 0.384201i \(-0.125523\pi\)
−0.384201 + 0.923249i \(0.625523\pi\)
\(182\) 371.071 + 27.3871i 2.03885 + 0.150478i
\(183\) −56.1399 87.2569i −0.306776 0.476814i
\(184\) −252.479 + 10.3028i −1.37217 + 0.0559932i
\(185\) −50.8909 + 88.1456i −0.275086 + 0.476463i
\(186\) −29.4937 + 48.1965i −0.158568 + 0.259121i
\(187\) 38.8558 145.012i 0.207785 0.775464i
\(188\) 81.2533 + 205.665i 0.432198 + 1.09396i
\(189\) −32.5050 + 275.461i −0.171984 + 1.45747i
\(190\) −206.128 + 39.2424i −1.08488 + 0.206539i
\(191\) −73.1010 + 42.2049i −0.382728 + 0.220968i −0.679004 0.734134i \(-0.737588\pi\)
0.296277 + 0.955102i \(0.404255\pi\)
\(192\) 177.474 73.2590i 0.924345 0.381557i
\(193\) −167.220 + 289.633i −0.866423 + 1.50069i −0.000794872 1.00000i \(0.500253\pi\)
−0.865628 + 0.500688i \(0.833080\pi\)
\(194\) −32.8549 11.4549i −0.169355 0.0590457i
\(195\) −387.169 84.0152i −1.98548 0.430847i
\(196\) −177.122 140.598i −0.903686 0.717336i
\(197\) −264.251 + 264.251i −1.34138 + 1.34138i −0.446683 + 0.894692i \(0.647395\pi\)
−0.894692 + 0.446683i \(0.852605\pi\)
\(198\) −86.5847 142.450i −0.437297 0.719444i
\(199\) 25.3594i 0.127434i 0.997968 + 0.0637170i \(0.0202955\pi\)
−0.997968 + 0.0637170i \(0.979704\pi\)
\(200\) −199.650 104.655i −0.998251 0.523277i
\(201\) −63.5525 + 123.430i −0.316182 + 0.614081i
\(202\) −186.461 + 90.0542i −0.923075 + 0.445813i
\(203\) 60.5394 + 225.936i 0.298224 + 1.11299i
\(204\) 123.247 + 150.501i 0.604153 + 0.737749i
\(205\) 55.1157 + 14.7682i 0.268857 + 0.0720400i
\(206\) 231.058 43.9885i 1.12164 0.213536i
\(207\) −258.707 117.826i −1.24979 0.569209i
\(208\) 9.52769 289.596i 0.0458062 1.39229i
\(209\) −115.390 + 66.6206i −0.552106 + 0.318759i
\(210\) 309.606 + 325.851i 1.47431 + 1.55167i
\(211\) 17.5310 + 65.4266i 0.0830854 + 0.310079i 0.994945 0.100424i \(-0.0320199\pi\)
−0.911859 + 0.410503i \(0.865353\pi\)
\(212\) 212.024 + 285.930i 1.00011 + 1.34873i
\(213\) 114.990 + 104.425i 0.539861 + 0.490260i
\(214\) −7.61372 + 103.159i −0.0355781 + 0.482053i
\(215\) 500.621 2.32847
\(216\) 215.365 + 16.5456i 0.997062 + 0.0766001i
\(217\) 96.7459i 0.445834i
\(218\) 24.0104 325.320i 0.110140 1.49230i
\(219\) 24.4638 26.9389i 0.111707 0.123009i
\(220\) −267.211 39.6593i −1.21460 0.180269i
\(221\) 283.562 75.9802i 1.28309 0.343802i
\(222\) −57.6839 60.7106i −0.259838 0.273471i
\(223\) −30.1061 52.1453i −0.135005 0.233835i 0.790594 0.612340i \(-0.209772\pi\)
−0.925599 + 0.378505i \(0.876438\pi\)
\(224\) −193.716 + 265.598i −0.864804 + 1.18571i
\(225\) −147.311 206.421i −0.654717 0.917426i
\(226\) −117.010 + 22.2761i −0.517742 + 0.0985670i
\(227\) 83.6522 312.194i 0.368512 1.37530i −0.494086 0.869413i \(-0.664497\pi\)
0.862597 0.505891i \(-0.168836\pi\)
\(228\) 17.1036 171.797i 0.0750158 0.753494i
\(229\) 416.437 111.584i 1.81850 0.487266i 0.821899 0.569633i \(-0.192915\pi\)
0.996602 + 0.0823672i \(0.0262480\pi\)
\(230\) −414.822 + 200.345i −1.80357 + 0.871063i
\(231\) 253.758 + 130.657i 1.09852 + 0.565613i
\(232\) 173.876 54.2788i 0.749467 0.233960i
\(233\) −99.0177 −0.424968 −0.212484 0.977164i \(-0.568155\pi\)
−0.212484 + 0.977164i \(0.568155\pi\)
\(234\) 156.578 285.904i 0.669136 1.22181i
\(235\) 285.064 + 285.064i 1.21304 + 1.21304i
\(236\) −126.313 + 14.5206i −0.535223 + 0.0615282i
\(237\) 6.70092 30.8800i 0.0282739 0.130295i
\(238\) −314.496 109.649i −1.32141 0.460709i
\(239\) −257.899 148.898i −1.07907 0.623003i −0.148427 0.988923i \(-0.547421\pi\)
−0.930646 + 0.365920i \(0.880754\pi\)
\(240\) 243.711 251.247i 1.01546 1.04686i
\(241\) 196.572 + 340.473i 0.815653 + 1.41275i 0.908858 + 0.417106i \(0.136956\pi\)
−0.0932048 + 0.995647i \(0.529711\pi\)
\(242\) 69.2203 13.1781i 0.286034 0.0544548i
\(243\) 207.817 + 125.940i 0.855215 + 0.518274i
\(244\) 55.0358 126.924i 0.225556 0.520179i
\(245\) −398.224 106.704i −1.62540 0.435526i
\(246\) −24.5055 + 40.0453i −0.0996160 + 0.162786i
\(247\) −225.639 130.273i −0.913517 0.527419i
\(248\) −75.2769 + 3.07179i −0.303536 + 0.0123862i
\(249\) −113.826 + 73.2342i −0.457133 + 0.294113i
\(250\) −46.2119 3.41069i −0.184847 0.0136427i
\(251\) −22.6253 + 22.6253i −0.0901408 + 0.0901408i −0.750739 0.660599i \(-0.770303\pi\)
0.660599 + 0.750739i \(0.270303\pi\)
\(252\) −329.312 + 168.309i −1.30679 + 0.667891i
\(253\) −206.845 + 206.845i −0.817567 + 0.817567i
\(254\) −19.4647 + 16.7890i −0.0766327 + 0.0660984i
\(255\) 315.295 + 162.341i 1.23645 + 0.636630i
\(256\) 212.810 + 142.295i 0.831288 + 0.555841i
\(257\) −27.1183 15.6568i −0.105519 0.0609213i 0.446312 0.894877i \(-0.352737\pi\)
−0.551831 + 0.833956i \(0.686071\pi\)
\(258\) −116.742 + 395.016i −0.452488 + 1.53107i
\(259\) 138.500 + 37.1110i 0.534750 + 0.143286i
\(260\) −194.096 491.287i −0.746524 1.88957i
\(261\) 202.118 + 33.7744i 0.774398 + 0.129404i
\(262\) 54.9008 80.7202i 0.209545 0.308092i
\(263\) 38.8976 + 67.3727i 0.147900 + 0.256170i 0.930451 0.366416i \(-0.119415\pi\)
−0.782551 + 0.622586i \(0.786082\pi\)
\(264\) 93.6054 201.595i 0.354566 0.763617i
\(265\) 562.003 + 324.473i 2.12077 + 1.22443i
\(266\) 128.556 + 266.181i 0.483294 + 1.00068i
\(267\) 107.240 + 97.3870i 0.401648 + 0.364745i
\(268\) −183.896 + 21.1404i −0.686181 + 0.0788821i
\(269\) −281.972 281.972i −1.04822 1.04822i −0.998777 0.0494466i \(-0.984254\pi\)
−0.0494466 0.998777i \(-0.515746\pi\)
\(270\) 372.219 128.521i 1.37859 0.476005i
\(271\) −167.105 −0.616623 −0.308311 0.951285i \(-0.599764\pi\)
−0.308311 + 0.951285i \(0.599764\pi\)
\(272\) −75.3310 + 248.187i −0.276952 + 0.912453i
\(273\) 26.8428 + 557.475i 0.0983251 + 2.04203i
\(274\) −122.723 42.7872i −0.447892 0.156158i
\(275\) −252.060 + 67.5394i −0.916583 + 0.245598i
\(276\) −61.3480 374.035i −0.222275 1.35520i
\(277\) 88.9688 332.036i 0.321187 1.19869i −0.596903 0.802314i \(-0.703602\pi\)
0.918090 0.396372i \(-0.129731\pi\)
\(278\) −289.619 + 425.824i −1.04179 + 1.53174i
\(279\) −77.1338 35.1301i −0.276465 0.125914i
\(280\) −131.381 + 584.732i −0.469219 + 2.08833i
\(281\) 17.3139 + 29.9886i 0.0616153 + 0.106721i 0.895188 0.445690i \(-0.147041\pi\)
−0.833572 + 0.552410i \(0.813708\pi\)
\(282\) −291.405 + 158.455i −1.03335 + 0.561897i
\(283\) −245.645 + 65.8204i −0.868003 + 0.232581i −0.665224 0.746644i \(-0.731664\pi\)
−0.202779 + 0.979225i \(0.564997\pi\)
\(284\) −30.4056 + 204.863i −0.107062 + 0.721348i
\(285\) −95.9896 299.751i −0.336806 1.05176i
\(286\) −219.083 253.999i −0.766025 0.888109i
\(287\) 80.3837i 0.280083i
\(288\) 141.415 + 250.890i 0.491025 + 0.871146i
\(289\) 26.2199 0.0907262
\(290\) 251.459 216.892i 0.867098 0.747902i
\(291\) 11.0680 51.0048i 0.0380343 0.175274i
\(292\) 47.9934 + 7.12315i 0.164361 + 0.0243943i
\(293\) −14.2159 53.0545i −0.0485185 0.181073i 0.937414 0.348216i \(-0.113213\pi\)
−0.985933 + 0.167143i \(0.946546\pi\)
\(294\) 177.058 289.337i 0.602239 0.984138i
\(295\) −200.738 + 115.896i −0.680469 + 0.392869i
\(296\) 24.4782 108.944i 0.0826965 0.368053i
\(297\) 196.314 154.873i 0.660991 0.521459i
\(298\) 365.044 + 248.280i 1.22498 + 0.833154i
\(299\) −552.519 148.047i −1.84789 0.495141i
\(300\) 119.439 316.328i 0.398130 1.05443i
\(301\) −182.533 681.223i −0.606422 2.26320i
\(302\) 127.826 366.632i 0.423265 1.21401i
\(303\) −168.059 261.210i −0.554650 0.862078i
\(304\) 203.031 108.480i 0.667866 0.356842i
\(305\) 252.207i 0.826909i
\(306\) −201.620 + 210.927i −0.658889 + 0.689303i
\(307\) −1.89392 + 1.89392i −0.00616912 + 0.00616912i −0.710185 0.704015i \(-0.751389\pi\)
0.704015 + 0.710185i \(0.251389\pi\)
\(308\) 43.4621 + 378.069i 0.141111 + 1.22750i
\(309\) 107.599 + 336.004i 0.348217 + 1.08739i
\(310\) −123.680 + 59.7331i −0.398968 + 0.192687i
\(311\) 106.461 184.395i 0.342318 0.592911i −0.642545 0.766248i \(-0.722121\pi\)
0.984863 + 0.173337i \(0.0554548\pi\)
\(312\) 432.913 38.5865i 1.38754 0.123675i
\(313\) −442.123 + 255.260i −1.41253 + 0.815527i −0.995627 0.0934212i \(-0.970220\pi\)
−0.416908 + 0.908949i \(0.636886\pi\)
\(314\) −123.573 84.0463i −0.393543 0.267663i
\(315\) −428.738 + 520.348i −1.36107 + 1.65190i
\(316\) 39.1844 15.4808i 0.124001 0.0489900i
\(317\) 13.3761 49.9202i 0.0421958 0.157477i −0.941613 0.336696i \(-0.890690\pi\)
0.983809 + 0.179219i \(0.0573571\pi\)
\(318\) −387.082 + 367.784i −1.21724 + 1.15655i
\(319\) 105.433 182.615i 0.330511 0.572461i
\(320\) 459.146 + 83.6604i 1.43483 + 0.261439i
\(321\) −154.980 + 7.46239i −0.482805 + 0.0232473i
\(322\) 423.870 + 491.424i 1.31637 + 1.52616i
\(323\) 164.914 + 164.914i 0.510568 + 0.510568i
\(324\) 14.6107 + 323.670i 0.0450948 + 0.998983i
\(325\) −360.820 360.820i −1.11021 1.11021i
\(326\) −29.6944 + 402.334i −0.0910871 + 1.23415i
\(327\) 488.742 23.5332i 1.49462 0.0719670i
\(328\) −62.5457 + 2.55227i −0.190688 + 0.00778130i
\(329\) 283.964 491.841i 0.863113 1.49496i
\(330\) 10.3553 405.075i 0.0313798 1.22750i
\(331\) 7.10848 26.5292i 0.0214758 0.0801487i −0.954356 0.298671i \(-0.903457\pi\)
0.975832 + 0.218522i \(0.0701235\pi\)
\(332\) −165.571 71.7939i −0.498709 0.216247i
\(333\) 79.8798 96.9481i 0.239879 0.291136i
\(334\) 30.3850 + 159.603i 0.0909729 + 0.477852i
\(335\) −292.252 + 168.732i −0.872394 + 0.503677i
\(336\) −430.747 240.023i −1.28198 0.714354i
\(337\) 149.164 258.359i 0.442622 0.766644i −0.555261 0.831676i \(-0.687382\pi\)
0.997883 + 0.0650318i \(0.0207149\pi\)
\(338\) 104.661 300.191i 0.309649 0.888138i
\(339\) −54.4890 170.155i −0.160735 0.501932i
\(340\) 54.0017 + 469.751i 0.158829 + 1.38162i
\(341\) −61.6711 + 61.6711i −0.180854 + 0.180854i
\(342\) 258.903 5.84056i 0.757026 0.0170776i
\(343\) 77.4122i 0.225692i
\(344\) −524.257 + 163.657i −1.52400 + 0.475746i
\(345\) −373.883 581.116i −1.08372 1.68440i
\(346\) −60.2361 124.721i −0.174093 0.360466i
\(347\) −78.3181 292.287i −0.225701 0.842326i −0.982123 0.188242i \(-0.939721\pi\)
0.756422 0.654084i \(-0.226946\pi\)
\(348\) 112.500 + 248.992i 0.323276 + 0.715493i
\(349\) −0.196854 0.0527469i −0.000564052 0.000151137i 0.258537 0.966001i \(-0.416760\pi\)
−0.259101 + 0.965850i \(0.583426\pi\)
\(350\) 108.272 + 568.716i 0.309347 + 1.62490i
\(351\) 454.213 + 181.028i 1.29405 + 0.515749i
\(352\) 292.792 45.8215i 0.831795 0.130175i
\(353\) 166.429 96.0877i 0.471469 0.272203i −0.245385 0.969426i \(-0.578914\pi\)
0.716855 + 0.697223i \(0.245581\pi\)
\(354\) −44.6372 185.419i −0.126094 0.523784i
\(355\) 97.7223 + 364.704i 0.275274 + 1.02734i
\(356\) −28.3562 + 191.055i −0.0796523 + 0.536671i
\(357\) 105.946 488.231i 0.296766 1.36759i
\(358\) −60.8330 4.48981i −0.169925 0.0125414i
\(359\) −22.7417 −0.0633474 −0.0316737 0.999498i \(-0.510084\pi\)
−0.0316737 + 0.999498i \(0.510084\pi\)
\(360\) 418.490 + 317.075i 1.16247 + 0.880763i
\(361\) 154.010i 0.426619i
\(362\) −275.215 20.3123i −0.760262 0.0561114i
\(363\) 32.2345 + 100.660i 0.0888002 + 0.277300i
\(364\) −597.752 + 443.248i −1.64218 + 1.21771i
\(365\) 85.4396 22.8935i 0.234081 0.0627219i
\(366\) 199.005 + 58.8133i 0.543728 + 0.160692i
\(367\) 174.358 + 301.997i 0.475091 + 0.822881i 0.999593 0.0285279i \(-0.00908196\pi\)
−0.524502 + 0.851409i \(0.675749\pi\)
\(368\) 368.913 345.412i 1.00248 0.938619i
\(369\) −64.0885 29.1887i −0.173682 0.0791023i
\(370\) −38.0704 199.972i −0.102893 0.540464i
\(371\) 236.614 883.057i 0.637774 2.38021i
\(372\) −18.2910 111.519i −0.0491694 0.299783i
\(373\) 404.686 108.435i 1.08495 0.290711i 0.328327 0.944564i \(-0.393515\pi\)
0.756622 + 0.653853i \(0.226848\pi\)
\(374\) 130.581 + 270.373i 0.349146 + 0.722922i
\(375\) −3.34290 69.4259i −0.00891440 0.185136i
\(376\) −391.712 205.333i −1.04179 0.546099i
\(377\) 412.335 1.09373
\(378\) −310.602 459.639i −0.821699 1.21597i
\(379\) −36.1998 36.1998i −0.0955139 0.0955139i 0.657735 0.753249i \(-0.271515\pi\)
−0.753249 + 0.657735i \(0.771515\pi\)
\(380\) 260.913 328.693i 0.686613 0.864981i
\(381\) −28.5439 25.9214i −0.0749185 0.0680352i
\(382\) 55.5778 159.409i 0.145492 0.417300i
\(383\) 194.937 + 112.547i 0.508974 + 0.293856i 0.732412 0.680862i \(-0.238395\pi\)
−0.223438 + 0.974718i \(0.571728\pi\)
\(384\) −173.083 + 342.780i −0.450736 + 0.892657i
\(385\) 346.893 + 600.836i 0.901020 + 1.56061i
\(386\) −125.093 657.077i −0.324076 1.70227i
\(387\) −609.408 101.834i −1.57470 0.263136i
\(388\) 64.7211 25.5698i 0.166807 0.0659016i
\(389\) 304.637 + 81.6272i 0.783128 + 0.209838i 0.628163 0.778082i \(-0.283807\pi\)
0.154964 + 0.987920i \(0.450474\pi\)
\(390\) 696.103 378.514i 1.78488 0.970548i
\(391\) 443.428 + 256.013i 1.13409 + 0.654765i
\(392\) 451.908 18.4407i 1.15283 0.0470427i
\(393\) 130.188 + 67.0319i 0.331267 + 0.170565i
\(394\) 55.0136 745.387i 0.139628 1.89185i
\(395\) 54.3119 54.3119i 0.137499 0.137499i
\(396\) 317.210 + 102.632i 0.801036 + 0.259172i
\(397\) 241.044 241.044i 0.607163 0.607163i −0.335041 0.942204i \(-0.608750\pi\)
0.942204 + 0.335041i \(0.108750\pi\)
\(398\) −33.1265 38.4060i −0.0832325 0.0964976i
\(399\) −372.889 + 239.912i −0.934558 + 0.601282i
\(400\) 439.074 102.302i 1.09769 0.255756i
\(401\) 14.4444 + 8.33948i 0.0360210 + 0.0207967i 0.517902 0.855440i \(-0.326713\pi\)
−0.481881 + 0.876236i \(0.660046\pi\)
\(402\) −64.9866 269.949i −0.161658 0.671516i
\(403\) −164.735 44.1405i −0.408771 0.109530i
\(404\) 164.754 379.956i 0.407806 0.940484i
\(405\) 259.182 + 530.773i 0.639957 + 1.31055i
\(406\) −386.822 263.092i −0.952763 0.648010i
\(407\) −64.6310 111.944i −0.158798 0.275047i
\(408\) −383.251 66.9332i −0.939341 0.164052i
\(409\) −668.722 386.087i −1.63502 0.943978i −0.982513 0.186192i \(-0.940385\pi\)
−0.652504 0.757786i \(-0.726281\pi\)
\(410\) −102.763 + 49.6307i −0.250640 + 0.121050i
\(411\) 41.3420 190.517i 0.100589 0.463546i
\(412\) −292.469 + 368.446i −0.709876 + 0.894287i
\(413\) 230.899 + 230.899i 0.559077 + 0.559077i
\(414\) 545.718 159.500i 1.31816 0.385265i
\(415\) −329.003 −0.792778
\(416\) 363.866 + 451.031i 0.874677 + 1.08421i
\(417\) −686.781 353.614i −1.64696 0.847995i
\(418\) 87.7298 251.627i 0.209880 0.601979i
\(419\) 113.288 30.3555i 0.270378 0.0724476i −0.121083 0.992642i \(-0.538637\pi\)
0.391461 + 0.920195i \(0.371970\pi\)
\(420\) −894.543 89.0583i −2.12987 0.212044i
\(421\) −22.4882 + 83.9270i −0.0534161 + 0.199352i −0.987477 0.157761i \(-0.949572\pi\)
0.934061 + 0.357113i \(0.116239\pi\)
\(422\) −112.016 76.1862i −0.265441 0.180536i
\(423\) −289.024 404.996i −0.683271 0.957437i
\(424\) −694.610 156.069i −1.63823 0.368087i
\(425\) 228.383 + 395.571i 0.537372 + 0.930755i
\(426\) −310.559 7.93912i −0.729012 0.0186364i
\(427\) −343.193 + 91.9582i −0.803730 + 0.215359i
\(428\) −123.225 166.177i −0.287908 0.388265i
\(429\) 338.254 372.476i 0.788471 0.868242i
\(430\) −758.175 + 653.953i −1.76320 + 1.52082i
\(431\) 189.156i 0.438877i 0.975626 + 0.219438i \(0.0704225\pi\)
−0.975626 + 0.219438i \(0.929578\pi\)
\(432\) −347.778 + 256.270i −0.805041 + 0.593219i
\(433\) 248.772 0.574531 0.287266 0.957851i \(-0.407254\pi\)
0.287266 + 0.957851i \(0.407254\pi\)
\(434\) 126.378 + 146.519i 0.291193 + 0.337601i
\(435\) 368.750 + 334.871i 0.847702 + 0.769817i
\(436\) 388.598 + 524.053i 0.891279 + 1.20196i
\(437\) −117.616 438.950i −0.269145 1.00446i
\(438\) −1.85991 + 72.7549i −0.00424636 + 0.166107i
\(439\) 720.301 415.866i 1.64078 0.947303i 0.660218 0.751074i \(-0.270464\pi\)
0.980558 0.196228i \(-0.0628694\pi\)
\(440\) 456.490 288.991i 1.03748 0.656797i
\(441\) 463.055 + 210.896i 1.05001 + 0.478221i
\(442\) −330.195 + 485.482i −0.747047 + 1.09838i
\(443\) −448.732 120.237i −1.01294 0.271416i −0.286083 0.958205i \(-0.592353\pi\)
−0.726857 + 0.686789i \(0.759020\pi\)
\(444\) 166.666 + 16.5928i 0.375374 + 0.0373712i
\(445\) 91.1356 + 340.123i 0.204799 + 0.764321i
\(446\) 113.711 + 39.6454i 0.254958 + 0.0888910i
\(447\) −303.141 + 588.753i −0.678167 + 1.31712i
\(448\) −53.5692 655.289i −0.119574 1.46270i
\(449\) 587.953i 1.30947i 0.755858 + 0.654736i \(0.227220\pi\)
−0.755858 + 0.654736i \(0.772780\pi\)
\(450\) 492.743 + 120.188i 1.09498 + 0.267084i
\(451\) −51.2409 + 51.2409i −0.113616 + 0.113616i
\(452\) 148.109 186.584i 0.327674 0.412797i
\(453\) 569.168 + 123.509i 1.25644 + 0.272646i
\(454\) 281.125 + 582.082i 0.619219 + 1.28212i
\(455\) −678.328 + 1174.90i −1.49083 + 2.58219i
\(456\) 198.512 + 282.523i 0.435334 + 0.619568i
\(457\) −9.56507 + 5.52240i −0.0209301 + 0.0120840i −0.510429 0.859920i \(-0.670513\pi\)
0.489498 + 0.872004i \(0.337180\pi\)
\(458\) −484.921 + 712.975i −1.05878 + 1.55671i
\(459\) −350.787 261.754i −0.764242 0.570270i
\(460\) 366.529 845.292i 0.796803 1.83759i
\(461\) −153.220 + 571.825i −0.332364 + 1.24040i 0.574334 + 0.818621i \(0.305261\pi\)
−0.906698 + 0.421780i \(0.861406\pi\)
\(462\) −554.984 + 133.605i −1.20126 + 0.289188i
\(463\) 309.984 536.909i 0.669512 1.15963i −0.308528 0.951215i \(-0.599836\pi\)
0.978041 0.208414i \(-0.0668303\pi\)
\(464\) −192.427 + 309.336i −0.414714 + 0.666671i
\(465\) −111.474 173.261i −0.239729 0.372604i
\(466\) 149.959 129.345i 0.321801 0.277565i
\(467\) −621.811 621.811i −1.33150 1.33150i −0.904027 0.427474i \(-0.859403\pi\)
−0.427474 0.904027i \(-0.640597\pi\)
\(468\) 136.339 + 637.529i 0.291324 + 1.36224i
\(469\) 336.162 + 336.162i 0.716763 + 0.716763i
\(470\) −804.095 59.3466i −1.71084 0.126269i
\(471\) 102.618 199.301i 0.217872 0.423145i
\(472\) 172.329 186.991i 0.365103 0.396168i
\(473\) −317.892 + 550.605i −0.672076 + 1.16407i
\(474\) 30.1897 + 55.5202i 0.0636913 + 0.117131i
\(475\) 104.923 391.576i 0.220890 0.824371i
\(476\) 619.527 244.761i 1.30153 0.514204i
\(477\) −618.127 509.302i −1.29586 1.06772i
\(478\) 585.083 111.387i 1.22402 0.233028i
\(479\) 9.48396 5.47557i 0.0197995 0.0114312i −0.490068 0.871684i \(-0.663028\pi\)
0.509867 + 0.860253i \(0.329695\pi\)
\(480\) −40.8926 + 698.862i −0.0851929 + 1.45596i
\(481\) 126.382 218.900i 0.262748 0.455094i
\(482\) −742.458 258.858i −1.54037 0.537049i
\(483\) −654.435 + 720.646i −1.35494 + 1.49202i
\(484\) −87.6178 + 110.379i −0.181028 + 0.228056i
\(485\) 89.7075 89.7075i 0.184964 0.184964i
\(486\) −479.247 + 80.7351i −0.986105 + 0.166122i
\(487\) 889.063i 1.82559i 0.408416 + 0.912796i \(0.366081\pi\)
−0.408416 + 0.912796i \(0.633919\pi\)
\(488\) 82.4484 + 264.115i 0.168952 + 0.541219i
\(489\) −604.441 + 29.1042i −1.23608 + 0.0595178i
\(490\) 742.484 358.594i 1.51527 0.731824i
\(491\) 219.992 + 821.021i 0.448049 + 1.67214i 0.707759 + 0.706453i \(0.249706\pi\)
−0.259711 + 0.965686i \(0.583627\pi\)
\(492\) −15.1975 92.6586i −0.0308893 0.188330i
\(493\) −356.519 95.5290i −0.723162 0.193771i
\(494\) 511.896 97.4542i 1.03623 0.197276i
\(495\) 604.999 58.3975i 1.22222 0.117975i
\(496\) 109.992 102.985i 0.221758 0.207631i
\(497\) 460.643 265.952i 0.926847 0.535115i
\(498\) 76.7216 259.600i 0.154060 0.521286i
\(499\) 186.023 + 694.246i 0.372791 + 1.39127i 0.856546 + 0.516071i \(0.172606\pi\)
−0.483755 + 0.875203i \(0.660728\pi\)
\(500\) 74.4419 55.2004i 0.148884 0.110401i
\(501\) −232.094 + 74.3237i −0.463261 + 0.148351i
\(502\) 4.71030 63.8206i 0.00938308 0.127133i
\(503\) 528.388 1.05047 0.525236 0.850957i \(-0.323977\pi\)
0.525236 + 0.850957i \(0.323977\pi\)
\(504\) 278.874 685.073i 0.553322 1.35927i
\(505\) 755.001i 1.49505i
\(506\) 43.0624 583.458i 0.0851035 1.15308i
\(507\) 466.023 + 101.126i 0.919177 + 0.199460i
\(508\) 7.54755 50.8528i 0.0148574 0.100104i
\(509\) −569.033 + 152.472i −1.11794 + 0.299552i −0.770051 0.637983i \(-0.779769\pi\)
−0.347892 + 0.937535i \(0.613102\pi\)
\(510\) −689.567 + 166.004i −1.35209 + 0.325498i
\(511\) −62.3049 107.915i −0.121927 0.211184i
\(512\) −508.172 + 62.4878i −0.992524 + 0.122046i
\(513\) 55.8750 + 384.414i 0.108918 + 0.749345i
\(514\) 61.5221 11.7125i 0.119693 0.0227870i
\(515\) −221.963 + 828.377i −0.430996 + 1.60850i
\(516\) −339.200 750.738i −0.657365 1.45492i
\(517\) −494.540 + 132.512i −0.956557 + 0.256309i
\(518\) −258.232 + 124.717i −0.498517 + 0.240766i
\(519\) 174.720 112.412i 0.336647 0.216594i
\(520\) 935.714 + 490.496i 1.79945 + 0.943261i
\(521\) 15.0699 0.0289249 0.0144625 0.999895i \(-0.495396\pi\)
0.0144625 + 0.999895i \(0.495396\pi\)
\(522\) −350.221 + 212.873i −0.670921 + 0.407803i
\(523\) −366.441 366.441i −0.700651 0.700651i 0.263899 0.964550i \(-0.414991\pi\)
−0.964550 + 0.263899i \(0.914991\pi\)
\(524\) 22.2978 + 193.964i 0.0425530 + 0.370161i
\(525\) −827.026 + 264.840i −1.57529 + 0.504456i
\(526\) −146.917 51.2226i −0.279310 0.0973814i
\(527\) 132.209 + 76.3308i 0.250870 + 0.144840i
\(528\) 121.578 + 427.585i 0.230261 + 0.809820i
\(529\) −234.340 405.890i −0.442988 0.767277i
\(530\) −1274.99 + 242.731i −2.40564 + 0.457984i
\(531\) 267.935 100.248i 0.504586 0.188791i
\(532\) −542.403 235.193i −1.01956 0.442092i
\(533\) −136.874 36.6752i −0.256799 0.0688091i
\(534\) −289.627 7.40402i −0.542372 0.0138652i
\(535\) −326.626 188.578i −0.610517 0.352482i
\(536\) 250.891 272.238i 0.468079 0.507906i
\(537\) −4.40057 91.3919i −0.00819474 0.170190i
\(538\) 795.374 + 58.7029i 1.47839 + 0.109113i
\(539\) 370.228 370.228i 0.686879 0.686879i
\(540\) −395.829 + 680.865i −0.733017 + 1.26086i
\(541\) 175.394 175.394i 0.324204 0.324204i −0.526173 0.850377i \(-0.676374\pi\)
0.850377 + 0.526173i \(0.176374\pi\)
\(542\) 253.075 218.286i 0.466929 0.402742i
\(543\) −19.9086 413.466i −0.0366641 0.761447i
\(544\) −210.116 474.276i −0.386244 0.871831i
\(545\) 1030.04 + 594.694i 1.88998 + 1.09118i
\(546\) −768.873 809.216i −1.40819 1.48208i
\(547\) −415.152 111.240i −0.758962 0.203363i −0.141472 0.989942i \(-0.545184\pi\)
−0.617490 + 0.786579i \(0.711850\pi\)
\(548\) 241.752 95.5106i 0.441153 0.174289i
\(549\) −51.3026 + 307.013i −0.0934474 + 0.559223i
\(550\) 293.512 431.549i 0.533659 0.784634i
\(551\) 163.790 + 283.693i 0.297260 + 0.514869i
\(552\) 581.506 + 486.328i 1.05345 + 0.881029i
\(553\) −93.7082 54.1024i −0.169454 0.0978344i
\(554\) 298.993 + 619.077i 0.539698 + 1.11747i
\(555\) 290.799 93.1228i 0.523961 0.167789i
\(556\) −117.628 1023.22i −0.211561 1.84033i
\(557\) −504.858 504.858i −0.906387 0.906387i 0.0895912 0.995979i \(-0.471444\pi\)
−0.995979 + 0.0895912i \(0.971444\pi\)
\(558\) 162.707 47.5551i 0.291589 0.0852242i
\(559\) −1243.24 −2.22404
\(560\) −564.854 1057.18i −1.00867 1.88782i
\(561\) −378.760 + 243.689i −0.675152 + 0.434384i
\(562\) −65.3950 22.7999i −0.116361 0.0405693i
\(563\) 575.222 154.130i 1.02171 0.273766i 0.291195 0.956664i \(-0.405947\pi\)
0.730514 + 0.682898i \(0.239281\pi\)
\(564\) 234.338 620.633i 0.415493 1.10041i
\(565\) 112.404 419.497i 0.198945 0.742473i
\(566\) 286.042 420.565i 0.505375 0.743048i
\(567\) 627.751 546.211i 1.10714 0.963336i
\(568\) −221.561 349.977i −0.390072 0.616157i
\(569\) 494.177 + 855.940i 0.868502 + 1.50429i 0.863528 + 0.504301i \(0.168250\pi\)
0.00497394 + 0.999988i \(0.498417\pi\)
\(570\) 536.933 + 328.574i 0.941988 + 0.576446i
\(571\) −591.075 + 158.378i −1.03516 + 0.277370i −0.736106 0.676867i \(-0.763337\pi\)
−0.299053 + 0.954237i \(0.596671\pi\)
\(572\) 663.590 + 98.4896i 1.16012 + 0.172185i
\(573\) 247.470 + 53.7007i 0.431884 + 0.0937184i
\(574\) 105.004 + 121.739i 0.182934 + 0.212088i
\(575\) 890.007i 1.54784i
\(576\) −541.903 195.237i −0.940803 0.338953i
\(577\) −533.786 −0.925105 −0.462553 0.886592i \(-0.653066\pi\)
−0.462553 + 0.886592i \(0.653066\pi\)
\(578\) −39.7092 + 34.2506i −0.0687011 + 0.0592571i
\(579\) 955.519 305.987i 1.65029 0.528476i
\(580\) −97.5044 + 656.952i −0.168111 + 1.13268i
\(581\) 119.959 + 447.693i 0.206470 + 0.770556i
\(582\) 49.8646 + 91.7032i 0.0856780 + 0.157566i
\(583\) −713.739 + 412.077i −1.22425 + 0.706822i
\(584\) −81.9895 + 51.9052i −0.140393 + 0.0888788i
\(585\) 690.414 + 967.446i 1.18019 + 1.65375i
\(586\) 90.8339 + 61.7795i 0.155007 + 0.105426i
\(587\) 354.001 + 94.8543i 0.603068 + 0.161592i 0.547419 0.836859i \(-0.315610\pi\)
0.0556493 + 0.998450i \(0.482277\pi\)
\(588\) 109.806 + 669.480i 0.186745 + 1.13857i
\(589\) −35.0675 130.874i −0.0595373 0.222196i
\(590\) 152.619 437.743i 0.258676 0.741937i
\(591\) 1119.82 53.9202i 1.89480 0.0912356i
\(592\) 105.240 + 196.968i 0.177770 + 0.332716i
\(593\) 637.526i 1.07509i 0.843236 + 0.537543i \(0.180647\pi\)
−0.843236 + 0.537543i \(0.819353\pi\)
\(594\) −95.0037 + 490.993i −0.159939 + 0.826588i
\(595\) 858.703 858.703i 1.44320 1.44320i
\(596\) −877.172 + 100.838i −1.47176 + 0.169191i
\(597\) 51.1458 56.3204i 0.0856714 0.0943390i
\(598\) 1030.17 497.534i 1.72269 0.831997i
\(599\) −186.992 + 323.880i −0.312174 + 0.540701i −0.978833 0.204662i \(-0.934390\pi\)
0.666659 + 0.745363i \(0.267724\pi\)
\(600\) 232.328 + 635.091i 0.387213 + 1.05849i
\(601\) 842.391 486.355i 1.40165 0.809242i 0.407087 0.913390i \(-0.366545\pi\)
0.994562 + 0.104147i \(0.0332114\pi\)
\(602\) 1166.31 + 793.252i 1.93739 + 1.31769i
\(603\) 390.083 145.950i 0.646903 0.242039i
\(604\) 285.337 + 722.231i 0.472412 + 1.19575i
\(605\) −66.4956 + 248.165i −0.109910 + 0.410190i
\(606\) 595.734 + 176.062i 0.983060 + 0.290531i
\(607\) −347.304 + 601.549i −0.572165 + 0.991019i 0.424178 + 0.905579i \(0.360563\pi\)
−0.996343 + 0.0854406i \(0.972770\pi\)
\(608\) −165.779 + 429.506i −0.272663 + 0.706424i
\(609\) 321.226 623.878i 0.527465 1.02443i
\(610\) 329.454 + 381.961i 0.540089 + 0.626165i
\(611\) −707.925 707.925i −1.15863 1.15863i
\(612\) 29.8177 582.816i 0.0487217 0.952313i
\(613\) −183.610 183.610i −0.299526 0.299526i 0.541302 0.840828i \(-0.317932\pi\)
−0.840828 + 0.541302i \(0.817932\pi\)
\(614\) 0.394289 5.34228i 0.000642165 0.00870079i
\(615\) −92.6207 143.958i −0.150603 0.234078i
\(616\) −559.688 515.801i −0.908585 0.837340i
\(617\) 538.837 933.292i 0.873317 1.51263i 0.0147724 0.999891i \(-0.495298\pi\)
0.858545 0.512739i \(-0.171369\pi\)
\(618\) −601.872 368.313i −0.973903 0.595976i
\(619\) −275.379 + 1027.73i −0.444877 + 1.66030i 0.271384 + 0.962471i \(0.412519\pi\)
−0.716261 + 0.697833i \(0.754148\pi\)
\(620\) 109.281 252.025i 0.176260 0.406492i
\(621\) 336.922 + 783.449i 0.542547 + 1.26159i
\(622\) 79.6411 + 418.329i 0.128040 + 0.672555i
\(623\) 429.595 248.027i 0.689559 0.398117i
\(624\) −605.230 + 623.946i −0.969919 + 0.999913i
\(625\) −267.738 + 463.736i −0.428381 + 0.741978i
\(626\) 336.141 964.123i 0.536966 1.54013i
\(627\) 390.632 + 84.7667i 0.623018 + 0.135194i
\(628\) 296.935 34.1351i 0.472827 0.0543553i
\(629\) −159.988 + 159.988i −0.254354 + 0.254354i
\(630\) −30.4117 1348.11i −0.0482726 2.13985i
\(631\) 359.445i 0.569644i −0.958580 0.284822i \(-0.908066\pi\)
0.958580 0.284822i \(-0.0919344\pi\)
\(632\) −39.1212 + 74.6312i −0.0619006 + 0.118087i
\(633\) 93.0206 180.663i 0.146952 0.285407i
\(634\) 44.9523 + 93.0756i 0.0709026 + 0.146807i
\(635\) −24.2575 90.5301i −0.0382007 0.142567i
\(636\) 105.793 1062.64i 0.166342 1.67081i
\(637\) 988.946 + 264.987i 1.55251 + 0.415993i
\(638\) 78.8721 + 414.291i 0.123624 + 0.649358i
\(639\) −44.7717 463.835i −0.0700652 0.725876i
\(640\) −804.647 + 473.073i −1.25726 + 0.739177i
\(641\) −709.078 + 409.386i −1.10621 + 0.638668i −0.937844 0.347057i \(-0.887181\pi\)
−0.168362 + 0.985725i \(0.553848\pi\)
\(642\) 224.965 213.750i 0.350413 0.332944i
\(643\) −4.73272 17.6628i −0.00736038 0.0274693i 0.962148 0.272528i \(-0.0878596\pi\)
−0.969508 + 0.245058i \(0.921193\pi\)
\(644\) −1283.88 190.552i −1.99360 0.295889i
\(645\) −1111.82 1009.67i −1.72376 1.56538i
\(646\) −465.181 34.3329i −0.720094 0.0531468i
\(647\) 273.896 0.423332 0.211666 0.977342i \(-0.432111\pi\)
0.211666 + 0.977342i \(0.432111\pi\)
\(648\) −444.933 471.104i −0.686625 0.727012i
\(649\) 294.375i 0.453582i
\(650\) 1017.78 + 75.1180i 1.56582 + 0.115566i
\(651\) −195.121 + 214.862i −0.299725 + 0.330049i
\(652\) −480.590 648.112i −0.737102 0.994036i
\(653\) 1198.92 321.249i 1.83602 0.491959i 0.837502 0.546434i \(-0.184015\pi\)
0.998515 + 0.0544746i \(0.0173484\pi\)
\(654\) −709.444 + 674.076i −1.08478 + 1.03070i
\(655\) 177.969 + 308.252i 0.271709 + 0.470614i
\(656\) 91.3896 85.5678i 0.139313 0.130439i
\(657\) −108.663 + 10.4887i −0.165393 + 0.0159645i
\(658\) 212.428 + 1115.82i 0.322839 + 1.69577i
\(659\) 122.695 457.904i 0.186184 0.694847i −0.808190 0.588921i \(-0.799553\pi\)
0.994374 0.105925i \(-0.0337805\pi\)
\(660\) 513.460 + 627.001i 0.777970 + 0.950002i
\(661\) −480.750 + 128.817i −0.727307 + 0.194881i −0.603430 0.797416i \(-0.706200\pi\)
−0.123877 + 0.992298i \(0.539533\pi\)
\(662\) 23.8891 + 49.4634i 0.0360863 + 0.0747182i
\(663\) −783.000 403.156i −1.18100 0.608078i
\(664\) 344.536 107.553i 0.518880 0.161978i
\(665\) −1077.80 −1.62075
\(666\) 5.66613 + 251.171i 0.00850770 + 0.377133i
\(667\) 508.538 + 508.538i 0.762426 + 0.762426i
\(668\) −254.503 202.022i −0.380993 0.302428i
\(669\) −38.3064 + 176.528i −0.0572592 + 0.263869i
\(670\) 222.196 637.304i 0.331635 0.951199i
\(671\) 277.389 + 160.150i 0.413396 + 0.238674i
\(672\) 965.891 199.170i 1.43734 0.296384i
\(673\) −189.075 327.487i −0.280943 0.486608i 0.690674 0.723166i \(-0.257314\pi\)
−0.971617 + 0.236558i \(0.923981\pi\)
\(674\) 111.586 + 586.128i 0.165558 + 0.869626i
\(675\) −89.1556 + 755.542i −0.132082 + 1.11932i
\(676\) 233.628 + 591.347i 0.345603 + 0.874774i
\(677\) 40.6881 + 10.9023i 0.0601005 + 0.0161039i 0.288744 0.957406i \(-0.406762\pi\)
−0.228644 + 0.973510i \(0.573429\pi\)
\(678\) 304.793 + 186.517i 0.449547 + 0.275099i
\(679\) −154.779 89.3615i −0.227951 0.131608i
\(680\) −695.413 640.883i −1.02267 0.942475i
\(681\) −815.428 + 524.636i −1.19740 + 0.770390i
\(682\) 12.8391 173.959i 0.0188257 0.255072i
\(683\) −158.323 + 158.323i −0.231805 + 0.231805i −0.813446 0.581641i \(-0.802411\pi\)
0.581641 + 0.813446i \(0.302411\pi\)
\(684\) −384.472 + 347.046i −0.562093 + 0.507378i
\(685\) 335.083 335.083i 0.489172 0.489172i
\(686\) −101.122 117.239i −0.147409 0.170902i
\(687\) −1149.91 592.071i −1.67381 0.861821i
\(688\) 580.189 932.681i 0.843298 1.35564i
\(689\) −1395.67 805.793i −2.02565 1.16951i
\(690\) 1325.34 + 391.687i 1.92078 + 0.567662i
\(691\) −515.988 138.259i −0.746727 0.200085i −0.134661 0.990892i \(-0.542995\pi\)
−0.612066 + 0.790807i \(0.709661\pi\)
\(692\) 254.147 + 110.202i 0.367265 + 0.159251i
\(693\) −300.056 801.964i −0.432981 1.15723i
\(694\) 500.421 + 340.355i 0.721067 + 0.490425i
\(695\) −938.844 1626.13i −1.35085 2.33975i
\(696\) −495.632 230.134i −0.712115 0.330652i
\(697\) 109.849 + 63.4213i 0.157602 + 0.0909918i
\(698\) 0.367032 0.177264i 0.000525834 0.000253960i
\(699\) 219.907 + 199.703i 0.314603 + 0.285698i
\(700\) −906.879 719.871i −1.29554 1.02839i
\(701\) 831.078 + 831.078i 1.18556 + 1.18556i 0.978282 + 0.207278i \(0.0664604\pi\)
0.207278 + 0.978282i \(0.433540\pi\)
\(702\) −924.365 + 319.169i −1.31676 + 0.454657i
\(703\) 200.809 0.285645
\(704\) −383.569 + 451.865i −0.544842 + 0.641853i
\(705\) −58.1671 1208.02i −0.0825065 1.71351i
\(706\) −126.534 + 362.925i −0.179226 + 0.514058i
\(707\) −1027.37 + 275.283i −1.45314 + 0.389368i
\(708\) 309.812 + 222.503i 0.437588 + 0.314270i
\(709\) 36.4652 136.090i 0.0514319 0.191947i −0.935430 0.353512i \(-0.884988\pi\)
0.986862 + 0.161565i \(0.0516542\pi\)
\(710\) −624.405 424.681i −0.879444 0.598143i
\(711\) −77.1621 + 55.0664i −0.108526 + 0.0774492i
\(712\) −206.627 326.388i −0.290207 0.458410i
\(713\) −148.730 257.608i −0.208598 0.361302i
\(714\) 477.316 + 877.806i 0.668510 + 1.22942i
\(715\) 1181.35 316.541i 1.65223 0.442715i
\(716\) 97.9948 72.6655i 0.136864 0.101488i
\(717\) 272.461 + 850.826i 0.380002 + 1.18665i
\(718\) 34.4417 29.7071i 0.0479689 0.0413748i
\(719\) 421.769i 0.586605i 0.956020 + 0.293303i \(0.0947544\pi\)
−0.956020 + 0.293303i \(0.905246\pi\)
\(720\) −1047.98 + 66.4668i −1.45553 + 0.0923150i
\(721\) 1208.15 1.67566
\(722\) −201.180 233.243i −0.278643 0.323051i
\(723\) 250.115 1152.61i 0.345940 1.59420i
\(724\) 443.338 328.746i 0.612346 0.454069i
\(725\) 166.049 + 619.703i 0.229033 + 0.854763i
\(726\) −180.309 110.339i −0.248359 0.151982i
\(727\) −503.372 + 290.622i −0.692396 + 0.399755i −0.804509 0.593940i \(-0.797571\pi\)
0.112113 + 0.993695i \(0.464238\pi\)
\(728\) 326.271 1452.12i 0.448174 1.99467i
\(729\) −207.537 698.834i −0.284688 0.958620i
\(730\) −99.4905 + 146.280i −0.136288 + 0.200383i
\(731\) 1074.94 + 288.031i 1.47051 + 0.394023i
\(732\) −378.214 + 170.885i −0.516685 + 0.233450i
\(733\) −48.8597 182.347i −0.0666572 0.248768i 0.924555 0.381048i \(-0.124437\pi\)
−0.991212 + 0.132280i \(0.957770\pi\)
\(734\) −658.555 229.605i −0.897214 0.312813i
\(735\) 669.207 + 1040.13i 0.910486 + 1.41515i
\(736\) −107.502 + 1005.02i −0.146063 + 1.36552i
\(737\) 428.576i 0.581514i
\(738\) 135.189 39.5123i 0.183183 0.0535397i
\(739\) −479.786 + 479.786i −0.649237 + 0.649237i −0.952809 0.303572i \(-0.901821\pi\)
0.303572 + 0.952809i \(0.401821\pi\)
\(740\) 318.877 + 253.121i 0.430914 + 0.342055i
\(741\) 238.380 + 744.399i 0.321700 + 1.00459i
\(742\) 795.177 + 1646.45i 1.07167 + 2.21893i
\(743\) 386.528 669.486i 0.520226 0.901058i −0.479498 0.877543i \(-0.659181\pi\)
0.999723 0.0235145i \(-0.00748557\pi\)
\(744\) 173.377 + 145.000i 0.233034 + 0.194892i
\(745\) −1394.02 + 804.837i −1.87117 + 1.08032i
\(746\) −471.238 + 692.857i −0.631686 + 0.928762i
\(747\) 400.497 + 66.9240i 0.536141 + 0.0895903i
\(748\) −550.944 238.896i −0.736556 0.319380i
\(749\) −137.516 + 513.217i −0.183600 + 0.685203i
\(750\) 95.7527 + 100.777i 0.127670 + 0.134369i
\(751\) 298.488 516.997i 0.397454 0.688411i −0.595957 0.803017i \(-0.703227\pi\)
0.993411 + 0.114605i \(0.0365604\pi\)
\(752\) 861.460 200.716i 1.14556 0.266910i
\(753\) 95.8801 4.61669i 0.127331 0.00613106i
\(754\) −624.470 + 538.627i −0.828210 + 0.714360i
\(755\) 1001.06 + 1001.06i 1.32590 + 1.32590i
\(756\) 1070.82 + 290.374i 1.41642 + 0.384093i
\(757\) 797.182 + 797.182i 1.05308 + 1.05308i 0.998510 + 0.0545703i \(0.0173789\pi\)
0.0545703 + 0.998510i \(0.482621\pi\)
\(758\) 102.111 + 7.53632i 0.134711 + 0.00994238i
\(759\) 876.552 42.2065i 1.15488 0.0556080i
\(760\) 34.2212 + 838.622i 0.0450279 + 1.10345i
\(761\) 98.7010 170.955i 0.129699 0.224645i −0.793861 0.608099i \(-0.791932\pi\)
0.923560 + 0.383454i \(0.125266\pi\)
\(762\) 77.0897 + 1.97072i 0.101168 + 0.00258624i
\(763\) 433.667 1618.47i 0.568371 2.12119i
\(764\) 124.062 + 314.020i 0.162385 + 0.411021i
\(765\) −372.819 996.440i −0.487345 1.30254i
\(766\) −442.244 + 84.1940i −0.577343 + 0.109914i
\(767\) 498.512 287.816i 0.649951 0.375249i
\(768\) −185.640 745.226i −0.241719 0.970346i
\(769\) −203.089 + 351.760i −0.264095 + 0.457425i −0.967326 0.253536i \(-0.918406\pi\)
0.703231 + 0.710961i \(0.251740\pi\)
\(770\) −1310.22 456.808i −1.70159 0.593257i
\(771\) 28.6496 + 89.4653i 0.0371590 + 0.116038i
\(772\) 1047.78 + 831.716i 1.35723 + 1.07735i
\(773\) 279.747 279.747i 0.361898 0.361898i −0.502613 0.864511i \(-0.667628\pi\)
0.864511 + 0.502613i \(0.167628\pi\)