Properties

Label 144.3.m
Level $144$
Weight $3$
Character orbit 144.m
Rep. character $\chi_{144}(19,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $38$
Newform subspaces $3$
Sturm bound $72$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 144.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(144, [\chi])\).

Total New Old
Modular forms 104 42 62
Cusp forms 88 38 50
Eisenstein series 16 4 12

Trace form

\( 38 q + 2 q^{2} - 8 q^{4} + 2 q^{5} - 4 q^{7} + 8 q^{8} - 4 q^{10} - 14 q^{11} - 2 q^{13} + 32 q^{14} + 24 q^{16} + 4 q^{17} - 34 q^{19} + 4 q^{20} + 84 q^{22} + 68 q^{23} + 4 q^{26} - 64 q^{28} - 14 q^{29}+ \cdots + 430 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.3.m.a 144.m 16.f $6$ $3.924$ 6.0.399424.1 None 16.3.f.a \(2\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+(-1-\beta _{1}+\beta _{4}-\beta _{5})q^{4}+\cdots\)
144.3.m.b 144.m 16.f $16$ $3.924$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 144.3.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{4}q^{2}+(-1-\beta _{2})q^{4}+\beta _{8}q^{5}+(\beta _{11}+\cdots)q^{7}+\cdots\)
144.3.m.c 144.m 16.f $16$ $3.924$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 48.3.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}+(1-\beta _{1})q^{4}+(-\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)