Properties

Label 144.2.x.c.85.1
Level $144$
Weight $2$
Character 144.85
Analytic conductor $1.150$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 85.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 144.85
Dual form 144.2.x.c.61.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(0.866025 + 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.00000 - 0.267949i) q^{5} +(2.36603 - 0.633975i) q^{6} +(2.36603 - 1.36603i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(0.866025 + 1.50000i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(1.00000 - 0.267949i) q^{5} +(2.36603 - 0.633975i) q^{6} +(2.36603 - 1.36603i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-1.50000 + 2.59808i) q^{9} -1.46410i q^{10} +(1.13397 - 4.23205i) q^{11} -3.46410i q^{12} +(0.901924 + 3.36603i) q^{13} +(-1.00000 - 3.73205i) q^{14} +(1.26795 + 1.26795i) q^{15} +(2.00000 + 3.46410i) q^{16} -5.73205 q^{17} +(3.00000 + 3.00000i) q^{18} +(-2.36603 + 2.36603i) q^{19} +(-2.00000 - 0.535898i) q^{20} +(4.09808 + 2.36603i) q^{21} +(-5.36603 - 3.09808i) q^{22} +(-4.09808 - 2.36603i) q^{23} +(-4.73205 - 1.26795i) q^{24} +(-3.40192 + 1.96410i) q^{25} +4.92820 q^{26} -5.19615 q^{27} -5.46410 q^{28} +(2.36603 + 0.633975i) q^{29} +(2.19615 - 1.26795i) q^{30} +(-0.267949 + 0.464102i) q^{31} +(5.46410 - 1.46410i) q^{32} +(7.33013 - 1.96410i) q^{33} +(-2.09808 + 7.83013i) q^{34} +(2.00000 - 2.00000i) q^{35} +(5.19615 - 3.00000i) q^{36} +(4.73205 + 4.73205i) q^{37} +(2.36603 + 4.09808i) q^{38} +(-4.26795 + 4.26795i) q^{39} +(-1.46410 + 2.53590i) q^{40} +(-2.59808 - 1.50000i) q^{41} +(4.73205 - 4.73205i) q^{42} +(2.23205 - 8.33013i) q^{43} +(-6.19615 + 6.19615i) q^{44} +(-0.803848 + 3.00000i) q^{45} +(-4.73205 + 4.73205i) q^{46} +(3.83013 + 6.63397i) q^{47} +(-3.46410 + 6.00000i) q^{48} +(0.232051 - 0.401924i) q^{49} +(1.43782 + 5.36603i) q^{50} +(-4.96410 - 8.59808i) q^{51} +(1.80385 - 6.73205i) q^{52} +(-7.46410 - 7.46410i) q^{53} +(-1.90192 + 7.09808i) q^{54} -4.53590i q^{55} +(-2.00000 + 7.46410i) q^{56} +(-5.59808 - 1.50000i) q^{57} +(1.73205 - 3.00000i) q^{58} +(7.33013 - 1.96410i) q^{59} +(-0.928203 - 3.46410i) q^{60} +(11.1962 + 3.00000i) q^{61} +(0.535898 + 0.535898i) q^{62} +8.19615i q^{63} -8.00000i q^{64} +(1.80385 + 3.12436i) q^{65} -10.7321i q^{66} +(-1.76795 - 6.59808i) q^{67} +(9.92820 + 5.73205i) q^{68} -8.19615i q^{69} +(-2.00000 - 3.46410i) q^{70} -2.92820i q^{71} +(-2.19615 - 8.19615i) q^{72} +6.26795i q^{73} +(8.19615 - 4.73205i) q^{74} +(-5.89230 - 3.40192i) q^{75} +(6.46410 - 1.73205i) q^{76} +(-3.09808 - 11.5622i) q^{77} +(4.26795 + 7.39230i) q^{78} +(-6.00000 - 10.3923i) q^{79} +(2.92820 + 2.92820i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-3.00000 + 3.00000i) q^{82} +(-1.36603 - 0.366025i) q^{83} +(-4.73205 - 8.19615i) q^{84} +(-5.73205 + 1.53590i) q^{85} +(-10.5622 - 6.09808i) q^{86} +(1.09808 + 4.09808i) q^{87} +(6.19615 + 10.7321i) q^{88} +2.00000i q^{89} +(3.80385 + 2.19615i) q^{90} +(6.73205 + 6.73205i) q^{91} +(4.73205 + 8.19615i) q^{92} -0.928203 q^{93} +(10.4641 - 2.80385i) q^{94} +(-1.73205 + 3.00000i) q^{95} +(6.92820 + 6.92820i) q^{96} +(-5.86603 - 10.1603i) q^{97} +(-0.464102 - 0.464102i) q^{98} +(9.29423 + 9.29423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} + 4q^{5} + 6q^{6} + 6q^{7} - 8q^{8} - 6q^{9} + O(q^{10}) \) \( 4q - 2q^{2} + 4q^{5} + 6q^{6} + 6q^{7} - 8q^{8} - 6q^{9} + 8q^{11} + 14q^{13} - 4q^{14} + 12q^{15} + 8q^{16} - 16q^{17} + 12q^{18} - 6q^{19} - 8q^{20} + 6q^{21} - 18q^{22} - 6q^{23} - 12q^{24} - 24q^{25} - 8q^{26} - 8q^{28} + 6q^{29} - 12q^{30} - 8q^{31} + 8q^{32} + 12q^{33} + 2q^{34} + 8q^{35} + 12q^{37} + 6q^{38} - 24q^{39} + 8q^{40} + 12q^{42} + 2q^{43} - 4q^{44} - 24q^{45} - 12q^{46} - 2q^{47} - 6q^{49} + 30q^{50} - 6q^{51} + 28q^{52} - 16q^{53} - 18q^{54} - 8q^{56} - 12q^{57} + 12q^{59} + 24q^{60} + 24q^{61} + 16q^{62} + 28q^{65} - 14q^{67} + 12q^{68} - 8q^{70} + 12q^{72} + 12q^{74} + 18q^{75} + 12q^{76} - 2q^{77} + 24q^{78} - 24q^{79} - 16q^{80} - 18q^{81} - 12q^{82} - 2q^{83} - 12q^{84} - 16q^{85} - 18q^{86} - 6q^{87} + 4q^{88} + 36q^{90} + 20q^{91} + 12q^{92} + 24q^{93} + 28q^{94} - 20q^{97} + 12q^{98} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.258819 0.965926i
\(3\) 0.866025 + 1.50000i 0.500000 + 0.866025i
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) 1.00000 0.267949i 0.447214 0.119831i −0.0281817 0.999603i \(-0.508972\pi\)
0.475395 + 0.879772i \(0.342305\pi\)
\(6\) 2.36603 0.633975i 0.965926 0.258819i
\(7\) 2.36603 1.36603i 0.894274 0.516309i 0.0189356 0.999821i \(-0.493972\pi\)
0.875338 + 0.483512i \(0.160639\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −1.50000 + 2.59808i −0.500000 + 0.866025i
\(10\) 1.46410i 0.462990i
\(11\) 1.13397 4.23205i 0.341906 1.27601i −0.554279 0.832331i \(-0.687006\pi\)
0.896185 0.443680i \(-0.146327\pi\)
\(12\) 3.46410i 1.00000i
\(13\) 0.901924 + 3.36603i 0.250149 + 0.933567i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.720577 + 0.693375i \(0.756123\pi\)
\(14\) −1.00000 3.73205i −0.267261 0.997433i
\(15\) 1.26795 + 1.26795i 0.327383 + 0.327383i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −5.73205 −1.39023 −0.695113 0.718900i \(-0.744646\pi\)
−0.695113 + 0.718900i \(0.744646\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) −2.36603 + 2.36603i −0.542803 + 0.542803i −0.924350 0.381546i \(-0.875392\pi\)
0.381546 + 0.924350i \(0.375392\pi\)
\(20\) −2.00000 0.535898i −0.447214 0.119831i
\(21\) 4.09808 + 2.36603i 0.894274 + 0.516309i
\(22\) −5.36603 3.09808i −1.14404 0.660512i
\(23\) −4.09808 2.36603i −0.854508 0.493350i 0.00766135 0.999971i \(-0.497561\pi\)
−0.862169 + 0.506620i \(0.830895\pi\)
\(24\) −4.73205 1.26795i −0.965926 0.258819i
\(25\) −3.40192 + 1.96410i −0.680385 + 0.392820i
\(26\) 4.92820 0.966500
\(27\) −5.19615 −1.00000
\(28\) −5.46410 −1.03262
\(29\) 2.36603 + 0.633975i 0.439360 + 0.117726i 0.471717 0.881750i \(-0.343635\pi\)
−0.0323566 + 0.999476i \(0.510301\pi\)
\(30\) 2.19615 1.26795i 0.400961 0.231495i
\(31\) −0.267949 + 0.464102i −0.0481251 + 0.0833551i −0.889085 0.457743i \(-0.848658\pi\)
0.840959 + 0.541098i \(0.181991\pi\)
\(32\) 5.46410 1.46410i 0.965926 0.258819i
\(33\) 7.33013 1.96410i 1.27601 0.341906i
\(34\) −2.09808 + 7.83013i −0.359817 + 1.34286i
\(35\) 2.00000 2.00000i 0.338062 0.338062i
\(36\) 5.19615 3.00000i 0.866025 0.500000i
\(37\) 4.73205 + 4.73205i 0.777944 + 0.777944i 0.979481 0.201537i \(-0.0645935\pi\)
−0.201537 + 0.979481i \(0.564594\pi\)
\(38\) 2.36603 + 4.09808i 0.383820 + 0.664796i
\(39\) −4.26795 + 4.26795i −0.683419 + 0.683419i
\(40\) −1.46410 + 2.53590i −0.231495 + 0.400961i
\(41\) −2.59808 1.50000i −0.405751 0.234261i 0.283211 0.959058i \(-0.408600\pi\)
−0.688963 + 0.724797i \(0.741934\pi\)
\(42\) 4.73205 4.73205i 0.730171 0.730171i
\(43\) 2.23205 8.33013i 0.340385 1.27033i −0.557528 0.830158i \(-0.688250\pi\)
0.897912 0.440174i \(-0.145083\pi\)
\(44\) −6.19615 + 6.19615i −0.934105 + 0.934105i
\(45\) −0.803848 + 3.00000i −0.119831 + 0.447214i
\(46\) −4.73205 + 4.73205i −0.697703 + 0.697703i
\(47\) 3.83013 + 6.63397i 0.558681 + 0.967665i 0.997607 + 0.0691412i \(0.0220259\pi\)
−0.438925 + 0.898523i \(0.644641\pi\)
\(48\) −3.46410 + 6.00000i −0.500000 + 0.866025i
\(49\) 0.232051 0.401924i 0.0331501 0.0574177i
\(50\) 1.43782 + 5.36603i 0.203339 + 0.758871i
\(51\) −4.96410 8.59808i −0.695113 1.20397i
\(52\) 1.80385 6.73205i 0.250149 0.933567i
\(53\) −7.46410 7.46410i −1.02527 1.02527i −0.999672 0.0256010i \(-0.991850\pi\)
−0.0256010 0.999672i \(-0.508150\pi\)
\(54\) −1.90192 + 7.09808i −0.258819 + 0.965926i
\(55\) 4.53590i 0.611620i
\(56\) −2.00000 + 7.46410i −0.267261 + 0.997433i
\(57\) −5.59808 1.50000i −0.741483 0.198680i
\(58\) 1.73205 3.00000i 0.227429 0.393919i
\(59\) 7.33013 1.96410i 0.954301 0.255704i 0.252115 0.967697i \(-0.418874\pi\)
0.702186 + 0.711993i \(0.252207\pi\)
\(60\) −0.928203 3.46410i −0.119831 0.447214i
\(61\) 11.1962 + 3.00000i 1.43352 + 0.384111i 0.890260 0.455453i \(-0.150523\pi\)
0.543261 + 0.839564i \(0.317189\pi\)
\(62\) 0.535898 + 0.535898i 0.0680592 + 0.0680592i
\(63\) 8.19615i 1.03262i
\(64\) 8.00000i 1.00000i
\(65\) 1.80385 + 3.12436i 0.223740 + 0.387529i
\(66\) 10.7321i 1.32102i
\(67\) −1.76795 6.59808i −0.215989 0.806083i −0.985816 0.167830i \(-0.946324\pi\)
0.769827 0.638253i \(-0.220343\pi\)
\(68\) 9.92820 + 5.73205i 1.20397 + 0.695113i
\(69\) 8.19615i 0.986701i
\(70\) −2.00000 3.46410i −0.239046 0.414039i
\(71\) 2.92820i 0.347514i −0.984789 0.173757i \(-0.944409\pi\)
0.984789 0.173757i \(-0.0555907\pi\)
\(72\) −2.19615 8.19615i −0.258819 0.965926i
\(73\) 6.26795i 0.733608i 0.930298 + 0.366804i \(0.119548\pi\)
−0.930298 + 0.366804i \(0.880452\pi\)
\(74\) 8.19615 4.73205i 0.952783 0.550090i
\(75\) −5.89230 3.40192i −0.680385 0.392820i
\(76\) 6.46410 1.73205i 0.741483 0.198680i
\(77\) −3.09808 11.5622i −0.353059 1.31763i
\(78\) 4.26795 + 7.39230i 0.483250 + 0.837014i
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) 2.92820 + 2.92820i 0.327383 + 0.327383i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −3.00000 + 3.00000i −0.331295 + 0.331295i
\(83\) −1.36603 0.366025i −0.149941 0.0401765i 0.183068 0.983100i \(-0.441397\pi\)
−0.333009 + 0.942924i \(0.608064\pi\)
\(84\) −4.73205 8.19615i −0.516309 0.894274i
\(85\) −5.73205 + 1.53590i −0.621728 + 0.166592i
\(86\) −10.5622 6.09808i −1.13895 0.657572i
\(87\) 1.09808 + 4.09808i 0.117726 + 0.439360i
\(88\) 6.19615 + 10.7321i 0.660512 + 1.14404i
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 3.80385 + 2.19615i 0.400961 + 0.231495i
\(91\) 6.73205 + 6.73205i 0.705711 + 0.705711i
\(92\) 4.73205 + 8.19615i 0.493350 + 0.854508i
\(93\) −0.928203 −0.0962502
\(94\) 10.4641 2.80385i 1.07929 0.289195i
\(95\) −1.73205 + 3.00000i −0.177705 + 0.307794i
\(96\) 6.92820 + 6.92820i 0.707107 + 0.707107i
\(97\) −5.86603 10.1603i −0.595605 1.03162i −0.993461 0.114170i \(-0.963579\pi\)
0.397857 0.917448i \(-0.369754\pi\)
\(98\) −0.464102 0.464102i −0.0468813 0.0468813i
\(99\) 9.29423 + 9.29423i 0.934105 + 0.934105i
\(100\) 7.85641 0.785641
\(101\) 0.535898 2.00000i 0.0533239 0.199007i −0.934125 0.356946i \(-0.883818\pi\)
0.987449 + 0.157938i \(0.0504847\pi\)
\(102\) −13.5622 + 3.63397i −1.34286 + 0.359817i
\(103\) 13.0981 + 7.56218i 1.29059 + 0.745124i 0.978759 0.205014i \(-0.0657238\pi\)
0.311833 + 0.950137i \(0.399057\pi\)
\(104\) −8.53590 4.92820i −0.837014 0.483250i
\(105\) 4.73205 + 1.26795i 0.461801 + 0.123739i
\(106\) −12.9282 + 7.46410i −1.25570 + 0.724978i
\(107\) 12.4904 + 12.4904i 1.20749 + 1.20749i 0.971837 + 0.235654i \(0.0757231\pi\)
0.235654 + 0.971837i \(0.424277\pi\)
\(108\) 9.00000 + 5.19615i 0.866025 + 0.500000i
\(109\) 10.7321 10.7321i 1.02794 1.02794i 0.0283459 0.999598i \(-0.490976\pi\)
0.999598 0.0283459i \(-0.00902398\pi\)
\(110\) −6.19615 1.66025i −0.590780 0.158299i
\(111\) −3.00000 + 11.1962i −0.284747 + 1.06269i
\(112\) 9.46410 + 5.46410i 0.894274 + 0.516309i
\(113\) −6.92820 + 12.0000i −0.651751 + 1.12887i 0.330947 + 0.943649i \(0.392632\pi\)
−0.982698 + 0.185216i \(0.940702\pi\)
\(114\) −4.09808 + 7.09808i −0.383820 + 0.664796i
\(115\) −4.73205 1.26795i −0.441266 0.118237i
\(116\) −3.46410 3.46410i −0.321634 0.321634i
\(117\) −10.0981 2.70577i −0.933567 0.250149i
\(118\) 10.7321i 0.987965i
\(119\) −13.5622 + 7.83013i −1.24324 + 0.717787i
\(120\) −5.07180 −0.462990
\(121\) −7.09808 4.09808i −0.645280 0.372552i
\(122\) 8.19615 14.1962i 0.742045 1.28526i
\(123\) 5.19615i 0.468521i
\(124\) 0.928203 0.535898i 0.0833551 0.0481251i
\(125\) −6.53590 + 6.53590i −0.584589 + 0.584589i
\(126\) 11.1962 + 3.00000i 0.997433 + 0.267261i
\(127\) 4.19615 0.372348 0.186174 0.982517i \(-0.440391\pi\)
0.186174 + 0.982517i \(0.440391\pi\)
\(128\) −10.9282 2.92820i −0.965926 0.258819i
\(129\) 14.4282 3.86603i 1.27033 0.340385i
\(130\) 4.92820 1.32051i 0.432232 0.115816i
\(131\) 2.09808 + 7.83013i 0.183310 + 0.684121i 0.994986 + 0.100014i \(0.0318887\pi\)
−0.811676 + 0.584108i \(0.801445\pi\)
\(132\) −14.6603 3.92820i −1.27601 0.341906i
\(133\) −2.36603 + 8.83013i −0.205160 + 0.765669i
\(134\) −9.66025 −0.834519
\(135\) −5.19615 + 1.39230i −0.447214 + 0.119831i
\(136\) 11.4641 11.4641i 0.983039 0.983039i
\(137\) 8.25833 4.76795i 0.705557 0.407353i −0.103857 0.994592i \(-0.533118\pi\)
0.809414 + 0.587239i \(0.199785\pi\)
\(138\) −11.1962 3.00000i −0.953080 0.255377i
\(139\) −11.4282 + 3.06218i −0.969328 + 0.259731i −0.708544 0.705667i \(-0.750648\pi\)
−0.260784 + 0.965397i \(0.583981\pi\)
\(140\) −5.46410 + 1.46410i −0.461801 + 0.123739i
\(141\) −6.63397 + 11.4904i −0.558681 + 0.967665i
\(142\) −4.00000 1.07180i −0.335673 0.0899432i
\(143\) 15.2679 1.27677
\(144\) −12.0000 −1.00000
\(145\) 2.53590 0.210595
\(146\) 8.56218 + 2.29423i 0.708611 + 0.189872i
\(147\) 0.803848 0.0663002
\(148\) −3.46410 12.9282i −0.284747 1.06269i
\(149\) 7.83013 2.09808i 0.641469 0.171881i 0.0766003 0.997062i \(-0.475593\pi\)
0.564869 + 0.825181i \(0.308927\pi\)
\(150\) −6.80385 + 6.80385i −0.555532 + 0.555532i
\(151\) 0.633975 0.366025i 0.0515921 0.0297867i −0.473982 0.880534i \(-0.657184\pi\)
0.525574 + 0.850748i \(0.323851\pi\)
\(152\) 9.46410i 0.767640i
\(153\) 8.59808 14.8923i 0.695113 1.20397i
\(154\) −16.9282 −1.36411
\(155\) −0.143594 + 0.535898i −0.0115337 + 0.0430444i
\(156\) 11.6603 3.12436i 0.933567 0.250149i
\(157\) 1.26795 + 4.73205i 0.101193 + 0.377659i 0.997886 0.0649959i \(-0.0207034\pi\)
−0.896692 + 0.442655i \(0.854037\pi\)
\(158\) −16.3923 + 4.39230i −1.30410 + 0.349433i
\(159\) 4.73205 17.6603i 0.375276 1.40055i
\(160\) 5.07180 2.92820i 0.400961 0.231495i
\(161\) −12.9282 −1.01889
\(162\) −12.2942 + 3.29423i −0.965926 + 0.258819i
\(163\) −7.00000 + 7.00000i −0.548282 + 0.548282i −0.925944 0.377661i \(-0.876728\pi\)
0.377661 + 0.925944i \(0.376728\pi\)
\(164\) 3.00000 + 5.19615i 0.234261 + 0.405751i
\(165\) 6.80385 3.92820i 0.529679 0.305810i
\(166\) −1.00000 + 1.73205i −0.0776151 + 0.134433i
\(167\) 6.46410 + 3.73205i 0.500207 + 0.288795i 0.728799 0.684728i \(-0.240079\pi\)
−0.228592 + 0.973522i \(0.573412\pi\)
\(168\) −12.9282 + 3.46410i −0.997433 + 0.267261i
\(169\) 0.741670 0.428203i 0.0570515 0.0329387i
\(170\) 8.39230i 0.643660i
\(171\) −2.59808 9.69615i −0.198680 0.741483i
\(172\) −12.1962 + 12.1962i −0.929948 + 0.929948i
\(173\) 1.63397 + 0.437822i 0.124229 + 0.0332870i 0.320398 0.947283i \(-0.396183\pi\)
−0.196169 + 0.980570i \(0.562850\pi\)
\(174\) 6.00000 0.454859
\(175\) −5.36603 + 9.29423i −0.405633 + 0.702578i
\(176\) 16.9282 4.53590i 1.27601 0.341906i
\(177\) 9.29423 + 9.29423i 0.698597 + 0.698597i
\(178\) 2.73205 + 0.732051i 0.204776 + 0.0548695i
\(179\) −1.92820 + 1.92820i −0.144121 + 0.144121i −0.775486 0.631365i \(-0.782495\pi\)
0.631365 + 0.775486i \(0.282495\pi\)
\(180\) 4.39230 4.39230i 0.327383 0.327383i
\(181\) −7.39230 7.39230i −0.549466 0.549466i 0.376821 0.926286i \(-0.377017\pi\)
−0.926286 + 0.376821i \(0.877017\pi\)
\(182\) 11.6603 6.73205i 0.864316 0.499013i
\(183\) 5.19615 + 19.3923i 0.384111 + 1.43352i
\(184\) 12.9282 3.46410i 0.953080 0.255377i
\(185\) 6.00000 + 3.46410i 0.441129 + 0.254686i
\(186\) −0.339746 + 1.26795i −0.0249114 + 0.0929705i
\(187\) −6.50000 + 24.2583i −0.475327 + 1.77394i
\(188\) 15.3205i 1.11736i
\(189\) −12.2942 + 7.09808i −0.894274 + 0.516309i
\(190\) 3.46410 + 3.46410i 0.251312 + 0.251312i
\(191\) −12.0263 20.8301i −0.870191 1.50722i −0.861799 0.507250i \(-0.830662\pi\)
−0.00839227 0.999965i \(-0.502671\pi\)
\(192\) 12.0000 6.92820i 0.866025 0.500000i
\(193\) −10.8660 + 18.8205i −0.782154 + 1.35473i 0.148531 + 0.988908i \(0.452545\pi\)
−0.930685 + 0.365822i \(0.880788\pi\)
\(194\) −16.0263 + 4.29423i −1.15062 + 0.308308i
\(195\) −3.12436 + 5.41154i −0.223740 + 0.387529i
\(196\) −0.803848 + 0.464102i −0.0574177 + 0.0331501i
\(197\) 13.6603 + 13.6603i 0.973253 + 0.973253i 0.999651 0.0263987i \(-0.00840394\pi\)
−0.0263987 + 0.999651i \(0.508404\pi\)
\(198\) 16.0981 9.29423i 1.14404 0.660512i
\(199\) 25.1244i 1.78102i −0.454965 0.890509i \(-0.650348\pi\)
0.454965 0.890509i \(-0.349652\pi\)
\(200\) 2.87564 10.7321i 0.203339 0.758871i
\(201\) 8.36603 8.36603i 0.590094 0.590094i
\(202\) −2.53590 1.46410i −0.178425 0.103014i
\(203\) 6.46410 1.73205i 0.453691 0.121566i
\(204\) 19.8564i 1.39023i
\(205\) −3.00000 0.803848i −0.209529 0.0561432i
\(206\) 15.1244 15.1244i 1.05376 1.05376i
\(207\) 12.2942 7.09808i 0.854508 0.493350i
\(208\) −9.85641 + 9.85641i −0.683419 + 0.683419i
\(209\) 7.33013 + 12.6962i 0.507035 + 0.878211i
\(210\) 3.46410 6.00000i 0.239046 0.414039i
\(211\) −1.09808 4.09808i −0.0755947 0.282123i 0.917773 0.397106i \(-0.129985\pi\)
−0.993367 + 0.114983i \(0.963319\pi\)
\(212\) 5.46410 + 20.3923i 0.375276 + 1.40055i
\(213\) 4.39230 2.53590i 0.300956 0.173757i
\(214\) 21.6340 12.4904i 1.47887 0.853825i
\(215\) 8.92820i 0.608898i
\(216\) 10.3923 10.3923i 0.707107 0.707107i
\(217\) 1.46410i 0.0993897i
\(218\) −10.7321 18.5885i −0.726866 1.25897i
\(219\) −9.40192 + 5.42820i −0.635323 + 0.366804i
\(220\) −4.53590 + 7.85641i −0.305810 + 0.529679i
\(221\) −5.16987 19.2942i −0.347763 1.29787i
\(222\) 14.1962 + 8.19615i 0.952783 + 0.550090i
\(223\) −8.02628 13.9019i −0.537479 0.930942i −0.999039 0.0438324i \(-0.986043\pi\)
0.461559 0.887109i \(-0.347290\pi\)
\(224\) 10.9282 10.9282i 0.730171 0.730171i
\(225\) 11.7846i 0.785641i
\(226\) 13.8564 + 13.8564i 0.921714 + 0.921714i
\(227\) 2.13397 + 0.571797i 0.141637 + 0.0379515i 0.328941 0.944351i \(-0.393308\pi\)
−0.187304 + 0.982302i \(0.559975\pi\)
\(228\) 8.19615 + 8.19615i 0.542803 + 0.542803i
\(229\) 6.83013 1.83013i 0.451347 0.120938i −0.0259823 0.999662i \(-0.508271\pi\)
0.477330 + 0.878724i \(0.341605\pi\)
\(230\) −3.46410 + 6.00000i −0.228416 + 0.395628i
\(231\) 14.6603 14.6603i 0.964574 0.964574i
\(232\) −6.00000 + 3.46410i −0.393919 + 0.227429i
\(233\) 3.19615i 0.209387i 0.994505 + 0.104693i \(0.0333861\pi\)
−0.994505 + 0.104693i \(0.966614\pi\)
\(234\) −7.39230 + 12.8038i −0.483250 + 0.837014i
\(235\) 5.60770 + 5.60770i 0.365806 + 0.365806i
\(236\) −14.6603 3.92820i −0.954301 0.255704i
\(237\) 10.3923 18.0000i 0.675053 1.16923i
\(238\) 5.73205 + 21.3923i 0.371554 + 1.38666i
\(239\) −7.90192 + 13.6865i −0.511133 + 0.885308i 0.488784 + 0.872405i \(0.337441\pi\)
−0.999917 + 0.0129033i \(0.995893\pi\)
\(240\) −1.85641 + 6.92820i −0.119831 + 0.447214i
\(241\) −11.5981 20.0885i −0.747098 1.29401i −0.949208 0.314649i \(-0.898113\pi\)
0.202110 0.979363i \(-0.435220\pi\)
\(242\) −8.19615 + 8.19615i −0.526869 + 0.526869i
\(243\) 7.79423 13.5000i 0.500000 0.866025i
\(244\) −16.3923 16.3923i −1.04941 1.04941i
\(245\) 0.124356 0.464102i 0.00794479 0.0296504i
\(246\) −7.09808 1.90192i −0.452557 0.121262i
\(247\) −10.0981 5.83013i −0.642525 0.370962i
\(248\) −0.392305 1.46410i −0.0249114 0.0929705i
\(249\) −0.633975 2.36603i −0.0401765 0.149941i
\(250\) 6.53590 + 11.3205i 0.413367 + 0.715972i
\(251\) −5.83013 5.83013i −0.367994 0.367994i 0.498751 0.866745i \(-0.333792\pi\)
−0.866745 + 0.498751i \(0.833792\pi\)
\(252\) 8.19615 14.1962i 0.516309 0.894274i
\(253\) −14.6603 + 14.6603i −0.921682 + 0.921682i
\(254\) 1.53590 5.73205i 0.0963708 0.359661i
\(255\) −7.26795 7.26795i −0.455137 0.455137i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 9.42820 16.3301i 0.588115 1.01865i −0.406364 0.913711i \(-0.633204\pi\)
0.994479 0.104934i \(-0.0334632\pi\)
\(258\) 21.1244i 1.31514i
\(259\) 17.6603 + 4.73205i 1.09735 + 0.294035i
\(260\) 7.21539i 0.447480i
\(261\) −5.19615 + 5.19615i −0.321634 + 0.321634i
\(262\) 11.4641 0.708255
\(263\) −2.49038 + 1.43782i −0.153563 + 0.0886599i −0.574813 0.818285i \(-0.694925\pi\)
0.421249 + 0.906945i \(0.361592\pi\)
\(264\) −10.7321 + 18.5885i −0.660512 + 1.14404i
\(265\) −9.46410 5.46410i −0.581375 0.335657i
\(266\) 11.1962 + 6.46410i 0.686480 + 0.396339i
\(267\) −3.00000 + 1.73205i −0.183597 + 0.106000i
\(268\) −3.53590 + 13.1962i −0.215989 + 0.806083i
\(269\) 1.26795 1.26795i 0.0773082 0.0773082i −0.667395 0.744704i \(-0.732591\pi\)
0.744704 + 0.667395i \(0.232591\pi\)
\(270\) 7.60770i 0.462990i
\(271\) −0.392305 −0.0238308 −0.0119154 0.999929i \(-0.503793\pi\)
−0.0119154 + 0.999929i \(0.503793\pi\)
\(272\) −11.4641 19.8564i −0.695113 1.20397i
\(273\) −4.26795 + 15.9282i −0.258308 + 0.964019i
\(274\) −3.49038 13.0263i −0.210862 0.786946i
\(275\) 4.45448 + 16.6244i 0.268615 + 1.00249i
\(276\) −8.19615 + 14.1962i −0.493350 + 0.854508i
\(277\) −6.75833 + 25.2224i −0.406069 + 1.51547i 0.396007 + 0.918247i \(0.370395\pi\)
−0.802076 + 0.597222i \(0.796271\pi\)
\(278\) 16.7321i 1.00352i
\(279\) −0.803848 1.39230i −0.0481251 0.0833551i
\(280\) 8.00000i 0.478091i
\(281\) −8.66025 + 5.00000i −0.516627 + 0.298275i −0.735554 0.677466i \(-0.763078\pi\)
0.218926 + 0.975741i \(0.429745\pi\)
\(282\) 13.2679 + 13.2679i 0.790095 + 0.790095i
\(283\) −19.5622 + 5.24167i −1.16285 + 0.311585i −0.788104 0.615542i \(-0.788937\pi\)
−0.374747 + 0.927127i \(0.622270\pi\)
\(284\) −2.92820 + 5.07180i −0.173757 + 0.300956i
\(285\) −6.00000 −0.355409
\(286\) 5.58846 20.8564i 0.330452 1.23327i
\(287\) −8.19615 −0.483804
\(288\) −4.39230 + 16.3923i −0.258819 + 0.965926i
\(289\) 15.8564 0.932730
\(290\) 0.928203 3.46410i 0.0545060 0.203419i
\(291\) 10.1603 17.5981i 0.595605 1.03162i
\(292\) 6.26795 10.8564i 0.366804 0.635323i
\(293\) −5.36603 + 1.43782i −0.313487 + 0.0839985i −0.412132 0.911124i \(-0.635216\pi\)
0.0986454 + 0.995123i \(0.468549\pi\)
\(294\) 0.294229 1.09808i 0.0171598 0.0640411i
\(295\) 6.80385 3.92820i 0.396135 0.228709i
\(296\) −18.9282 −1.10018
\(297\) −5.89230 + 21.9904i −0.341906 + 1.27601i
\(298\) 11.4641i 0.664098i
\(299\) 4.26795 15.9282i 0.246822 0.921152i
\(300\) 6.80385 + 11.7846i 0.392820 + 0.680385i
\(301\) −6.09808 22.7583i −0.351487 1.31177i
\(302\) −0.267949 1.00000i −0.0154187 0.0575435i
\(303\) 3.46410 0.928203i 0.199007 0.0533239i
\(304\) −12.9282 3.46410i −0.741483 0.198680i
\(305\) 12.0000 0.687118
\(306\) −17.1962 17.1962i −0.983039 0.983039i
\(307\) 3.02628 3.02628i 0.172719 0.172719i −0.615454 0.788173i \(-0.711027\pi\)
0.788173 + 0.615454i \(0.211027\pi\)
\(308\) −6.19615 + 23.1244i −0.353059 + 1.31763i
\(309\) 26.1962i 1.49025i
\(310\) 0.679492 + 0.392305i 0.0385925 + 0.0222814i
\(311\) −19.0981 11.0263i −1.08295 0.625243i −0.151261 0.988494i \(-0.548333\pi\)
−0.931691 + 0.363251i \(0.881667\pi\)
\(312\) 17.0718i 0.966500i
\(313\) 18.6506 10.7679i 1.05420 0.608640i 0.130375 0.991465i \(-0.458382\pi\)
0.923821 + 0.382824i \(0.125049\pi\)
\(314\) 6.92820 0.390981
\(315\) 2.19615 + 8.19615i 0.123739 + 0.461801i
\(316\) 24.0000i 1.35011i
\(317\) −20.5622 5.50962i −1.15489 0.309451i −0.369965 0.929046i \(-0.620630\pi\)
−0.784922 + 0.619595i \(0.787297\pi\)
\(318\) −22.3923 12.9282i −1.25570 0.724978i
\(319\) 5.36603 9.29423i 0.300440 0.520377i
\(320\) −2.14359 8.00000i −0.119831 0.447214i
\(321\) −7.91858 + 29.5526i −0.441972 + 1.64946i
\(322\) −4.73205 + 17.6603i −0.263707 + 0.984167i
\(323\) 13.5622 13.5622i 0.754620 0.754620i
\(324\) 18.0000i 1.00000i
\(325\) −9.67949 9.67949i −0.536922 0.536922i
\(326\) 7.00000 + 12.1244i 0.387694 + 0.671506i
\(327\) 25.3923 + 6.80385i 1.40420 + 0.376254i
\(328\) 8.19615 2.19615i 0.452557 0.121262i
\(329\) 18.1244 + 10.4641i 0.999228 + 0.576905i
\(330\) −2.87564 10.7321i −0.158299 0.590780i
\(331\) 0.0262794 0.0980762i 0.00144445 0.00539076i −0.965200 0.261513i \(-0.915778\pi\)
0.966644 + 0.256123i \(0.0824451\pi\)
\(332\) 2.00000 + 2.00000i 0.109764 + 0.109764i
\(333\) −19.3923 + 5.19615i −1.06269 + 0.284747i
\(334\) 7.46410 7.46410i 0.408417 0.408417i
\(335\) −3.53590 6.12436i −0.193187 0.334609i
\(336\) 18.9282i 1.03262i
\(337\) 8.89230 15.4019i 0.484395 0.838996i −0.515445 0.856923i \(-0.672373\pi\)
0.999839 + 0.0179267i \(0.00570654\pi\)
\(338\) −0.313467 1.16987i −0.0170503 0.0636327i
\(339\) −24.0000 −1.30350
\(340\) 11.4641 + 3.07180i 0.621728 + 0.166592i
\(341\) 1.66025 + 1.66025i 0.0899078 + 0.0899078i
\(342\) −14.1962 −0.767640
\(343\) 17.8564i 0.964155i
\(344\) 12.1962 + 21.1244i 0.657572 + 1.13895i
\(345\) −2.19615 8.19615i −0.118237 0.441266i
\(346\) 1.19615 2.07180i 0.0643056 0.111380i
\(347\) −17.6244 + 4.72243i −0.946125 + 0.253513i −0.698717 0.715398i \(-0.746245\pi\)
−0.247408 + 0.968911i \(0.579579\pi\)
\(348\) 2.19615 8.19615i 0.117726 0.439360i
\(349\) 15.9282 + 4.26795i 0.852617 + 0.228458i 0.658556 0.752531i \(-0.271167\pi\)
0.194061 + 0.980989i \(0.437834\pi\)
\(350\) 10.7321 + 10.7321i 0.573652 + 0.573652i
\(351\) −4.68653 17.4904i −0.250149 0.933567i
\(352\) 24.7846i 1.32102i
\(353\) 7.16025 + 12.4019i 0.381102 + 0.660088i 0.991220 0.132223i \(-0.0422114\pi\)
−0.610118 + 0.792310i \(0.708878\pi\)
\(354\) 16.0981 9.29423i 0.855603 0.493983i
\(355\) −0.784610 2.92820i −0.0416428 0.155413i
\(356\) 2.00000 3.46410i 0.106000 0.183597i
\(357\) −23.4904 13.5622i −1.24324 0.717787i
\(358\) 1.92820 + 3.33975i 0.101909 + 0.176511i
\(359\) 11.2679i 0.594700i −0.954769 0.297350i \(-0.903897\pi\)
0.954769 0.297350i \(-0.0961028\pi\)
\(360\) −4.39230 7.60770i −0.231495 0.400961i
\(361\) 7.80385i 0.410729i
\(362\) −12.8038 + 7.39230i −0.672955 + 0.388531i
\(363\) 14.1962i 0.745105i
\(364\) −4.92820 18.3923i −0.258308 0.964019i
\(365\) 1.67949 + 6.26795i 0.0879086 + 0.328079i
\(366\) 28.3923 1.48409
\(367\) 14.1244 + 24.4641i 0.737285 + 1.27702i 0.953713 + 0.300717i \(0.0972260\pi\)
−0.216428 + 0.976299i \(0.569441\pi\)
\(368\) 18.9282i 0.986701i
\(369\) 7.79423 4.50000i 0.405751 0.234261i
\(370\) 6.92820 6.92820i 0.360180 0.360180i
\(371\) −27.8564 7.46410i −1.44623 0.387517i
\(372\) 1.60770 + 0.928203i 0.0833551 + 0.0481251i
\(373\) 27.4904 7.36603i 1.42340 0.381398i 0.536710 0.843767i \(-0.319667\pi\)
0.886688 + 0.462368i \(0.153000\pi\)
\(374\) 30.7583 + 17.7583i 1.59048 + 0.918261i
\(375\) −15.4641 4.14359i −0.798563 0.213974i
\(376\) −20.9282 5.60770i −1.07929 0.289195i
\(377\) 8.53590i 0.439621i
\(378\) 5.19615 + 19.3923i 0.267261 + 0.997433i
\(379\) 3.75833 + 3.75833i 0.193052 + 0.193052i 0.797014 0.603961i \(-0.206412\pi\)
−0.603961 + 0.797014i \(0.706412\pi\)
\(380\) 6.00000 3.46410i 0.307794 0.177705i
\(381\) 3.63397 + 6.29423i 0.186174 + 0.322463i
\(382\) −32.8564 + 8.80385i −1.68108 + 0.450444i
\(383\) −6.73205 + 11.6603i −0.343992 + 0.595811i −0.985170 0.171581i \(-0.945113\pi\)
0.641178 + 0.767392i \(0.278446\pi\)
\(384\) −5.07180 18.9282i −0.258819 0.965926i
\(385\) −6.19615 10.7321i −0.315785 0.546956i
\(386\) 21.7321 + 21.7321i 1.10613 + 1.10613i
\(387\) 18.2942 + 18.2942i 0.929948 + 0.929948i
\(388\) 23.4641i 1.19121i
\(389\) −5.29423 + 19.7583i −0.268428 + 1.00179i 0.691691 + 0.722194i \(0.256866\pi\)
−0.960119 + 0.279593i \(0.909800\pi\)
\(390\) 6.24871 + 6.24871i 0.316416 + 0.316416i
\(391\) 23.4904 + 13.5622i 1.18796 + 0.685869i
\(392\) 0.339746 + 1.26795i 0.0171598 + 0.0640411i
\(393\) −9.92820 + 9.92820i −0.500812 + 0.500812i
\(394\) 23.6603 13.6603i 1.19199 0.688194i
\(395\) −8.78461 8.78461i −0.442002 0.442002i
\(396\) −6.80385 25.3923i −0.341906 1.27601i
\(397\) −9.26795 + 9.26795i −0.465145 + 0.465145i −0.900337 0.435192i \(-0.856680\pi\)
0.435192 + 0.900337i \(0.356680\pi\)
\(398\) −34.3205 9.19615i −1.72033 0.460961i
\(399\) −15.2942 + 4.09808i −0.765669 + 0.205160i
\(400\) −13.6077 7.85641i −0.680385 0.392820i
\(401\) −1.79423 + 3.10770i −0.0895995 + 0.155191i −0.907342 0.420393i \(-0.861892\pi\)
0.817742 + 0.575584i \(0.195225\pi\)
\(402\) −8.36603 14.4904i −0.417259 0.722715i
\(403\) −1.80385 0.483340i −0.0898560 0.0240769i
\(404\) −2.92820 + 2.92820i −0.145684 + 0.145684i
\(405\) −6.58846 6.58846i −0.327383 0.327383i
\(406\) 9.46410i 0.469695i
\(407\) 25.3923 14.6603i 1.25865 0.726682i
\(408\) 27.1244 + 7.26795i 1.34286 + 0.359817i
\(409\) 27.8660 + 16.0885i 1.37789 + 0.795523i 0.991905 0.126984i \(-0.0405295\pi\)
0.385981 + 0.922507i \(0.373863\pi\)
\(410\) −2.19615 + 3.80385i −0.108460 + 0.187859i
\(411\) 14.3038 + 8.25833i 0.705557 + 0.407353i
\(412\) −15.1244 26.1962i −0.745124 1.29059i
\(413\) 14.6603 14.6603i 0.721384 0.721384i
\(414\) −5.19615 19.3923i −0.255377 0.953080i
\(415\) −1.46410 −0.0718699
\(416\) 9.85641 + 17.0718i 0.483250 + 0.837014i
\(417\) −14.4904 14.4904i −0.709597 0.709597i
\(418\) 20.0263 5.36603i 0.979517 0.262461i
\(419\) 1.77757 + 6.63397i 0.0868399 + 0.324091i 0.995656 0.0931055i \(-0.0296794\pi\)
−0.908816 + 0.417196i \(0.863013\pi\)
\(420\) −6.92820 6.92820i −0.338062 0.338062i
\(421\) 8.19615 30.5885i 0.399456 1.49079i −0.414600 0.910004i \(-0.636078\pi\)
0.814056 0.580786i \(-0.197255\pi\)
\(422\) −6.00000 −0.292075
\(423\) −22.9808 −1.11736
\(424\) 29.8564 1.44996
\(425\) 19.5000 11.2583i 0.945889 0.546109i
\(426\) −1.85641 6.92820i −0.0899432 0.335673i
\(427\) 30.5885 8.19615i 1.48028 0.396640i
\(428\) −9.14359 34.1244i −0.441972 1.64946i
\(429\) 13.2224 + 22.9019i 0.638385 + 1.10572i
\(430\) −12.1962 3.26795i −0.588151 0.157595i
\(431\) −16.1962 −0.780141 −0.390071 0.920785i \(-0.627549\pi\)
−0.390071 + 0.920785i \(0.627549\pi\)
\(432\) −10.3923 18.0000i −0.500000 0.866025i
\(433\) −5.73205 −0.275465 −0.137732 0.990469i \(-0.543981\pi\)
−0.137732 + 0.990469i \(0.543981\pi\)
\(434\) 2.00000 + 0.535898i 0.0960031 + 0.0257239i
\(435\) 2.19615 + 3.80385i 0.105297 + 0.182381i
\(436\) −29.3205 + 7.85641i −1.40420 + 0.376254i
\(437\) 15.2942 4.09808i 0.731622 0.196038i
\(438\) 3.97372 + 14.8301i 0.189872 + 0.708611i
\(439\) −22.8564 + 13.1962i −1.09088 + 0.629818i −0.933810 0.357770i \(-0.883537\pi\)
−0.157067 + 0.987588i \(0.550204\pi\)
\(440\) 9.07180 + 9.07180i 0.432481 + 0.432481i
\(441\) 0.696152 + 1.20577i 0.0331501 + 0.0574177i
\(442\) −28.2487 −1.34365
\(443\) −4.62436 + 17.2583i −0.219710 + 0.819968i 0.764745 + 0.644332i \(0.222865\pi\)
−0.984455 + 0.175636i \(0.943802\pi\)
\(444\) 16.3923 16.3923i 0.777944 0.777944i
\(445\) 0.535898 + 2.00000i 0.0254040 + 0.0948091i
\(446\) −21.9282 + 5.87564i −1.03833 + 0.278220i
\(447\) 9.92820 + 9.92820i 0.469588 + 0.469588i
\(448\) −10.9282 18.9282i −0.516309 0.894274i
\(449\) −3.33975 −0.157612 −0.0788062 0.996890i \(-0.525111\pi\)
−0.0788062 + 0.996890i \(0.525111\pi\)
\(450\) −16.0981 4.31347i −0.758871 0.203339i
\(451\) −9.29423 + 9.29423i −0.437648 + 0.437648i
\(452\) 24.0000 13.8564i 1.12887 0.651751i
\(453\) 1.09808 + 0.633975i 0.0515921 + 0.0297867i
\(454\) 1.56218 2.70577i 0.0733166 0.126988i
\(455\) 8.53590 + 4.92820i 0.400169 + 0.231038i
\(456\) 14.1962 8.19615i 0.664796 0.383820i
\(457\) 2.25833 1.30385i 0.105640 0.0609914i −0.446249 0.894909i \(-0.647240\pi\)
0.551889 + 0.833917i \(0.313907\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 29.7846 1.39023
\(460\) 6.92820 + 6.92820i 0.323029 + 0.323029i
\(461\) 35.6865 + 9.56218i 1.66209 + 0.445355i 0.962961 0.269642i \(-0.0869055\pi\)
0.699127 + 0.714997i \(0.253572\pi\)
\(462\) −14.6603 25.3923i −0.682057 1.18136i
\(463\) 1.19615 2.07180i 0.0555899 0.0962846i −0.836891 0.547369i \(-0.815629\pi\)
0.892481 + 0.451085i \(0.148963\pi\)
\(464\) 2.53590 + 9.46410i 0.117726 + 0.439360i
\(465\) −0.928203 + 0.248711i −0.0430444 + 0.0115337i
\(466\) 4.36603 + 1.16987i 0.202252 + 0.0541933i
\(467\) 2.63397 2.63397i 0.121886 0.121886i −0.643533 0.765419i \(-0.722532\pi\)
0.765419 + 0.643533i \(0.222532\pi\)
\(468\) 14.7846 + 14.7846i 0.683419 + 0.683419i
\(469\) −13.1962 13.1962i −0.609342 0.609342i
\(470\) 9.71281 5.60770i 0.448019 0.258664i
\(471\) −6.00000 + 6.00000i −0.276465 + 0.276465i
\(472\) −10.7321 + 18.5885i −0.493983 + 0.855603i
\(473\) −32.7224 18.8923i −1.50458 0.868669i
\(474\) −20.7846 20.7846i −0.954669 0.954669i
\(475\) 3.40192 12.6962i 0.156091 0.582539i
\(476\) 31.3205 1.43557
\(477\) 30.5885 8.19615i 1.40055 0.375276i
\(478\) 15.8038 + 15.8038i 0.722851 + 0.722851i
\(479\) 4.16987 + 7.22243i 0.190526 + 0.330001i 0.945425 0.325840i \(-0.105647\pi\)
−0.754898 + 0.655842i \(0.772314\pi\)
\(480\) 8.78461 + 5.07180i 0.400961 + 0.231495i
\(481\) −11.6603 + 20.1962i −0.531662 + 0.920865i
\(482\) −31.6865 + 8.49038i −1.44328 + 0.386726i
\(483\) −11.1962 19.3923i −0.509443 0.882380i
\(484\) 8.19615 + 14.1962i 0.372552 + 0.645280i
\(485\) −8.58846 8.58846i −0.389982 0.389982i
\(486\) −15.5885 15.5885i −0.707107 0.707107i
\(487\) 5.80385i 0.262997i −0.991316 0.131499i \(-0.958021\pi\)
0.991316 0.131499i \(-0.0419789\pi\)
\(488\) −28.3923 + 16.3923i −1.28526 + 0.742045i
\(489\) −16.5622 4.43782i −0.748968 0.200685i
\(490\) −0.588457 0.339746i −0.0265838 0.0153482i
\(491\) −13.8923 + 3.72243i −0.626951 + 0.167991i −0.558286 0.829649i \(-0.688541\pi\)
−0.0686652 + 0.997640i \(0.521874\pi\)
\(492\) −5.19615 + 9.00000i −0.234261 + 0.405751i
\(493\) −13.5622 3.63397i −0.610810 0.163666i
\(494\) −11.6603 + 11.6603i −0.524620 + 0.524620i
\(495\) 11.7846 + 6.80385i 0.529679 + 0.305810i
\(496\) −2.14359 −0.0962502
\(497\) −4.00000 6.92820i −0.179425 0.310772i
\(498\) −3.46410 −0.155230
\(499\) −2.33013 8.69615i −0.104311 0.389293i 0.893955 0.448156i \(-0.147919\pi\)
−0.998266 + 0.0588630i \(0.981252\pi\)
\(500\) 17.8564 4.78461i 0.798563 0.213974i
\(501\) 12.9282i 0.577590i
\(502\) −10.0981 + 5.83013i −0.450699 + 0.260211i
\(503\) 27.7128i 1.23565i 0.786314 + 0.617827i \(0.211987\pi\)
−0.786314 + 0.617827i \(0.788013\pi\)
\(504\) −16.3923 16.3923i −0.730171 0.730171i
\(505\) 2.14359i 0.0953887i
\(506\) 14.6603 + 25.3923i 0.651728 + 1.12883i
\(507\) 1.28461 + 0.741670i 0.0570515 + 0.0329387i
\(508\) −7.26795 4.19615i −0.322463 0.186174i
\(509\) 3.07180 + 11.4641i 0.136155 + 0.508137i 0.999990 + 0.00436335i \(0.00138890\pi\)
−0.863835 + 0.503774i \(0.831944\pi\)
\(510\) −12.5885 + 7.26795i −0.557426 + 0.321830i
\(511\) 8.56218 + 14.8301i 0.378768 + 0.656046i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 12.2942 12.2942i 0.542803 0.542803i
\(514\) −18.8564 18.8564i −0.831720 0.831720i
\(515\) 15.1244 + 4.05256i 0.666459 + 0.178577i
\(516\) −28.8564 7.73205i −1.27033 0.340385i
\(517\) 32.4186 8.68653i 1.42577 0.382033i
\(518\) 12.9282 22.3923i 0.568033 0.983861i
\(519\) 0.758330 + 2.83013i 0.0332870 + 0.124229i
\(520\) −9.85641 2.64102i −0.432232 0.115816i
\(521\) 13.0000i 0.569540i −0.958596 0.284770i \(-0.908083\pi\)
0.958596 0.284770i \(-0.0919173\pi\)
\(522\) 5.19615 + 9.00000i 0.227429 + 0.393919i
\(523\) −7.53590 7.53590i −0.329522 0.329522i 0.522883 0.852405i \(-0.324857\pi\)
−0.852405 + 0.522883i \(0.824857\pi\)
\(524\) 4.19615 15.6603i 0.183310 0.684121i
\(525\) −18.5885 −0.811267
\(526\) 1.05256 + 3.92820i 0.0458937 + 0.171278i
\(527\) 1.53590 2.66025i 0.0669048 0.115882i
\(528\) 21.4641 + 21.4641i 0.934105 + 0.934105i
\(529\) −0.303848 0.526279i −0.0132108 0.0228817i
\(530\) −10.9282 + 10.9282i −0.474691 + 0.474691i
\(531\) −5.89230 + 21.9904i −0.255704 + 0.954301i
\(532\) 12.9282 12.9282i 0.560509 0.560509i
\(533\) 2.70577 10.0981i 0.117200 0.437396i
\(534\) 1.26795 + 4.73205i 0.0548695 + 0.204776i
\(535\) 15.8372 + 9.14359i 0.684701 + 0.395312i
\(536\) 16.7321 + 9.66025i 0.722715 + 0.417259i
\(537\) −4.56218 1.22243i −0.196873 0.0527518i
\(538\) −1.26795 2.19615i −0.0546652 0.0946829i
\(539\) −1.43782 1.43782i −0.0619314 0.0619314i
\(540\) 10.3923 + 2.78461i 0.447214 + 0.119831i
\(541\) 2.19615 2.19615i 0.0944200 0.0944200i −0.658319 0.752739i \(-0.728732\pi\)
0.752739 + 0.658319i \(0.228732\pi\)
\(542\) −0.143594 + 0.535898i −0.00616787 + 0.0230188i
\(543\) 4.68653 17.4904i 0.201118 0.750584i
\(544\) −31.3205 + 8.39230i −1.34286 + 0.359817i
\(545\) 7.85641 13.6077i 0.336531 0.582890i
\(546\) 20.1962 + 11.6603i 0.864316 + 0.499013i
\(547\) 32.6244 + 8.74167i 1.39492 + 0.373767i 0.876517 0.481371i \(-0.159861\pi\)
0.518400 + 0.855138i \(0.326528\pi\)
\(548\) −19.0718 −0.814707
\(549\) −24.5885 + 24.5885i −1.04941 + 1.04941i
\(550\) 24.3397 1.03785
\(551\) −7.09808 + 4.09808i −0.302388 + 0.174584i
\(552\) 16.3923 + 16.3923i 0.697703 + 0.697703i
\(553\) −28.3923 16.3923i −1.20736 0.697072i
\(554\) 31.9808 + 18.4641i 1.35873 + 0.784465i
\(555\) 12.0000i 0.509372i
\(556\) 22.8564 + 6.12436i 0.969328 + 0.259731i
\(557\) −14.8038 + 14.8038i −0.627259 + 0.627259i −0.947378 0.320118i \(-0.896277\pi\)
0.320118 + 0.947378i \(0.396277\pi\)
\(558\) −2.19615 + 0.588457i −0.0929705 + 0.0249114i
\(559\) 30.0526 1.27109
\(560\) 10.9282 + 2.92820i 0.461801 + 0.123739i
\(561\) −42.0167 + 11.2583i −1.77394 + 0.475327i
\(562\) 3.66025 + 13.6603i 0.154398 + 0.576223i
\(563\) −7.23205 26.9904i −0.304795 1.13751i −0.933122 0.359560i \(-0.882927\pi\)
0.628327 0.777949i \(-0.283740\pi\)
\(564\) 22.9808 13.2679i 0.967665 0.558681i
\(565\) −3.71281 + 13.8564i −0.156199 + 0.582943i
\(566\) 28.6410i 1.20387i
\(567\) −21.2942 12.2942i −0.894274 0.516309i
\(568\) 5.85641 + 5.85641i 0.245729 + 0.245729i
\(569\) −18.4019 + 10.6244i −0.771449 + 0.445396i −0.833391 0.552684i \(-0.813604\pi\)
0.0619424 + 0.998080i \(0.480270\pi\)
\(570\) −2.19615 + 8.19615i −0.0919867 + 0.343299i
\(571\) −3.33013 + 0.892305i −0.139361 + 0.0373418i −0.327825 0.944738i \(-0.606316\pi\)
0.188464 + 0.982080i \(0.439649\pi\)
\(572\) −26.4449 15.2679i −1.10572 0.638385i
\(573\) 20.8301 36.0788i 0.870191 1.50722i
\(574\) −3.00000 + 11.1962i −0.125218 + 0.467318i
\(575\) 18.5885 0.775192
\(576\) 20.7846 + 12.0000i 0.866025 + 0.500000i
\(577\) −5.78461 −0.240816 −0.120408 0.992724i \(-0.538420\pi\)
−0.120408 + 0.992724i \(0.538420\pi\)
\(578\) 5.80385 21.6603i 0.241408 0.900948i
\(579\) −37.6410 −1.56431
\(580\) −4.39230 2.53590i −0.182381 0.105297i
\(581\) −3.73205 + 1.00000i −0.154832 + 0.0414870i
\(582\) −20.3205 20.3205i −0.842312 0.842312i
\(583\) −40.0526 + 23.1244i −1.65881 + 0.957713i
\(584\) −12.5359 12.5359i −0.518739 0.518739i
\(585\) −10.8231 −0.447480
\(586\) 7.85641i 0.324545i
\(587\) 7.23205 26.9904i 0.298499 1.11401i −0.639900 0.768458i \(-0.721024\pi\)
0.938399 0.345554i \(-0.112309\pi\)
\(588\) −1.39230 0.803848i −0.0574177 0.0331501i
\(589\) −0.464102 1.73205i −0.0191230 0.0713679i
\(590\) −2.87564 10.7321i −0.118388 0.441832i
\(591\) −8.66025 + 32.3205i −0.356235 + 1.32949i
\(592\) −6.92820 + 25.8564i −0.284747 + 1.06269i
\(593\) 17.4641 0.717165 0.358582 0.933498i \(-0.383260\pi\)
0.358582 + 0.933498i \(0.383260\pi\)
\(594\) 27.8827 + 16.0981i 1.14404 + 0.660512i
\(595\) −11.4641 + 11.4641i −0.469982 + 0.469982i
\(596\) −15.6603 4.19615i −0.641469 0.171881i
\(597\) 37.6865 21.7583i 1.54241 0.890509i
\(598\) −20.1962 11.6603i −0.825882 0.476823i
\(599\) 11.3205 + 6.53590i 0.462543 + 0.267050i 0.713113 0.701049i \(-0.247285\pi\)
−0.250570 + 0.968099i \(0.580618\pi\)
\(600\) 18.5885 4.98076i 0.758871 0.203339i
\(601\) −20.5526 + 11.8660i −0.838356 + 0.484025i −0.856705 0.515806i \(-0.827492\pi\)
0.0183488 + 0.999832i \(0.494159\pi\)
\(602\) −33.3205 −1.35804
\(603\) 19.7942 + 5.30385i 0.806083 + 0.215989i
\(604\) −1.46410 −0.0595734
\(605\) −8.19615 2.19615i −0.333221 0.0892863i
\(606\) 5.07180i 0.206028i
\(607\) −8.58846 + 14.8756i −0.348595 + 0.603784i −0.986000 0.166745i \(-0.946674\pi\)
0.637405 + 0.770529i \(0.280008\pi\)
\(608\) −9.46410 + 16.3923i −0.383820 + 0.664796i
\(609\) 8.19615 + 8.19615i 0.332125 + 0.332125i
\(610\) 4.39230 16.3923i 0.177839 0.663705i
\(611\) −18.8756 + 18.8756i −0.763627 + 0.763627i
\(612\) −29.7846 + 17.1962i −1.20397 + 0.695113i
\(613\) −15.6603 15.6603i −0.632512 0.632512i 0.316186 0.948697i \(-0.397598\pi\)
−0.948697 + 0.316186i \(0.897598\pi\)
\(614\) −3.02628 5.24167i −0.122131 0.211537i
\(615\) −1.39230 5.19615i −0.0561432 0.209529i
\(616\) 29.3205 + 16.9282i 1.18136 + 0.682057i
\(617\) −35.0885 20.2583i −1.41261 0.815570i −0.416975 0.908918i \(-0.636910\pi\)
−0.995633 + 0.0933485i \(0.970243\pi\)
\(618\) 35.7846 + 9.58846i 1.43947 + 0.385704i
\(619\) 4.17949 15.5981i 0.167988 0.626940i −0.829652 0.558281i \(-0.811461\pi\)
0.997640 0.0686590i \(-0.0218721\pi\)
\(620\) 0.784610 0.784610i 0.0315107 0.0315107i
\(621\) 21.2942 + 12.2942i 0.854508 + 0.493350i
\(622\) −22.0526 + 22.0526i −0.884227 + 0.884227i
\(623\) 2.73205 + 4.73205i 0.109457 + 0.189586i
\(624\) −23.3205 6.24871i −0.933567 0.250149i
\(625\) 5.03590 8.72243i 0.201436 0.348897i
\(626\) −7.88269 29.4186i −0.315055 1.17580i
\(627\) −12.6962 + 21.9904i −0.507035 + 0.878211i
\(628\) 2.53590 9.46410i 0.101193 0.377659i
\(629\) −27.1244 27.1244i −1.08152 1.08152i
\(630\) 12.0000 0.478091
\(631\) 17.6077i 0.700951i −0.936572 0.350476i \(-0.886020\pi\)
0.936572 0.350476i \(-0.113980\pi\)
\(632\) 32.7846 + 8.78461i 1.30410 + 0.349433i
\(633\) 5.19615 5.19615i 0.206529 0.206529i
\(634\) −15.0526 + 26.0718i −0.597813 + 1.03544i
\(635\) 4.19615 1.12436i 0.166519 0.0446187i
\(636\) −25.8564 + 25.8564i −1.02527 + 1.02527i
\(637\) 1.56218 + 0.418584i 0.0618957 + 0.0165849i
\(638\) −10.7321 10.7321i −0.424886 0.424886i
\(639\) 7.60770 + 4.39230i 0.300956 + 0.173757i
\(640\) −11.7128 −0.462990
\(641\) −19.7942 34.2846i −0.781825 1.35416i −0.930878 0.365331i \(-0.880956\pi\)
0.149053 0.988829i \(-0.452378\pi\)
\(642\) 37.4711 + 21.6340i 1.47887 + 0.853825i
\(643\) −2.34936 8.76795i −0.0926499 0.345774i 0.904003 0.427527i \(-0.140615\pi\)
−0.996653 + 0.0817525i \(0.973948\pi\)
\(644\) 22.3923 + 12.9282i 0.882380 + 0.509443i
\(645\) 13.3923 7.73205i 0.527321 0.304449i
\(646\) −13.5622 23.4904i −0.533597 0.924217i
\(647\) 16.7321i 0.657805i −0.944364 0.328902i \(-0.893321\pi\)
0.944364 0.328902i \(-0.106679\pi\)
\(648\) 24.5885 + 6.58846i 0.965926 + 0.258819i
\(649\) 33.2487i 1.30513i
\(650\) −16.7654 + 9.67949i −0.657592 + 0.379661i
\(651\) −2.19615 + 1.26795i −0.0860740 + 0.0496948i
\(652\) 19.1244 5.12436i 0.748968 0.200685i
\(653\) 7.36603 + 27.4904i 0.288255 + 1.07578i 0.946428 + 0.322915i \(0.104663\pi\)
−0.658173 + 0.752867i \(0.728671\pi\)
\(654\) 18.5885 32.1962i 0.726866 1.25897i
\(655\) 4.19615 + 7.26795i 0.163957 + 0.283982i
\(656\) 12.0000i 0.468521i
\(657\) −16.2846 9.40192i −0.635323 0.366804i
\(658\) 20.9282 20.9282i 0.815866 0.815866i
\(659\) −15.0263 4.02628i −0.585341 0.156842i −0.0460178 0.998941i \(-0.514653\pi\)
−0.539323 + 0.842099i \(0.681320\pi\)
\(660\) −15.7128 −0.611620
\(661\) −8.19615 + 2.19615i −0.318793 + 0.0854204i −0.414667 0.909973i \(-0.636102\pi\)
0.0958740 + 0.995393i \(0.469435\pi\)
\(662\) −0.124356 0.0717968i −0.00483322 0.00279046i
\(663\) 24.4641 24.4641i 0.950107 0.950107i
\(664\) 3.46410 2.00000i 0.134433 0.0776151i
\(665\) 9.46410i 0.367002i
\(666\) 28.3923i 1.10018i
\(667\) −8.19615 8.19615i −0.317356 0.317356i
\(668\) −7.46410 12.9282i −0.288795 0.500207i
\(669\) 13.9019 24.0788i 0.537479 0.930942i
\(670\) −9.66025 + 2.58846i −0.373208 + 0.100001i
\(671\) 25.3923 43.9808i 0.980259 1.69786i
\(672\) 25.8564 + 6.92820i 0.997433 + 0.267261i
\(673\) 19.1962 + 33.2487i 0.739957 + 1.28164i 0.952514 + 0.304495i \(0.0984877\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(674\) −17.7846 17.7846i −0.685038 0.685038i
\(675\) 17.6769 10.2058i 0.680385 0.392820i
\(676\) −1.71281 −0.0658774
\(677\) 1.26795 4.73205i 0.0487312 0.181867i −0.937270 0.348603i \(-0.886656\pi\)
0.986002 + 0.166736i \(0.0533227\pi\)
\(678\) −8.78461 + 32.7846i −0.337371 + 1.25909i
\(679\) −27.7583 16.0263i −1.06527 0.615032i
\(680\) 8.39230 14.5359i 0.321830 0.557426i
\(681\) 0.990381 + 3.69615i 0.0379515 + 0.141637i
\(682\) 2.87564 1.66025i 0.110114 0.0635744i
\(683\) −20.2942 20.2942i −0.776537 0.776537i 0.202703 0.979240i \(-0.435027\pi\)
−0.979240 + 0.202703i \(0.935027\pi\)
\(684\) −5.19615 + 19.3923i −0.198680 + 0.741483i
\(685\) 6.98076 6.98076i 0.266721 0.266721i
\(686\) 24.3923 + 6.53590i 0.931303 + 0.249542i
\(687\) 8.66025 + 8.66025i 0.330409 + 0.330409i
\(688\) 33.3205 8.92820i 1.27033 0.340385i
\(689\) 18.3923 31.8564i 0.700691 1.21363i
\(690\) −12.0000 −0.456832
\(691\) 9.29423 + 2.49038i 0.353569 + 0.0947386i 0.431232 0.902241i \(-0.358079\pi\)
−0.0776628 + 0.996980i \(0.524746\pi\)
\(692\) −2.39230 2.39230i −0.0909418 0.0909418i
\(693\) 34.6865 + 9.29423i 1.31763 + 0.353059i
\(694\) 25.8038i 0.979501i
\(695\) −10.6077 + 6.12436i −0.402373 + 0.232310i
\(696\) −10.3923 6.00000i −0.393919 0.227429i
\(697\) 14.8923 + 8.59808i 0.564086 + 0.325675i
\(698\) 11.6603 20.1962i 0.441347 0.764436i
\(699\) −4.79423 + 2.76795i −0.181334 + 0.104693i
\(700\) 18.5885 10.7321i 0.702578 0.405633i
\(701\) −6.66025 + 6.66025i −0.251554 + 0.251554i −0.821608 0.570053i \(-0.806923\pi\)
0.570053 + 0.821608i \(0.306923\pi\)
\(702\) −25.6077 −0.966500
\(703\) −22.3923 −0.844542
\(704\) −33.8564 9.07180i −1.27601 0.341906i
\(705\) −3.55514 + 13.2679i −0.133894 + 0.499700i
\(706\) 19.5622 5.24167i 0.736232 0.197273i
\(707\) −1.46410 5.46410i −0.0550632 0.205499i
\(708\) −6.80385 25.3923i −0.255704 0.954301i
\(709\) −9.80385 + 36.5885i −0.368191 + 1.37411i 0.494852 + 0.868978i \(0.335222\pi\)
−0.863043 + 0.505131i \(0.831444\pi\)
\(710\) −4.28719 −0.160895
\(711\) 36.0000 1.35011
\(712\) −4.00000 4.00000i −0.149906 0.149906i
\(713\) 2.19615 1.26795i 0.0822466 0.0474851i
\(714\) −27.1244 + 27.1244i −1.01510 + 1.01510i
\(715\) 15.2679 4.09103i 0.570989 0.152996i
\(716\) 5.26795 1.41154i 0.196873 0.0527518i
\(717\) −27.3731 −1.02227
\(718\) −15.3923 4.12436i −0.574436 0.153920i
\(719\) 4.39230 0.163805 0.0819027 0.996640i \(-0.473900\pi\)
0.0819027 + 0.996640i \(0.473900\pi\)
\(720\) −12.0000 + 3.21539i −0.447214 + 0.119831i
\(721\) 41.3205 1.53886
\(722\) 10.6603 + 2.85641i 0.396734 + 0.106304i
\(723\) 20.0885 34.7942i 0.747098 1.29401i
\(724\) 5.41154 + 20.1962i 0.201118 + 0.750584i
\(725\) −9.29423 + 2.49038i −0.345179 + 0.0924904i
\(726\) −19.3923 5.19615i −0.719716 0.192847i
\(727\) −28.8109 + 16.6340i −1.06854 + 0.616920i −0.927781 0.373124i \(-0.878286\pi\)
−0.140755 + 0.990044i \(0.544953\pi\)
\(728\) −26.9282 −0.998026
\(729\) 27.0000 1.00000
\(730\) 9.17691 0.339653
\(731\) −12.7942 + 47.7487i −0.473212 + 1.76605i
\(732\) 10.3923 38.7846i 0.384111 1.43352i
\(733\) 2.95448 + 11.0263i 0.109126 + 0.407265i 0.998781 0.0493698i \(-0.0157213\pi\)
−0.889654 + 0.456635i \(0.849055\pi\)
\(734\) 38.5885 10.3397i 1.42433 0.381647i
\(735\) 0.803848 0.215390i 0.0296504 0.00794479i
\(736\) −25.8564 6.92820i −0.953080 0.255377i
\(737\) −29.9282 −1.10242
\(738\) −3.29423 12.2942i −0.121262 0.452557i
\(739\) −8.22243 + 8.22243i −0.302467 + 0.302467i −0.841978 0.539511i \(-0.818609\pi\)
0.539511 + 0.841978i \(0.318609\pi\)
\(740\) −6.92820 12.0000i −0.254686 0.441129i
\(741\) 20.1962i 0.741924i
\(742\) −20.3923 + 35.3205i −0.748625 + 1.29666i
\(743\) 24.7583 + 14.2942i 0.908295 + 0.524404i 0.879882 0.475192i \(-0.157621\pi\)
0.0284129 + 0.999596i \(0.490955\pi\)
\(744\) 1.85641 1.85641i 0.0680592 0.0680592i
\(745\) 7.26795 4.19615i 0.266277 0.153735i
\(746\) 40.2487i 1.47361i
\(747\) 3.00000 3.00000i 0.109764 0.109764i
\(748\) 35.5167 35.5167i 1.29862 1.29862i
\(749\) 46.6147 + 12.4904i 1.70327 + 0.456389i
\(750\) −11.3205 + 19.6077i −0.413367 + 0.715972i
\(751\) −8.85641 + 15.3397i −0.323175 + 0.559755i −0.981141 0.193292i \(-0.938084\pi\)
0.657966 + 0.753047i \(0.271417\pi\)
\(752\) −15.3205 + 26.5359i −0.558681 + 0.967665i
\(753\) 3.69615 13.7942i 0.134695 0.502690i
\(754\) 11.6603 + 3.12436i 0.424641 + 0.113782i
\(755\) 0.535898 0.535898i 0.0195033 0.0195033i
\(756\) 28.3923 1.03262
\(757\) −19.9282 19.9282i −0.724303 0.724303i 0.245176 0.969479i \(-0.421154\pi\)
−0.969479 + 0.245176i \(0.921154\pi\)
\(758\) 6.50962 3.75833i 0.236440 0.136509i
\(759\) −34.6865 9.29423i −1.25904 0.337359i
\(760\) −2.53590 9.46410i −0.0919867 0.343299i
\(761\) 45.3731 + 26.1962i 1.64477 + 0.949610i 0.979104 + 0.203363i \(0.0651870\pi\)
0.665669 + 0.746247i \(0.268146\pi\)
\(762\) 9.92820 2.66025i 0.359661 0.0963708i
\(763\) 10.7321 40.0526i 0.388526 1.45000i
\(764\) 48.1051i 1.74038i
\(765\) 4.60770 17.1962i 0.166592 0.621728i
\(766\) 13.4641 + 13.4641i 0.486478 + 0.486478i
\(767\) 13.2224 + 22.9019i 0.477434 + 0.826941i
\(768\) −27.7128 −1.00000
\(769\) −14.1244 + 24.4641i −0.509337 + 0.882198i 0.490604 + 0.871383i \(0.336776\pi\)
−0.999942 + 0.0108155i \(0.996557\pi\)
\(770\) −16.9282 + 4.53590i −0.610050 + 0.163462i
\(771\) 32.6603 1.17623
\(772\) 37.6410 21.7321i 1.35473 0.782154