Properties

Label 144.2.x.b.85.1
Level 144
Weight 2
Character 144.85
Analytic conductor 1.150
Analytic rank 1
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 85.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 144.85
Dual form 144.2.x.b.61.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-3.73205 + 1.00000i) q^{5} +(0.633975 + 2.36603i) q^{6} +(-0.633975 + 0.366025i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(0.366025 - 1.36603i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-1.73205 - 1.00000i) q^{4} +(-3.73205 + 1.00000i) q^{5} +(0.633975 + 2.36603i) q^{6} +(-0.633975 + 0.366025i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +5.46410i q^{10} +(-0.767949 + 2.86603i) q^{11} +3.46410 q^{12} +(-1.63397 - 6.09808i) q^{13} +(0.267949 + 1.00000i) q^{14} +(4.73205 - 4.73205i) q^{15} +(2.00000 + 3.46410i) q^{16} -2.26795 q^{17} +(-3.00000 - 3.00000i) q^{18} +(-0.633975 + 0.633975i) q^{19} +(7.46410 + 2.00000i) q^{20} +(0.633975 - 1.09808i) q^{21} +(3.63397 + 2.09808i) q^{22} +(-1.09808 - 0.633975i) q^{23} +(1.26795 - 4.73205i) q^{24} +(8.59808 - 4.96410i) q^{25} -8.92820 q^{26} +5.19615i q^{27} +1.46410 q^{28} +(-2.36603 - 0.633975i) q^{29} +(-4.73205 - 8.19615i) q^{30} +(-3.73205 + 6.46410i) q^{31} +(5.46410 - 1.46410i) q^{32} +(-1.33013 - 4.96410i) q^{33} +(-0.830127 + 3.09808i) q^{34} +(2.00000 - 2.00000i) q^{35} +(-5.19615 + 3.00000i) q^{36} +(1.26795 + 1.26795i) q^{37} +(0.633975 + 1.09808i) q^{38} +(7.73205 + 7.73205i) q^{39} +(5.46410 - 9.46410i) q^{40} +(-2.59808 - 1.50000i) q^{41} +(-1.26795 - 1.26795i) q^{42} +(0.330127 - 1.23205i) q^{43} +(4.19615 - 4.19615i) q^{44} +(-3.00000 + 11.1962i) q^{45} +(-1.26795 + 1.26795i) q^{46} +(-4.83013 - 8.36603i) q^{47} +(-6.00000 - 3.46410i) q^{48} +(-3.23205 + 5.59808i) q^{49} +(-3.63397 - 13.5622i) q^{50} +(3.40192 - 1.96410i) q^{51} +(-3.26795 + 12.1962i) q^{52} +(-0.535898 - 0.535898i) q^{53} +(7.09808 + 1.90192i) q^{54} -11.4641i q^{55} +(0.535898 - 2.00000i) q^{56} +(0.401924 - 1.50000i) q^{57} +(-1.73205 + 3.00000i) q^{58} +(4.96410 - 1.33013i) q^{59} +(-12.9282 + 3.46410i) q^{60} +(-3.00000 - 0.803848i) q^{61} +(7.46410 + 7.46410i) q^{62} +2.19615i q^{63} -8.00000i q^{64} +(12.1962 + 21.1244i) q^{65} -7.26795 q^{66} +(1.40192 + 5.23205i) q^{67} +(3.92820 + 2.26795i) q^{68} +2.19615 q^{69} +(-2.00000 - 3.46410i) q^{70} +10.9282i q^{71} +(2.19615 + 8.19615i) q^{72} +9.73205i q^{73} +(2.19615 - 1.26795i) q^{74} +(-8.59808 + 14.8923i) q^{75} +(1.73205 - 0.464102i) q^{76} +(-0.562178 - 2.09808i) q^{77} +(13.3923 - 7.73205i) q^{78} +(-6.00000 - 10.3923i) q^{79} +(-10.9282 - 10.9282i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-3.00000 + 3.00000i) q^{82} +(-1.36603 - 0.366025i) q^{83} +(-2.19615 + 1.26795i) q^{84} +(8.46410 - 2.26795i) q^{85} +(-1.56218 - 0.901924i) q^{86} +(4.09808 - 1.09808i) q^{87} +(-4.19615 - 7.26795i) q^{88} +2.00000i q^{89} +(14.1962 + 8.19615i) q^{90} +(3.26795 + 3.26795i) q^{91} +(1.26795 + 2.19615i) q^{92} -12.9282i q^{93} +(-13.1962 + 3.53590i) q^{94} +(1.73205 - 3.00000i) q^{95} +(-6.92820 + 6.92820i) q^{96} +(-4.13397 - 7.16025i) q^{97} +(6.46410 + 6.46410i) q^{98} +(6.29423 + 6.29423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} + O(q^{10}) \) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} - 10q^{11} - 10q^{13} + 8q^{14} + 12q^{15} + 8q^{16} - 16q^{17} - 12q^{18} - 6q^{19} + 16q^{20} + 6q^{21} + 18q^{22} + 6q^{23} + 12q^{24} + 24q^{25} - 8q^{26} - 8q^{28} - 6q^{29} - 12q^{30} - 8q^{31} + 8q^{32} + 12q^{33} + 14q^{34} + 8q^{35} + 12q^{37} + 6q^{38} + 24q^{39} + 8q^{40} - 12q^{42} - 16q^{43} - 4q^{44} - 12q^{45} - 12q^{46} - 2q^{47} - 24q^{48} - 6q^{49} - 18q^{50} + 24q^{51} - 20q^{52} - 16q^{53} + 18q^{54} + 16q^{56} + 12q^{57} + 6q^{59} - 24q^{60} - 12q^{61} + 16q^{62} + 28q^{65} - 36q^{66} + 16q^{67} - 12q^{68} - 12q^{69} - 8q^{70} - 12q^{72} - 12q^{74} - 24q^{75} + 22q^{77} + 12q^{78} - 24q^{79} - 16q^{80} - 18q^{81} - 12q^{82} - 2q^{83} + 12q^{84} + 20q^{85} + 18q^{86} + 6q^{87} + 4q^{88} + 36q^{90} + 20q^{91} + 12q^{92} - 32q^{94} - 20q^{97} + 12q^{98} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.258819 0.965926i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) −3.73205 + 1.00000i −1.66902 + 0.447214i −0.964847 0.262811i \(-0.915350\pi\)
−0.704177 + 0.710025i \(0.748684\pi\)
\(6\) 0.633975 + 2.36603i 0.258819 + 0.965926i
\(7\) −0.633975 + 0.366025i −0.239620 + 0.138345i −0.615002 0.788526i \(-0.710845\pi\)
0.375382 + 0.926870i \(0.377511\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 5.46410i 1.72790i
\(11\) −0.767949 + 2.86603i −0.231545 + 0.864139i 0.748130 + 0.663552i \(0.230952\pi\)
−0.979676 + 0.200587i \(0.935715\pi\)
\(12\) 3.46410 1.00000
\(13\) −1.63397 6.09808i −0.453183 1.69130i −0.693375 0.720577i \(-0.743877\pi\)
0.240192 0.970725i \(1.57721\pi\)
\(14\) 0.267949 + 1.00000i 0.0716124 + 0.267261i
\(15\) 4.73205 4.73205i 1.22181 1.22181i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −2.26795 −0.550058 −0.275029 0.961436i \(-0.588688\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) −3.00000 3.00000i −0.707107 0.707107i
\(19\) −0.633975 + 0.633975i −0.145444 + 0.145444i −0.776079 0.630635i \(-0.782794\pi\)
0.630635 + 0.776079i \(0.282794\pi\)
\(20\) 7.46410 + 2.00000i 1.66902 + 0.447214i
\(21\) 0.633975 1.09808i 0.138345 0.239620i
\(22\) 3.63397 + 2.09808i 0.774766 + 0.447311i
\(23\) −1.09808 0.633975i −0.228965 0.132193i 0.381130 0.924522i \(-0.375535\pi\)
−0.610094 + 0.792329i \(0.708868\pi\)
\(24\) 1.26795 4.73205i 0.258819 0.965926i
\(25\) 8.59808 4.96410i 1.71962 0.992820i
\(26\) −8.92820 −1.75096
\(27\) 5.19615i 1.00000i
\(28\) 1.46410 0.276689
\(29\) −2.36603 0.633975i −0.439360 0.117726i 0.0323566 0.999476i \(-0.489699\pi\)
−0.471717 + 0.881750i \(0.656365\pi\)
\(30\) −4.73205 8.19615i −0.863950 1.49641i
\(31\) −3.73205 + 6.46410i −0.670296 + 1.16099i 0.307524 + 0.951540i \(0.400500\pi\)
−0.977820 + 0.209447i \(0.932834\pi\)
\(32\) 5.46410 1.46410i 0.965926 0.258819i
\(33\) −1.33013 4.96410i −0.231545 0.864139i
\(34\) −0.830127 + 3.09808i −0.142366 + 0.531316i
\(35\) 2.00000 2.00000i 0.338062 0.338062i
\(36\) −5.19615 + 3.00000i −0.866025 + 0.500000i
\(37\) 1.26795 + 1.26795i 0.208450 + 0.208450i 0.803608 0.595159i \(-0.202911\pi\)
−0.595159 + 0.803608i \(0.702911\pi\)
\(38\) 0.633975 + 1.09808i 0.102844 + 0.178131i
\(39\) 7.73205 + 7.73205i 1.23812 + 1.23812i
\(40\) 5.46410 9.46410i 0.863950 1.49641i
\(41\) −2.59808 1.50000i −0.405751 0.234261i 0.283211 0.959058i \(-0.408600\pi\)
−0.688963 + 0.724797i \(0.741934\pi\)
\(42\) −1.26795 1.26795i −0.195649 0.195649i
\(43\) 0.330127 1.23205i 0.0503439 0.187886i −0.936175 0.351535i \(-0.885660\pi\)
0.986519 + 0.163649i \(0.0523265\pi\)
\(44\) 4.19615 4.19615i 0.632594 0.632594i
\(45\) −3.00000 + 11.1962i −0.447214 + 1.66902i
\(46\) −1.26795 + 1.26795i −0.186949 + 0.186949i
\(47\) −4.83013 8.36603i −0.704546 1.22031i −0.966855 0.255326i \(-0.917817\pi\)
0.262309 0.964984i \(-0.415516\pi\)
\(48\) −6.00000 3.46410i −0.866025 0.500000i
\(49\) −3.23205 + 5.59808i −0.461722 + 0.799725i
\(50\) −3.63397 13.5622i −0.513922 1.91798i
\(51\) 3.40192 1.96410i 0.476365 0.275029i
\(52\) −3.26795 + 12.1962i −0.453183 + 1.69130i
\(53\) −0.535898 0.535898i −0.0736113 0.0736113i 0.669343 0.742954i \(-0.266576\pi\)
−0.742954 + 0.669343i \(0.766576\pi\)
\(54\) 7.09808 + 1.90192i 0.965926 + 0.258819i
\(55\) 11.4641i 1.54582i
\(56\) 0.535898 2.00000i 0.0716124 0.267261i
\(57\) 0.401924 1.50000i 0.0532361 0.198680i
\(58\) −1.73205 + 3.00000i −0.227429 + 0.393919i
\(59\) 4.96410 1.33013i 0.646271 0.173168i 0.0792287 0.996856i \(-0.474754\pi\)
0.567042 + 0.823689i \(0.308088\pi\)
\(60\) −12.9282 + 3.46410i −1.66902 + 0.447214i
\(61\) −3.00000 0.803848i −0.384111 0.102922i 0.0615961 0.998101i \(-0.480381\pi\)
−0.445707 + 0.895179i \(0.647048\pi\)
\(62\) 7.46410 + 7.46410i 0.947942 + 0.947942i
\(63\) 2.19615i 0.276689i
\(64\) 8.00000i 1.00000i
\(65\) 12.1962 + 21.1244i 1.51275 + 2.62015i
\(66\) −7.26795 −0.894623
\(67\) 1.40192 + 5.23205i 0.171272 + 0.639197i 0.997157 + 0.0753572i \(0.0240097\pi\)
−0.825884 + 0.563840i \(0.809324\pi\)
\(68\) 3.92820 + 2.26795i 0.476365 + 0.275029i
\(69\) 2.19615 0.264386
\(70\) −2.00000 3.46410i −0.239046 0.414039i
\(71\) 10.9282i 1.29694i 0.761241 + 0.648470i \(0.224591\pi\)
−0.761241 + 0.648470i \(0.775409\pi\)
\(72\) 2.19615 + 8.19615i 0.258819 + 0.965926i
\(73\) 9.73205i 1.13905i 0.821974 + 0.569525i \(0.192873\pi\)
−0.821974 + 0.569525i \(0.807127\pi\)
\(74\) 2.19615 1.26795i 0.255298 0.147396i
\(75\) −8.59808 + 14.8923i −0.992820 + 1.71962i
\(76\) 1.73205 0.464102i 0.198680 0.0532361i
\(77\) −0.562178 2.09808i −0.0640661 0.239098i
\(78\) 13.3923 7.73205i 1.51638 0.875482i
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) −10.9282 10.9282i −1.22181 1.22181i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −3.00000 + 3.00000i −0.331295 + 0.331295i
\(83\) −1.36603 0.366025i −0.149941 0.0401765i 0.183068 0.983100i \(-0.441397\pi\)
−0.333009 + 0.942924i \(0.608064\pi\)
\(84\) −2.19615 + 1.26795i −0.239620 + 0.138345i
\(85\) 8.46410 2.26795i 0.918061 0.245994i
\(86\) −1.56218 0.901924i −0.168454 0.0972569i
\(87\) 4.09808 1.09808i 0.439360 0.117726i
\(88\) −4.19615 7.26795i −0.447311 0.774766i
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 14.1962 + 8.19615i 1.49641 + 0.863950i
\(91\) 3.26795 + 3.26795i 0.342574 + 0.342574i
\(92\) 1.26795 + 2.19615i 0.132193 + 0.228965i
\(93\) 12.9282i 1.34059i
\(94\) −13.1962 + 3.53590i −1.36108 + 0.364700i
\(95\) 1.73205 3.00000i 0.177705 0.307794i
\(96\) −6.92820 + 6.92820i −0.707107 + 0.707107i
\(97\) −4.13397 7.16025i −0.419742 0.727014i 0.576172 0.817329i \(-0.304546\pi\)
−0.995913 + 0.0903150i \(0.971213\pi\)
\(98\) 6.46410 + 6.46410i 0.652973 + 0.652973i
\(99\) 6.29423 + 6.29423i 0.632594 + 0.632594i
\(100\) −19.8564 −1.98564
\(101\) −2.00000 + 7.46410i −0.199007 + 0.742706i 0.792186 + 0.610280i \(0.208943\pi\)
−0.991193 + 0.132426i \(0.957723\pi\)
\(102\) −1.43782 5.36603i −0.142366 0.531316i
\(103\) −7.90192 4.56218i −0.778600 0.449525i 0.0573341 0.998355i \(-0.481740\pi\)
−0.835934 + 0.548830i \(0.815073\pi\)
\(104\) 15.4641 + 8.92820i 1.51638 + 0.875482i
\(105\) −1.26795 + 4.73205i −0.123739 + 0.461801i
\(106\) −0.928203 + 0.535898i −0.0901551 + 0.0520511i
\(107\) −13.4904 13.4904i −1.30416 1.30416i −0.925558 0.378607i \(-0.876403\pi\)
−0.378607 0.925558i \(-0.623597\pi\)
\(108\) 5.19615 9.00000i 0.500000 0.866025i
\(109\) 7.26795 7.26795i 0.696143 0.696143i −0.267433 0.963576i \(-0.586175\pi\)
0.963576 + 0.267433i \(0.0861754\pi\)
\(110\) −15.6603 4.19615i −1.49315 0.400087i
\(111\) −3.00000 0.803848i −0.284747 0.0762978i
\(112\) −2.53590 1.46410i −0.239620 0.138345i
\(113\) 6.92820 12.0000i 0.651751 1.12887i −0.330947 0.943649i \(-0.607368\pi\)
0.982698 0.185216i \(-0.0592984\pi\)
\(114\) −1.90192 1.09808i −0.178131 0.102844i
\(115\) 4.73205 + 1.26795i 0.441266 + 0.118237i
\(116\) 3.46410 + 3.46410i 0.321634 + 0.321634i
\(117\) −18.2942 4.90192i −1.69130 0.453183i
\(118\) 7.26795i 0.669069i
\(119\) 1.43782 0.830127i 0.131805 0.0760976i
\(120\) 18.9282i 1.72790i
\(121\) 1.90192 + 1.09808i 0.172902 + 0.0998251i
\(122\) −2.19615 + 3.80385i −0.198830 + 0.344384i
\(123\) 5.19615 0.468521
\(124\) 12.9282 7.46410i 1.16099 0.670296i
\(125\) −13.4641 + 13.4641i −1.20427 + 1.20427i
\(126\) 3.00000 + 0.803848i 0.267261 + 0.0716124i
\(127\) −6.19615 −0.549820 −0.274910 0.961470i \(-0.588648\pi\)
−0.274910 + 0.961470i \(0.588648\pi\)
\(128\) −10.9282 2.92820i −0.965926 0.258819i
\(129\) 0.571797 + 2.13397i 0.0503439 + 0.187886i
\(130\) 33.3205 8.92820i 2.92240 0.783055i
\(131\) 0.830127 + 3.09808i 0.0725285 + 0.270680i 0.992662 0.120926i \(-0.0385863\pi\)
−0.920133 + 0.391606i \(0.871920\pi\)
\(132\) −2.66025 + 9.92820i −0.231545 + 0.864139i
\(133\) 0.169873 0.633975i 0.0147299 0.0549726i
\(134\) 7.66025 0.661745
\(135\) −5.19615 19.3923i −0.447214 1.66902i
\(136\) 4.53590 4.53590i 0.388950 0.388950i
\(137\) 14.2583 8.23205i 1.21817 0.703312i 0.253645 0.967297i \(-0.418371\pi\)
0.964527 + 0.263986i \(0.0850372\pi\)
\(138\) 0.803848 3.00000i 0.0684280 0.255377i
\(139\) −9.06218 + 2.42820i −0.768644 + 0.205958i −0.621772 0.783198i \(-0.713587\pi\)
−0.146872 + 0.989156i \(0.546920\pi\)
\(140\) −5.46410 + 1.46410i −0.461801 + 0.123739i
\(141\) 14.4904 + 8.36603i 1.22031 + 0.704546i
\(142\) 14.9282 + 4.00000i 1.25275 + 0.335673i
\(143\) 18.7321 1.56645
\(144\) 12.0000 1.00000
\(145\) 9.46410 0.785951
\(146\) 13.2942 + 3.56218i 1.10024 + 0.294808i
\(147\) 11.1962i 0.923443i
\(148\) −0.928203 3.46410i −0.0762978 0.284747i
\(149\) 3.09808 0.830127i 0.253804 0.0680067i −0.129674 0.991557i \(-0.541393\pi\)
0.383478 + 0.923550i \(0.374726\pi\)
\(150\) 17.1962 + 17.1962i 1.40406 + 1.40406i
\(151\) −2.36603 + 1.36603i −0.192544 + 0.111166i −0.593173 0.805075i \(-0.702125\pi\)
0.400629 + 0.916240i \(0.368792\pi\)
\(152\) 2.53590i 0.205689i
\(153\) −3.40192 + 5.89230i −0.275029 + 0.476365i
\(154\) −3.07180 −0.247532
\(155\) 7.46410 27.8564i 0.599531 2.23748i
\(156\) −5.66025 21.1244i −0.453183 1.69130i
\(157\) −1.26795 4.73205i −0.101193 0.377659i 0.896692 0.442655i \(-0.145963\pi\)
−0.997886 + 0.0649959i \(0.979297\pi\)
\(158\) −16.3923 + 4.39230i −1.30410 + 0.349433i
\(159\) 1.26795 + 0.339746i 0.100555 + 0.0269436i
\(160\) −18.9282 + 10.9282i −1.49641 + 0.863950i
\(161\) 0.928203 0.0731527
\(162\) −12.2942 + 3.29423i −0.965926 + 0.258819i
\(163\) −7.00000 + 7.00000i −0.548282 + 0.548282i −0.925944 0.377661i \(-0.876728\pi\)
0.377661 + 0.925944i \(0.376728\pi\)
\(164\) 3.00000 + 5.19615i 0.234261 + 0.405751i
\(165\) 9.92820 + 17.1962i 0.772910 + 1.33872i
\(166\) −1.00000 + 1.73205i −0.0776151 + 0.134433i
\(167\) 0.464102 + 0.267949i 0.0359133 + 0.0207345i 0.517849 0.855472i \(-0.326733\pi\)
−0.481936 + 0.876206i \(0.660066\pi\)
\(168\) 0.928203 + 3.46410i 0.0716124 + 0.267261i
\(169\) −23.2583 + 13.4282i −1.78910 + 1.03294i
\(170\) 12.3923i 0.950446i
\(171\) 0.696152 + 2.59808i 0.0532361 + 0.198680i
\(172\) −1.80385 + 1.80385i −0.137542 + 0.137542i
\(173\) −12.5622 3.36603i −0.955085 0.255914i −0.252566 0.967580i \(-0.581275\pi\)
−0.702519 + 0.711665i \(0.747941\pi\)
\(174\) 6.00000i 0.454859i
\(175\) −3.63397 + 6.29423i −0.274703 + 0.475799i
\(176\) −11.4641 + 3.07180i −0.864139 + 0.231545i
\(177\) −6.29423 + 6.29423i −0.473103 + 0.473103i
\(178\) 2.73205 + 0.732051i 0.204776 + 0.0548695i
\(179\) 11.9282 11.9282i 0.891556 0.891556i −0.103114 0.994670i \(-0.532881\pi\)
0.994670 + 0.103114i \(0.0328806\pi\)
\(180\) 16.3923 16.3923i 1.22181 1.22181i
\(181\) 13.3923 + 13.3923i 0.995442 + 0.995442i 0.999990 0.00454748i \(-0.00144751\pi\)
−0.00454748 + 0.999990i \(0.501448\pi\)
\(182\) 5.66025 3.26795i 0.419566 0.242237i
\(183\) 5.19615 1.39230i 0.384111 0.102922i
\(184\) 3.46410 0.928203i 0.255377 0.0684280i
\(185\) −6.00000 3.46410i −0.441129 0.254686i
\(186\) −17.6603 4.73205i −1.29491 0.346971i
\(187\) 1.74167 6.50000i 0.127364 0.475327i
\(188\) 19.3205i 1.40909i
\(189\) −1.90192 3.29423i −0.138345 0.239620i
\(190\) −3.46410 3.46410i −0.251312 0.251312i
\(191\) 7.02628 + 12.1699i 0.508404 + 0.880581i 0.999953 + 0.00973114i \(0.00309757\pi\)
−0.491549 + 0.870850i \(0.663569\pi\)
\(192\) 6.92820 + 12.0000i 0.500000 + 0.866025i
\(193\) −9.13397 + 15.8205i −0.657478 + 1.13879i 0.323789 + 0.946129i \(0.395043\pi\)
−0.981266 + 0.192656i \(0.938290\pi\)
\(194\) −11.2942 + 3.02628i −0.810878 + 0.217274i
\(195\) −36.5885 21.1244i −2.62015 1.51275i
\(196\) 11.1962 6.46410i 0.799725 0.461722i
\(197\) −3.66025 3.66025i −0.260782 0.260782i 0.564590 0.825372i \(-0.309034\pi\)
−0.825372 + 0.564590i \(0.809034\pi\)
\(198\) 10.9019 6.29423i 0.774766 0.447311i
\(199\) 0.875644i 0.0620728i −0.999518 0.0310364i \(-0.990119\pi\)
0.999518 0.0310364i \(-0.00988078\pi\)
\(200\) −7.26795 + 27.1244i −0.513922 + 1.91798i
\(201\) −6.63397 6.63397i −0.467924 0.467924i
\(202\) 9.46410 + 5.46410i 0.665892 + 0.384453i
\(203\) 1.73205 0.464102i 0.121566 0.0325735i
\(204\) −7.85641 −0.550058
\(205\) 11.1962 + 3.00000i 0.781973 + 0.209529i
\(206\) −9.12436 + 9.12436i −0.635724 + 0.635724i
\(207\) −3.29423 + 1.90192i −0.228965 + 0.132193i
\(208\) 17.8564 17.8564i 1.23812 1.23812i
\(209\) −1.33013 2.30385i −0.0920068 0.159360i
\(210\) 6.00000 + 3.46410i 0.414039 + 0.239046i
\(211\) −1.09808 4.09808i −0.0755947 0.282123i 0.917773 0.397106i \(-0.129985\pi\)
−0.993367 + 0.114983i \(0.963319\pi\)
\(212\) 0.392305 + 1.46410i 0.0269436 + 0.100555i
\(213\) −9.46410 16.3923i −0.648470 1.12318i
\(214\) −23.3660 + 13.4904i −1.59727 + 0.922183i
\(215\) 4.92820i 0.336101i
\(216\) −10.3923 10.3923i −0.707107 0.707107i
\(217\) 5.46410i 0.370927i
\(218\) −7.26795 12.5885i −0.492248 0.852598i
\(219\) −8.42820 14.5981i −0.569525 0.986447i
\(220\) −11.4641 + 19.8564i −0.772910 + 1.33872i
\(221\) 3.70577 + 13.8301i 0.249277 + 0.930315i
\(222\) −2.19615 + 3.80385i −0.147396 + 0.255298i
\(223\) 11.0263 + 19.0981i 0.738374 + 1.27890i 0.953227 + 0.302255i \(0.0977395\pi\)
−0.214853 + 0.976646i \(0.568927\pi\)
\(224\) −2.92820 + 2.92820i −0.195649 + 0.195649i
\(225\) 29.7846i 1.98564i
\(226\) −13.8564 13.8564i −0.921714 0.921714i
\(227\) −14.4282 3.86603i −0.957633 0.256597i −0.254035 0.967195i \(-0.581758\pi\)
−0.703598 + 0.710598i \(0.748425\pi\)
\(228\) −2.19615 + 2.19615i −0.145444 + 0.145444i
\(229\) 6.83013 1.83013i 0.451347 0.120938i −0.0259823 0.999662i \(-0.508271\pi\)
0.477330 + 0.878724i \(0.341605\pi\)
\(230\) 3.46410 6.00000i 0.228416 0.395628i
\(231\) 2.66025 + 2.66025i 0.175032 + 0.175032i
\(232\) 6.00000 3.46410i 0.393919 0.227429i
\(233\) 7.19615i 0.471436i −0.971822 0.235718i \(-0.924256\pi\)
0.971822 0.235718i \(-0.0757441\pi\)
\(234\) −13.3923 + 23.1962i −0.875482 + 1.51638i
\(235\) 26.3923 + 26.3923i 1.72164 + 1.72164i
\(236\) −9.92820 2.66025i −0.646271 0.173168i
\(237\) 18.0000 + 10.3923i 1.16923 + 0.675053i
\(238\) −0.607695 2.26795i −0.0393910 0.147009i
\(239\) −13.0981 + 22.6865i −0.847244 + 1.46747i 0.0364139 + 0.999337i \(0.488407\pi\)
−0.883658 + 0.468133i \(0.844927\pi\)
\(240\) 25.8564 + 6.92820i 1.66902 + 0.447214i
\(241\) −6.40192 11.0885i −0.412384 0.714270i 0.582766 0.812640i \(-0.301971\pi\)
−0.995150 + 0.0983699i \(0.968637\pi\)
\(242\) 2.19615 2.19615i 0.141174 0.141174i
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 4.39230 + 4.39230i 0.281189 + 0.281189i
\(245\) 6.46410 24.1244i 0.412976 1.54125i
\(246\) 1.90192 7.09808i 0.121262 0.452557i
\(247\) 4.90192 + 2.83013i 0.311902 + 0.180077i
\(248\) −5.46410 20.3923i −0.346971 1.29491i
\(249\) 2.36603 0.633975i 0.149941 0.0401765i
\(250\) 13.4641 + 23.3205i 0.851545 + 1.47492i
\(251\) 2.83013 + 2.83013i 0.178636 + 0.178636i 0.790761 0.612125i \(-0.209685\pi\)
−0.612125 + 0.790761i \(0.709685\pi\)
\(252\) 2.19615 3.80385i 0.138345 0.239620i
\(253\) 2.66025 2.66025i 0.167249 0.167249i
\(254\) −2.26795 + 8.46410i −0.142304 + 0.531085i
\(255\) −10.7321 + 10.7321i −0.672067 + 0.672067i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −4.42820 + 7.66987i −0.276224 + 0.478434i −0.970443 0.241330i \(-0.922416\pi\)
0.694219 + 0.719763i \(0.255750\pi\)
\(258\) 3.12436 0.194514
\(259\) −1.26795 0.339746i −0.0787865 0.0211108i
\(260\) 48.7846i 3.02549i
\(261\) −5.19615 + 5.19615i −0.321634 + 0.321634i
\(262\) 4.53590 0.280229
\(263\) −23.4904 + 13.5622i −1.44848 + 0.836280i −0.998391 0.0567045i \(-0.981941\pi\)
−0.450088 + 0.892984i \(0.648607\pi\)
\(264\) 12.5885 + 7.26795i 0.774766 + 0.447311i
\(265\) 2.53590 + 1.46410i 0.155779 + 0.0899390i
\(266\) −0.803848 0.464102i −0.0492871 0.0284559i
\(267\) −1.73205 3.00000i −0.106000 0.183597i
\(268\) 2.80385 10.4641i 0.171272 0.639197i
\(269\) 4.73205 4.73205i 0.288518 0.288518i −0.547976 0.836494i \(-0.684601\pi\)
0.836494 + 0.547976i \(0.184601\pi\)
\(270\) −28.3923 −1.72790
\(271\) 20.3923 1.23874 0.619372 0.785098i \(-0.287387\pi\)
0.619372 + 0.785098i \(0.287387\pi\)
\(272\) −4.53590 7.85641i −0.275029 0.476365i
\(273\) −7.73205 2.07180i −0.467965 0.125391i
\(274\) −6.02628 22.4904i −0.364061 1.35869i
\(275\) 7.62436 + 28.4545i 0.459766 + 1.71587i
\(276\) −3.80385 2.19615i −0.228965 0.132193i
\(277\) −4.22243 + 15.7583i −0.253701 + 0.946826i 0.715107 + 0.699015i \(0.246378\pi\)
−0.968808 + 0.247811i \(0.920289\pi\)
\(278\) 13.2679i 0.795759i
\(279\) 11.1962 + 19.3923i 0.670296 + 1.16099i
\(280\) 8.00000i 0.478091i
\(281\) −8.66025 + 5.00000i −0.516627 + 0.298275i −0.735554 0.677466i \(-0.763078\pi\)
0.218926 + 0.975741i \(0.429745\pi\)
\(282\) 16.7321 16.7321i 0.996379 0.996379i
\(283\) 27.7583 7.43782i 1.65006 0.442133i 0.690431 0.723398i \(-0.257421\pi\)
0.959630 + 0.281265i \(0.0907541\pi\)
\(284\) 10.9282 18.9282i 0.648470 1.12318i
\(285\) 6.00000i 0.355409i
\(286\) 6.85641 25.5885i 0.405428 1.51308i
\(287\) 2.19615 0.129635
\(288\) 4.39230 16.3923i 0.258819 0.965926i
\(289\) −11.8564 −0.697436
\(290\) 3.46410 12.9282i 0.203419 0.759170i
\(291\) 12.4019 + 7.16025i 0.727014 + 0.419742i
\(292\) 9.73205 16.8564i 0.569525 0.986447i
\(293\) 13.5622 3.63397i 0.792311 0.212299i 0.160106 0.987100i \(-0.448817\pi\)
0.632205 + 0.774801i \(0.282150\pi\)
\(294\) −15.2942 4.09808i −0.891978 0.239005i
\(295\) −17.1962 + 9.92820i −1.00120 + 0.578042i
\(296\) −5.07180 −0.294792
\(297\) −14.8923 3.99038i −0.864139 0.231545i
\(298\) 4.53590i 0.262758i
\(299\) −2.07180 + 7.73205i −0.119815 + 0.447156i
\(300\) 29.7846 17.1962i 1.71962 0.992820i
\(301\) 0.241670 + 0.901924i 0.0139296 + 0.0519860i
\(302\) 1.00000 + 3.73205i 0.0575435 + 0.214755i
\(303\) −3.46410 12.9282i −0.199007 0.742706i
\(304\) −3.46410 0.928203i −0.198680 0.0532361i
\(305\) 12.0000 0.687118
\(306\) 6.80385 + 6.80385i 0.388950 + 0.388950i
\(307\) −16.0263 + 16.0263i −0.914668 + 0.914668i −0.996635 0.0819670i \(-0.973880\pi\)
0.0819670 + 0.996635i \(0.473880\pi\)
\(308\) −1.12436 + 4.19615i −0.0640661 + 0.239098i
\(309\) 15.8038 0.899049
\(310\) −35.3205 20.3923i −2.00607 1.15821i
\(311\) 13.9019 + 8.02628i 0.788306 + 0.455129i 0.839366 0.543567i \(-0.182927\pi\)
−0.0510600 + 0.998696i \(0.516260\pi\)
\(312\) −30.9282 −1.75096
\(313\) 24.6506 14.2321i 1.39334 0.804443i 0.399653 0.916666i \(-0.369131\pi\)
0.993683 + 0.112223i \(0.0357972\pi\)
\(314\) −6.92820 −0.390981
\(315\) −2.19615 8.19615i −0.123739 0.461801i
\(316\) 24.0000i 1.35011i
\(317\) 31.4904 + 8.43782i 1.76868 + 0.473915i 0.988445 0.151577i \(-0.0484351\pi\)
0.780231 + 0.625492i \(0.215102\pi\)
\(318\) 0.928203 1.60770i 0.0520511 0.0901551i
\(319\) 3.63397 6.29423i 0.203464 0.352409i
\(320\) 8.00000 + 29.8564i 0.447214 + 1.66902i
\(321\) 31.9186 + 8.55256i 1.78152 + 0.477357i
\(322\) 0.339746 1.26795i 0.0189333 0.0706600i
\(323\) 1.43782 1.43782i 0.0800026 0.0800026i
\(324\) 18.0000i 1.00000i
\(325\) −44.3205 44.3205i −2.45846 2.45846i
\(326\) 7.00000 + 12.1244i 0.387694 + 0.671506i
\(327\) −4.60770 + 17.1962i −0.254806 + 0.950949i
\(328\) 8.19615 2.19615i 0.452557 0.121262i
\(329\) 6.12436 + 3.53590i 0.337647 + 0.194940i
\(330\) 27.1244 7.26795i 1.49315 0.400087i
\(331\) 5.09808 19.0263i 0.280216 1.04578i −0.672049 0.740506i \(-0.734586\pi\)
0.952265 0.305273i \(-0.0987476\pi\)
\(332\) 2.00000 + 2.00000i 0.109764 + 0.109764i
\(333\) 5.19615 1.39230i 0.284747 0.0762978i
\(334\) 0.535898 0.535898i 0.0293231 0.0293231i
\(335\) −10.4641 18.1244i −0.571715 0.990239i
\(336\) 5.07180 0.276689
\(337\) −11.8923 + 20.5981i −0.647815 + 1.12205i 0.335829 + 0.941923i \(0.390984\pi\)
−0.983644 + 0.180126i \(0.942350\pi\)
\(338\) 9.83013 + 36.6865i 0.534688 + 1.99548i
\(339\) 24.0000i 1.30350i
\(340\) −16.9282 4.53590i −0.918061 0.245994i
\(341\) −15.6603 15.6603i −0.848050 0.848050i
\(342\) 3.80385 0.205689
\(343\) 9.85641i 0.532196i
\(344\) 1.80385 + 3.12436i 0.0972569 + 0.168454i
\(345\) −8.19615 + 2.19615i −0.441266 + 0.118237i
\(346\) −9.19615 + 15.9282i −0.494388 + 0.856306i
\(347\) −24.7224 + 6.62436i −1.32717 + 0.355614i −0.851659 0.524096i \(-0.824403\pi\)
−0.475510 + 0.879710i \(0.657737\pi\)
\(348\) −8.19615 2.19615i −0.439360 0.117726i
\(349\) −7.73205 2.07180i −0.413887 0.110901i 0.0458657 0.998948i \(-0.485395\pi\)
−0.459753 + 0.888047i \(0.652062\pi\)
\(350\) 7.26795 + 7.26795i 0.388488 + 0.388488i
\(351\) 31.6865 8.49038i 1.69130 0.453183i
\(352\) 16.7846i 0.894623i
\(353\) −10.1603 17.5981i −0.540776 0.936651i −0.998860 0.0477421i \(-0.984797\pi\)
0.458084 0.888909i \(-0.348536\pi\)
\(354\) 6.29423 + 10.9019i 0.334534 + 0.579431i
\(355\) −10.9282 40.7846i −0.580009 2.16462i
\(356\) 2.00000 3.46410i 0.106000 0.183597i
\(357\) −1.43782 + 2.49038i −0.0760976 + 0.131805i
\(358\) −11.9282 20.6603i −0.630425 1.09193i
\(359\) 14.7321i 0.777528i −0.921337 0.388764i \(-0.872902\pi\)
0.921337 0.388764i \(-0.127098\pi\)
\(360\) −16.3923 28.3923i −0.863950 1.49641i
\(361\) 18.1962i 0.957692i
\(362\) 23.1962 13.3923i 1.21916 0.703884i
\(363\) −3.80385 −0.199650
\(364\) −2.39230 8.92820i −0.125391 0.467965i
\(365\) −9.73205 36.3205i −0.509399 1.90110i
\(366\) 7.60770i 0.397661i
\(367\) −10.1244 17.5359i −0.528487 0.915366i −0.999448 0.0332125i \(-0.989426\pi\)
0.470961 0.882154i \(-0.343907\pi\)
\(368\) 5.07180i 0.264386i
\(369\) −7.79423 + 4.50000i −0.405751 + 0.234261i
\(370\) −6.92820 + 6.92820i −0.360180 + 0.360180i
\(371\) 0.535898 + 0.143594i 0.0278225 + 0.00745501i
\(372\) −12.9282 + 22.3923i −0.670296 + 1.16099i
\(373\) −5.63397 + 1.50962i −0.291716 + 0.0781651i −0.401709 0.915767i \(-0.631584\pi\)
0.109993 + 0.993932i \(0.464917\pi\)
\(374\) −8.24167 4.75833i −0.426167 0.246047i
\(375\) 8.53590 31.8564i 0.440792 1.64506i
\(376\) 26.3923 + 7.07180i 1.36108 + 0.364700i
\(377\) 15.4641i 0.796442i
\(378\) −5.19615 + 1.39230i −0.267261 + 0.0716124i
\(379\) −18.7583 18.7583i −0.963551 0.963551i 0.0358080 0.999359i \(-0.488600\pi\)
−0.999359 + 0.0358080i \(0.988600\pi\)
\(380\) −6.00000 + 3.46410i −0.307794 + 0.177705i
\(381\) 9.29423 5.36603i 0.476158 0.274910i
\(382\) 19.1962 5.14359i 0.982161 0.263169i
\(383\) −3.26795 + 5.66025i −0.166984 + 0.289225i −0.937358 0.348367i \(-0.886736\pi\)
0.770374 + 0.637593i \(0.220070\pi\)
\(384\) 18.9282 5.07180i 0.965926 0.258819i
\(385\) 4.19615 + 7.26795i 0.213856 + 0.370409i
\(386\) 18.2679 + 18.2679i 0.929814 + 0.929814i
\(387\) −2.70577 2.70577i −0.137542 0.137542i
\(388\) 16.5359i 0.839483i
\(389\) −2.75833 + 10.2942i −0.139853 + 0.521938i 0.860078 + 0.510163i \(0.170415\pi\)
−0.999931 + 0.0117752i \(0.996252\pi\)
\(390\) −42.2487 + 42.2487i −2.13935 + 2.13935i
\(391\) 2.49038 + 1.43782i 0.125944 + 0.0727138i
\(392\) −4.73205 17.6603i −0.239005 0.891978i
\(393\) −3.92820 3.92820i −0.198152 0.198152i
\(394\) −6.33975 + 3.66025i −0.319392 + 0.184401i
\(395\) 32.7846 + 32.7846i 1.64957 + 1.64957i
\(396\) −4.60770 17.1962i −0.231545 0.864139i
\(397\) −12.7321 + 12.7321i −0.639003 + 0.639003i −0.950310 0.311306i \(-0.899233\pi\)
0.311306 + 0.950310i \(0.399233\pi\)
\(398\) −1.19615 0.320508i −0.0599577 0.0160656i
\(399\) 0.294229 + 1.09808i 0.0147299 + 0.0549726i
\(400\) 34.3923 + 19.8564i 1.71962 + 0.992820i
\(401\) 13.7942 23.8923i 0.688851 1.19312i −0.283359 0.959014i \(-0.591449\pi\)
0.972210 0.234111i \(-0.0752179\pi\)
\(402\) −11.4904 + 6.63397i −0.573088 + 0.330873i
\(403\) 45.5167 + 12.1962i 2.26735 + 0.607534i
\(404\) 10.9282 10.9282i 0.543698 0.543698i
\(405\) 24.5885 + 24.5885i 1.22181 + 1.22181i
\(406\) 2.53590i 0.125855i
\(407\) −4.60770 + 2.66025i −0.228395 + 0.131864i
\(408\) −2.87564 + 10.7321i −0.142366 + 0.531316i
\(409\) −26.1340 15.0885i −1.29224 0.746076i −0.313191 0.949690i \(-0.601398\pi\)
−0.979051 + 0.203614i \(0.934731\pi\)
\(410\) 8.19615 14.1962i 0.404779 0.701098i
\(411\) −14.2583 + 24.6962i −0.703312 + 1.21817i
\(412\) 9.12436 + 15.8038i 0.449525 + 0.778600i
\(413\) −2.66025 + 2.66025i −0.130903 + 0.130903i
\(414\) 1.39230 + 5.19615i 0.0684280 + 0.255377i
\(415\) 5.46410 0.268222
\(416\) −17.8564 30.9282i −0.875482 1.51638i
\(417\) 11.4904 11.4904i 0.562686 0.562686i
\(418\) −3.63397 + 0.973721i −0.177744 + 0.0476262i
\(419\) −8.36603 31.2224i −0.408707 1.52532i −0.797115 0.603828i \(-0.793641\pi\)
0.388408 0.921488i \(1.62697\pi\)
\(420\) 6.92820 6.92820i 0.338062 0.338062i
\(421\) 0.588457 2.19615i 0.0286797 0.107034i −0.950102 0.311938i \(-0.899022\pi\)
0.978782 + 0.204905i \(0.0656884\pi\)
\(422\) −6.00000 −0.292075
\(423\) −28.9808 −1.40909
\(424\) 2.14359 0.104102
\(425\) −19.5000 + 11.2583i −0.945889 + 0.546109i
\(426\) −25.8564 + 6.92820i −1.25275 + 0.335673i
\(427\) 2.19615 0.588457i 0.106279 0.0284774i
\(428\) 9.87564 + 36.8564i 0.477357 + 1.78152i
\(429\) −28.0981 + 16.2224i −1.35659 + 0.783226i
\(430\) 6.73205 + 1.80385i 0.324648 + 0.0869893i
\(431\) −5.80385 −0.279562 −0.139781 0.990182i \(-0.544640\pi\)
−0.139781 + 0.990182i \(0.544640\pi\)
\(432\) −18.0000 + 10.3923i −0.866025 + 0.500000i
\(433\) −2.26795 −0.108991 −0.0544953 0.998514i \(-0.517355\pi\)
−0.0544953 + 0.998514i \(0.517355\pi\)
\(434\) −7.46410 2.00000i −0.358288 0.0960031i
\(435\) −14.1962 + 8.19615i −0.680653 + 0.392975i
\(436\) −19.8564 + 5.32051i −0.950949 + 0.254806i
\(437\) 1.09808 0.294229i 0.0525281 0.0140749i
\(438\) −23.0263 + 6.16987i −1.10024 + 0.294808i
\(439\) −4.85641 + 2.80385i −0.231784 + 0.133820i −0.611395 0.791326i \(-0.709391\pi\)
0.379611 + 0.925146i \(0.376058\pi\)
\(440\) 22.9282 + 22.9282i 1.09306 + 1.09306i
\(441\) 9.69615 + 16.7942i 0.461722 + 0.799725i
\(442\) 20.2487 0.963133
\(443\) −5.25833 + 19.6244i −0.249831 + 0.932381i 0.721063 + 0.692870i \(0.243654\pi\)
−0.970894 + 0.239511i \(0.923013\pi\)
\(444\) 4.39230 + 4.39230i 0.208450 + 0.208450i
\(445\) −2.00000 7.46410i −0.0948091 0.353832i
\(446\) 30.1244 8.07180i 1.42643 0.382211i
\(447\) −3.92820 + 3.92820i −0.185798 + 0.185798i
\(448\) 2.92820 + 5.07180i 0.138345 + 0.239620i
\(449\) −20.6603 −0.975018 −0.487509 0.873118i \(-0.662094\pi\)
−0.487509 + 0.873118i \(0.662094\pi\)
\(450\) −40.6865 10.9019i −1.91798 0.513922i
\(451\) 6.29423 6.29423i 0.296384 0.296384i
\(452\) −24.0000 + 13.8564i −1.12887 + 0.651751i
\(453\) 2.36603 4.09808i 0.111166 0.192544i
\(454\) −10.5622 + 18.2942i −0.495708 + 0.858591i
\(455\) −15.4641 8.92820i −0.724968 0.418561i
\(456\) 2.19615 + 3.80385i 0.102844 + 0.178131i
\(457\) 20.2583 11.6962i 0.947645 0.547123i 0.0552962 0.998470i \(-0.482390\pi\)
0.892348 + 0.451347i \(0.149056\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 11.7846i 0.550058i
\(460\) −6.92820 6.92820i −0.323029 0.323029i
\(461\) 2.56218 + 0.686533i 0.119333 + 0.0319751i 0.317991 0.948094i \(-0.396992\pi\)
−0.198659 + 0.980069i \(0.563658\pi\)
\(462\) 4.60770 2.66025i 0.214369 0.123766i
\(463\) −9.19615 + 15.9282i −0.427381 + 0.740246i −0.996640 0.0819125i \(-0.973897\pi\)
0.569258 + 0.822159i \(0.307231\pi\)
\(464\) −2.53590 9.46410i −0.117726 0.439360i
\(465\) 12.9282 + 48.2487i 0.599531 + 2.23748i
\(466\) −9.83013 2.63397i −0.455372 0.122017i
\(467\) 4.36603 4.36603i 0.202036 0.202036i −0.598836 0.800872i \(-0.704370\pi\)
0.800872 + 0.598836i \(0.204370\pi\)
\(468\) 26.7846 + 26.7846i 1.23812 + 1.23812i
\(469\) −2.80385 2.80385i −0.129470 0.129470i
\(470\) 45.7128 26.3923i 2.10857 1.21739i
\(471\) 6.00000 + 6.00000i 0.276465 + 0.276465i
\(472\) −7.26795 + 12.5885i −0.334534 + 0.579431i
\(473\) 3.27757 + 1.89230i 0.150703 + 0.0870083i
\(474\) 20.7846 20.7846i 0.954669 0.954669i
\(475\) −2.30385 + 8.59808i −0.105708 + 0.394507i
\(476\) −3.32051 −0.152195
\(477\) −2.19615 + 0.588457i −0.100555 + 0.0269436i
\(478\) 26.1962 + 26.1962i 1.19818 + 1.19818i
\(479\) 12.8301 + 22.2224i 0.586223 + 1.01537i 0.994722 + 0.102610i \(0.0327193\pi\)
−0.408498 + 0.912759i \(0.633947\pi\)
\(480\) 18.9282 32.7846i 0.863950 1.49641i
\(481\) 5.66025 9.80385i 0.258085 0.447017i
\(482\) −17.4904 + 4.68653i −0.796665 + 0.213466i
\(483\) −1.39230 + 0.803848i −0.0633521 + 0.0365763i
\(484\) −2.19615 3.80385i −0.0998251 0.172902i
\(485\) 22.5885 + 22.5885i 1.02569 + 1.02569i
\(486\) 15.5885 15.5885i 0.707107 0.707107i
\(487\) 16.1962i 0.733918i −0.930237 0.366959i \(-0.880399\pi\)
0.930237 0.366959i \(-0.119601\pi\)
\(488\) 7.60770 4.39230i 0.344384 0.198830i
\(489\) 4.43782 16.5622i 0.200685 0.748968i
\(490\) −30.5885 17.6603i −1.38185 0.797809i
\(491\) −25.7224 + 6.89230i −1.16084 + 0.311045i −0.787300 0.616570i \(-0.788522\pi\)
−0.373537 + 0.927615i \(0.621855\pi\)
\(492\) −9.00000 5.19615i −0.405751 0.234261i
\(493\) 5.36603 + 1.43782i 0.241674 + 0.0647563i
\(494\) 5.66025 5.66025i 0.254667 0.254667i
\(495\) −29.7846 17.1962i −1.33872 0.772910i
\(496\) −29.8564 −1.34059
\(497\) −4.00000 6.92820i −0.179425 0.310772i
\(498\) 3.46410i 0.155230i
\(499\) −1.69615 6.33013i −0.0759302 0.283375i 0.917512 0.397707i \(-0.130194\pi\)
−0.993443 + 0.114332i \(0.963527\pi\)
\(500\) 36.7846 9.85641i 1.64506 0.440792i
\(501\) −0.928203 −0.0414691
\(502\) 4.90192 2.83013i 0.218784 0.126315i
\(503\) 27.7128i 1.23565i −0.786314 0.617827i \(-0.788013\pi\)
0.786314 0.617827i \(-0.211987\pi\)
\(504\) −4.39230 4.39230i −0.195649 0.195649i
\(505\) 29.8564i 1.32859i
\(506\) −2.66025 4.60770i −0.118263 0.204837i
\(507\) 23.2583 40.2846i 1.03294 1.78910i
\(508\) 10.7321 + 6.19615i 0.476158 + 0.274910i
\(509\) −4.53590 16.9282i −0.201050 0.750329i −0.990617 0.136665i \(-0.956362\pi\)
0.789567 0.613664i \(1.78969\pi\)
\(510\) 10.7321 + 18.5885i 0.475223 + 0.823111i
\(511\) −3.56218 6.16987i −0.157581 0.272939i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) −3.29423 3.29423i −0.145444 0.145444i
\(514\) 8.85641 + 8.85641i 0.390639 + 0.390639i
\(515\) 34.0526 + 9.12436i 1.50054 + 0.402067i
\(516\) 1.14359 4.26795i 0.0503439 0.187886i
\(517\) 27.6865 7.41858i 1.21765 0.326269i
\(518\) −0.928203 + 1.60770i −0.0407829 + 0.0706381i
\(519\) 21.7583 5.83013i 0.955085 0.255914i
\(520\) −66.6410 17.8564i −2.92240 0.783055i
\(521\) 13.0000i 0.569540i −0.958596 0.284770i \(-0.908083\pi\)
0.958596 0.284770i \(-0.0919173\pi\)
\(522\) 5.19615 + 9.00000i 0.227429 + 0.393919i
\(523\) −14.4641 14.4641i −0.632471 0.632471i 0.316216 0.948687i \(-0.397588\pi\)
−0.948687 + 0.316216i \(0.897588\pi\)
\(524\) 1.66025 6.19615i 0.0725285 0.270680i
\(525\) 12.5885i 0.549405i
\(526\) 9.92820 + 37.0526i 0.432890 + 1.61557i
\(527\) 8.46410 14.6603i 0.368702 0.638611i
\(528\) 14.5359 14.5359i 0.632594 0.632594i
\(529\) −10.6962 18.5263i −0.465050 0.805490i
\(530\) 2.92820 2.92820i 0.127193 0.127193i
\(531\) 3.99038 14.8923i 0.173168 0.646271i
\(532\) −0.928203 + 0.928203i −0.0402427 + 0.0402427i
\(533\) −4.90192 + 18.2942i −0.212326 + 0.792411i
\(534\) −4.73205 + 1.26795i −0.204776 + 0.0548695i
\(535\) 63.8372 + 36.8564i 2.75992 + 1.59344i
\(536\) −13.2679 7.66025i −0.573088 0.330873i
\(537\) −7.56218 + 28.2224i −0.326332 + 1.21789i
\(538\) −4.73205 8.19615i −0.204013 0.353361i
\(539\) −13.5622 13.5622i −0.584164 0.584164i
\(540\) −10.3923 + 38.7846i −0.447214 + 1.66902i
\(541\) −8.19615 + 8.19615i −0.352380 + 0.352380i −0.860994 0.508614i \(-0.830158\pi\)
0.508614 + 0.860994i \(0.330158\pi\)
\(542\) 7.46410 27.8564i 0.320611 1.19654i
\(543\) −31.6865 8.49038i −1.35980 0.364357i
\(544\) −12.3923 + 3.32051i −0.531316 + 0.142366i
\(545\) −19.8564 + 34.3923i −0.850555 + 1.47320i
\(546\) −5.66025 + 9.80385i −0.242237 + 0.419566i
\(547\) −31.2583 8.37564i −1.33651 0.358117i −0.481371 0.876517i \(-0.659861\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −32.9282 −1.40662
\(549\) −6.58846 + 6.58846i −0.281189 + 0.281189i
\(550\) 41.6603 1.77640
\(551\) 1.90192 1.09808i 0.0810247 0.0467796i
\(552\) −4.39230 + 4.39230i −0.186949 + 0.186949i
\(553\) 7.60770 + 4.39230i 0.323512 + 0.186780i
\(554\) 19.9808 + 11.5359i 0.848901 + 0.490113i
\(555\) 12.0000 0.509372
\(556\) 18.1244 + 4.85641i 0.768644 + 0.205958i
\(557\) −25.1962 + 25.1962i −1.06760 + 1.06760i −0.0700519 + 0.997543i \(0.522316\pi\)
−0.997543 + 0.0700519i \(0.977684\pi\)
\(558\) 30.5885 8.19615i 1.29491 0.346971i
\(559\) −8.05256 −0.340587
\(560\) 10.9282 + 2.92820i 0.461801 + 0.123739i
\(561\) 3.01666 + 11.2583i 0.127364 + 0.475327i
\(562\) 3.66025 + 13.6603i 0.154398 + 0.576223i
\(563\) 1.00962 + 3.76795i 0.0425504 + 0.158800i 0.983932 0.178543i \(-0.0571384\pi\)
−0.941382 + 0.337343i \(0.890472\pi\)
\(564\) −16.7321 28.9808i −0.704546 1.22031i
\(565\) −13.8564 + 51.7128i −0.582943 + 2.17557i
\(566\) 40.6410i 1.70827i
\(567\) 5.70577 + 3.29423i 0.239620 + 0.138345i
\(568\) −21.8564 21.8564i −0.917074 0.917074i
\(569\) 23.5981 13.6244i 0.989283 0.571163i 0.0842230 0.996447i \(-0.473159\pi\)
0.905060 + 0.425284i \(0.139826\pi\)
\(570\) 8.19615 + 2.19615i 0.343299 + 0.0919867i
\(571\) −19.8923 + 5.33013i −0.832467 + 0.223059i −0.649790 0.760114i \(-0.725143\pi\)
−0.182677 + 0.983173i \(0.558476\pi\)
\(572\) −32.4449 18.7321i −1.35659 0.783226i
\(573\) −21.0788 12.1699i −0.880581 0.508404i
\(574\) 0.803848 3.00000i 0.0335519 0.125218i
\(575\) −12.5885 −0.524975
\(576\) −20.7846 12.0000i −0.866025 0.500000i
\(577\) 35.7846 1.48973 0.744866 0.667214i \(-0.232513\pi\)
0.744866 + 0.667214i \(0.232513\pi\)
\(578\) −4.33975 + 16.1962i −0.180510 + 0.673671i
\(579\) 31.6410i 1.31496i
\(580\) −16.3923 9.46410i −0.680653 0.392975i
\(581\) 1.00000 0.267949i 0.0414870 0.0111164i
\(582\) 14.3205 14.3205i 0.593604 0.593604i
\(583\) 1.94744 1.12436i 0.0806548 0.0465661i
\(584\) −19.4641 19.4641i −0.805430 0.805430i
\(585\) 73.1769 3.02549
\(586\) 19.8564i 0.820261i
\(587\) −1.00962 + 3.76795i −0.0416714 + 0.155520i −0.983626 0.180219i \(-0.942319\pi\)
0.941955 + 0.335739i \(0.108986\pi\)
\(588\) −11.1962 + 19.3923i −0.461722 + 0.799725i
\(589\) −1.73205 6.46410i −0.0713679 0.266349i
\(590\) 7.26795 + 27.1244i 0.299217 + 1.11669i
\(591\) 8.66025 + 2.32051i 0.356235 + 0.0954529i
\(592\) −1.85641 + 6.92820i −0.0762978 + 0.284747i
\(593\) 10.5359 0.432657 0.216329 0.976321i \(-0.430592\pi\)
0.216329 + 0.976321i \(0.430592\pi\)
\(594\) −10.9019 + 18.8827i −0.447311 + 0.774766i
\(595\) −4.53590 + 4.53590i −0.185954 + 0.185954i
\(596\) −6.19615 1.66025i −0.253804 0.0680067i
\(597\) 0.758330 + 1.31347i 0.0310364 + 0.0537566i
\(598\) 9.80385 + 5.66025i 0.400909 + 0.231465i
\(599\) 23.3205 + 13.4641i 0.952850 + 0.550128i 0.893965 0.448136i \(-0.147912\pi\)
0.0588850 + 0.998265i \(0.481245\pi\)
\(600\) −12.5885 46.9808i −0.513922 1.91798i
\(601\) −17.5526 + 10.1340i −0.715984 + 0.413373i −0.813273 0.581883i \(-0.802316\pi\)
0.0972889 + 0.995256i \(0.468983\pi\)
\(602\) 1.32051 0.0538199
\(603\) 15.6962 + 4.20577i 0.639197 + 0.171272i
\(604\) 5.46410 0.222331
\(605\) −8.19615 2.19615i −0.333221 0.0892863i
\(606\) −18.9282 −0.768906
\(607\) 22.5885 39.1244i 0.916837 1.58801i 0.112648 0.993635i \(-0.464067\pi\)
0.804189 0.594374i \(-0.202600\pi\)
\(608\) −2.53590 + 4.39230i −0.102844 + 0.178131i
\(609\) −2.19615 + 2.19615i −0.0889926 + 0.0889926i
\(610\) 4.39230 16.3923i 0.177839 0.663705i
\(611\) −43.1244 + 43.1244i −1.74462 + 1.74462i
\(612\) 11.7846 6.80385i 0.476365 0.275029i
\(613\) 1.66025 + 1.66025i 0.0670570 + 0.0670570i 0.739840 0.672783i \(-0.234901\pi\)
−0.672783 + 0.739840i \(0.734901\pi\)
\(614\) 16.0263 + 27.7583i 0.646768 + 1.12024i
\(615\) −19.3923 + 5.19615i −0.781973 + 0.209529i
\(616\) 5.32051 + 3.07180i 0.214369 + 0.123766i
\(617\) 3.91154 + 2.25833i 0.157473 + 0.0909170i 0.576666 0.816980i \(-0.304354\pi\)
−0.419193 + 0.907897i \(0.637687\pi\)
\(618\) 5.78461 21.5885i 0.232691 0.868415i
\(619\) −10.4019 + 38.8205i −0.418089 + 1.56033i 0.360479 + 0.932767i \(0.382613\pi\)
−0.778568 + 0.627561i \(0.784053\pi\)
\(620\) −40.7846 + 40.7846i −1.63795 + 1.63795i
\(621\) 3.29423 5.70577i 0.132193 0.228965i
\(622\) 16.0526 16.0526i 0.643649 0.643649i
\(623\) −0.732051 1.26795i −0.0293290 0.0507993i
\(624\) −11.3205 + 42.2487i −0.453183 + 1.69130i
\(625\) 11.9641 20.7224i 0.478564 0.828897i
\(626\) −10.4186 38.8827i −0.416410 1.55406i
\(627\) 3.99038 + 2.30385i 0.159360 + 0.0920068i
\(628\) −2.53590 + 9.46410i −0.101193 + 0.377659i
\(629\) −2.87564 2.87564i −0.114659 0.114659i
\(630\) −12.0000 −0.478091
\(631\) 38.3923i 1.52837i −0.644995 0.764187i \(-0.723141\pi\)
0.644995 0.764187i \(-0.276859\pi\)
\(632\) 32.7846 + 8.78461i 1.30410 + 0.349433i
\(633\) 5.19615 + 5.19615i 0.206529 + 0.206529i
\(634\) 23.0526 39.9282i 0.915534 1.58575i
\(635\) 23.1244 6.19615i 0.917662 0.245887i
\(636\) −1.85641 1.85641i −0.0736113 0.0736113i
\(637\) 39.4186 + 10.5622i 1.56182 + 0.418489i
\(638\) −7.26795 7.26795i −0.287741 0.287741i
\(639\) 28.3923 + 16.3923i 1.12318 + 0.648470i
\(640\) 43.7128 1.72790
\(641\) −4.20577 7.28461i −0.166118 0.287725i 0.770934 0.636915i \(-0.219790\pi\)
−0.937052 + 0.349191i \(0.886457\pi\)
\(642\) 23.3660 40.4711i 0.922183 1.59727i
\(643\) 12.2321 + 45.6506i 0.482385 + 1.80029i 0.591558 + 0.806263i \(0.298513\pi\)
−0.109173 + 0.994023i \(0.534820\pi\)
\(644\) −1.60770 0.928203i −0.0633521 0.0365763i
\(645\) −4.26795 7.39230i −0.168050 0.291072i
\(646\) −1.43782 2.49038i −0.0565704 0.0979827i
\(647\) 13.2679i 0.521617i −0.965391 0.260808i \(-0.916011\pi\)
0.965391 0.260808i \(-0.0839891\pi\)
\(648\) 24.5885 + 6.58846i 0.965926 + 0.258819i
\(649\) 15.2487i 0.598564i
\(650\) −76.7654 + 44.3205i −3.01099 + 1.73839i
\(651\) 4.73205 + 8.19615i 0.185464 + 0.321233i
\(652\) 19.1244 5.12436i 0.748968 0.200685i
\(653\) −1.50962 5.63397i −0.0590760 0.220474i 0.930077 0.367365i \(-0.119740\pi\)
−0.989153 + 0.146891i \(0.953073\pi\)
\(654\) 21.8038 + 12.5885i 0.852598 + 0.492248i
\(655\) −6.19615 10.7321i −0.242104 0.419336i
\(656\) 12.0000i 0.468521i
\(657\) 25.2846 + 14.5981i 0.986447 + 0.569525i
\(658\) 7.07180 7.07180i 0.275687 0.275687i
\(659\) −15.0263 4.02628i −0.585341 0.156842i −0.0460178 0.998941i \(-0.514653\pi\)
−0.539323 + 0.842099i \(0.681320\pi\)
\(660\) 39.7128i 1.54582i
\(661\) −8.19615 + 2.19615i −0.318793 + 0.0854204i −0.414667 0.909973i \(-0.636102\pi\)
0.0958740 + 0.995393i \(0.469435\pi\)
\(662\) −24.1244 13.9282i −0.937620 0.541335i
\(663\) −17.5359 17.5359i −0.681038 0.681038i
\(664\) 3.46410 2.00000i 0.134433 0.0776151i
\(665\) 2.53590i 0.0983379i
\(666\) 7.60770i 0.294792i
\(667\) 2.19615 + 2.19615i 0.0850354 + 0.0850354i
\(668\) −0.535898 0.928203i −0.0207345 0.0359133i
\(669\) −33.0788 19.0981i −1.27890 0.738374i
\(670\) −28.5885 + 7.66025i −1.10447 + 0.295941i
\(671\) 4.60770 7.98076i 0.177878 0.308094i
\(672\) 1.85641 6.92820i 0.0716124 0.267261i
\(673\) 8.80385 + 15.2487i 0.339363 + 0.587795i 0.984313 0.176430i \(-0.0564550\pi\)
−0.644950 + 0.764225i \(0.723122\pi\)
\(674\) 23.7846 + 23.7846i 0.916149 + 0.916149i
\(675\) 25.7942 + 44.6769i 0.992820 + 1.71962i
\(676\) 53.7128 2.06588
\(677\) −1.26795 + 4.73205i −0.0487312 + 0.181867i −0.986002 0.166736i \(-0.946677\pi\)
0.937270 + 0.348603i \(0.113344\pi\)
\(678\) 32.7846 + 8.78461i 1.25909 + 0.337371i
\(679\) 5.24167 + 3.02628i 0.201157 + 0.116138i
\(680\) −12.3923 + 21.4641i −0.475223 + 0.823111i
\(681\) 24.9904 6.69615i 0.957633 0.256597i
\(682\) −27.1244 + 15.6603i −1.03865 + 0.599662i
\(683\) −4.70577 4.70577i −0.180061 0.180061i 0.611321 0.791383i \(-0.290638\pi\)
−0.791383 + 0.611321i \(0.790638\pi\)
\(684\) 1.39230 5.19615i 0.0532361 0.198680i
\(685\) −44.9808 + 44.9808i −1.71863 + 1.71863i
\(686\) −13.4641 3.60770i −0.514062 0.137742i
\(687\) −8.66025 + 8.66025i −0.330409 + 0.330409i
\(688\) 4.92820 1.32051i 0.187886 0.0503439i
\(689\) −2.39230 + 4.14359i −0.0911396 + 0.157858i
\(690\) 12.0000i 0.456832i
\(691\) 23.4904 + 6.29423i 0.893616 + 0.239444i 0.676273 0.736651i \(-0.263594\pi\)
0.217344 + 0.976095i \(0.430261\pi\)
\(692\) 18.3923 + 18.3923i 0.699171 + 0.699171i
\(693\) −6.29423 1.68653i −0.239098 0.0640661i
\(694\) 36.1962i 1.37399i
\(695\) 31.3923 18.1244i 1.19078 0.687496i
\(696\) −6.00000 + 10.3923i −0.227429 + 0.393919i
\(697\) 5.89230 + 3.40192i 0.223187 + 0.128857i
\(698\) −5.66025 + 9.80385i −0.214244 + 0.371081i
\(699\) 6.23205 + 10.7942i 0.235718 + 0.408275i
\(700\) 12.5885 7.26795i 0.475799 0.274703i
\(701\) 10.6603 10.6603i 0.402632 0.402632i −0.476527 0.879160i \(-0.658105\pi\)
0.879160 + 0.476527i \(0.158105\pi\)
\(702\) 46.3923i 1.75096i
\(703\) −1.60770 −0.0606354
\(704\) 22.9282 + 6.14359i 0.864139 + 0.231545i
\(705\) −62.4449 16.7321i −2.35181 0.630165i
\(706\) −27.7583 + 7.43782i −1.04470 + 0.279926i
\(707\) −1.46410 5.46410i −0.0550632 0.205499i
\(708\) 17.1962 4.60770i 0.646271 0.173168i
\(709\) 5.41154 20.1962i 0.203235 0.758482i −0.786746 0.617277i \(-0.788236\pi\)
0.989980 0.141205i \(-0.0450977\pi\)
\(710\) −59.7128 −2.24098
\(711\) −36.0000 −1.35011
\(712\) −4.00000 4.00000i −0.149906 0.149906i
\(713\) 8.19615 4.73205i 0.306948 0.177217i
\(714\) 2.87564 + 2.87564i 0.107618 + 0.107618i
\(715\) −69.9090 + 18.7321i −2.61445 + 0.700539i
\(716\) −32.5885 + 8.73205i −1.21789 + 0.326332i
\(717\) 45.3731i 1.69449i
\(718\) −20.1244 5.39230i −0.751034 0.201239i
\(719\) −16.3923 −0.611330 −0.305665 0.952139i \(-0.598879\pi\)
−0.305665 + 0.952139i \(0.598879\pi\)
\(720\) −44.7846 + 12.0000i −1.66902 + 0.447214i
\(721\) 6.67949 0.248757
\(722\) 24.8564 + 6.66025i 0.925060 + 0.247869i
\(723\) 19.2058 + 11.0885i 0.714270 + 0.412384i
\(724\) −9.80385 36.5885i −0.364357 1.35980i
\(725\) −23.4904 + 6.29423i −0.872411 + 0.233762i
\(726\) −1.39230 + 5.19615i −0.0516733 + 0.192847i
\(727\) −31.8109 + 18.3660i −1.17980 + 0.681158i −0.955968 0.293470i \(-0.905190\pi\)
−0.223832 + 0.974628i \(0.571857\pi\)
\(728\) −13.0718 −0.484473
\(729\) −27.0000 −1.00000
\(730\) −53.1769 −1.96817
\(731\) −0.748711 + 2.79423i −0.0276921 + 0.103348i
\(732\) −10.3923 2.78461i −0.384111 0.102922i
\(733\) 8.02628 + 29.9545i 0.296457 + 1.10639i 0.940053 + 0.341028i \(0.110775\pi\)
−0.643596 + 0.765366i \(0.722558\pi\)
\(734\) −27.6603 + 7.41154i −1.02096 + 0.273565i
\(735\) 11.1962 + 41.7846i 0.412976 + 1.54125i
\(736\) −6.92820 1.85641i −0.255377 0.0684280i
\(737\) −16.0718 −0.592012
\(738\) 3.29423 + 12.2942i 0.121262 + 0.452557i
\(739\) 21.2224 21.2224i 0.780680 0.780680i −0.199266 0.979945i \(-0.563856\pi\)
0.979945 + 0.199266i \(0.0638557\pi\)
\(740\) 6.92820 + 12.0000i 0.254686 + 0.441129i
\(741\) −9.80385 −0.360153
\(742\) 0.392305 0.679492i 0.0144020 0.0249449i
\(743\) −2.24167 1.29423i −0.0822389 0.0474806i 0.458317 0.888789i \(-0.348453\pi\)
−0.540556 + 0.841308i \(0.681786\pi\)
\(744\) 25.8564 + 25.8564i 0.947942 + 0.947942i
\(745\) −10.7321 + 6.19615i −0.393192 + 0.227009i
\(746\) 8.24871i 0.302007i
\(747\) −3.00000 + 3.00000i −0.109764 + 0.109764i
\(748\) −9.51666 + 9.51666i −0.347964 + 0.347964i
\(749\) 13.4904 + 3.61474i 0.492928 + 0.132080i
\(750\) −40.3923 23.3205i −1.47492 0.851545i
\(751\) 18.8564 32.6603i 0.688080 1.19179i −0.284378 0.958712i \(-0.591787\pi\)
0.972458 0.233077i \(-0.0748796\pi\)
\(752\) 19.3205 33.4641i 0.704546 1.22031i
\(753\) −6.69615 1.79423i −0.244021 0.0653853i
\(754\) 21.1244 + 5.66025i 0.769304 + 0.206134i
\(755\) 7.46410 7.46410i 0.271646 0.271646i
\(756\) 7.60770i 0.276689i
\(757\) −6.07180 6.07180i −0.220683 0.220683i 0.588103 0.808786i \(-0.299875\pi\)
−0.808786 + 0.588103i \(0.799875\pi\)
\(758\) −32.4904 + 18.7583i −1.18010 + 0.681333i
\(759\) −1.68653 + 6.29423i −0.0612173 + 0.228466i
\(760\) 2.53590 + 9.46410i 0.0919867 + 0.343299i
\(761\) 27.3731 + 15.8038i 0.992273 + 0.572889i 0.905953 0.423378i \(-0.139156\pi\)
0.0863200 + 0.996267i \(0.472489\pi\)
\(762\) −3.92820 14.6603i −0.142304 0.531085i
\(763\) −1.94744 + 7.26795i −0.0705021 + 0.263117i
\(764\) 28.1051i 1.01681i
\(765\) 6.80385 25.3923i 0.245994 0.918061i
\(766\) 6.53590 + 6.53590i 0.236152 + 0.236152i
\(767\) −16.2224 28.0981i −0.585758 1.01456i
\(768\) 27.7128i 1.00000i
\(769\) 10.1244 17.5359i 0.365094 0.632361i −0.623698 0.781666i \(-0.714370\pi\)
0.988791 + 0.149305i \(0.0477036\pi\)
\(770\) 11.4641 3.07180i 0.413138 0.110700i
\(771\) 15.3397i 0.552447i
\(772\) 31.6410 18.2679i 1.13879 0.657478i
\(773\) 4.41154 + 4.41154i 0.158672 + 0.158672i 0.781978 0.623306i \(-0.214211\pi\)
−0.623306 + 0.781978i \(0.714211\pi\)
\(774\) −4.68653 + 2.70577i −0.168454 + 0.0972569i
\(775\) 74.1051i 2.66193i
\(776\) 22.5885 + 6.05256i 0.810878 + 0.217274i
\(777\) 2.19615 0.588457i 0.0787865 0.0211108i
\(778\) 13.0526 + 7.53590i 0.467957 + 0.270175i
\(779\)