Properties

Label 144.2.x.b.133.1
Level 144
Weight 2
Character 144.133
Analytic conductor 1.150
Analytic rank 1
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 133.1
Root \(-0.866025 + 0.500000i\) of \(x^{4} - x^{2} + 1\)
Character \(\chi\) \(=\) 144.133
Dual form 144.2.x.b.13.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-0.267949 + 1.00000i) q^{5} +(2.36603 + 0.633975i) q^{6} +(-2.36603 - 1.36603i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(1.50000 + 2.59808i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-0.267949 + 1.00000i) q^{5} +(2.36603 + 0.633975i) q^{6} +(-2.36603 - 1.36603i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(1.50000 + 2.59808i) q^{9} -1.46410i q^{10} +(-4.23205 + 1.13397i) q^{11} -3.46410 q^{12} +(-3.36603 - 0.901924i) q^{13} +(3.73205 + 1.00000i) q^{14} +(1.26795 - 1.26795i) q^{15} +(2.00000 - 3.46410i) q^{16} -5.73205 q^{17} +(-3.00000 - 3.00000i) q^{18} +(-2.36603 + 2.36603i) q^{19} +(0.535898 + 2.00000i) q^{20} +(2.36603 + 4.09808i) q^{21} +(5.36603 - 3.09808i) q^{22} +(4.09808 - 2.36603i) q^{23} +(4.73205 - 1.26795i) q^{24} +(3.40192 + 1.96410i) q^{25} +4.92820 q^{26} -5.19615i q^{27} -5.46410 q^{28} +(-0.633975 - 2.36603i) q^{29} +(-1.26795 + 2.19615i) q^{30} +(-0.267949 - 0.464102i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(7.33013 + 1.96410i) q^{33} +(7.83013 - 2.09808i) q^{34} +(2.00000 - 2.00000i) q^{35} +(5.19615 + 3.00000i) q^{36} +(4.73205 + 4.73205i) q^{37} +(2.36603 - 4.09808i) q^{38} +(4.26795 + 4.26795i) q^{39} +(-1.46410 - 2.53590i) q^{40} +(2.59808 - 1.50000i) q^{41} +(-4.73205 - 4.73205i) q^{42} +(-8.33013 + 2.23205i) q^{43} +(-6.19615 + 6.19615i) q^{44} +(-3.00000 + 0.803848i) q^{45} +(-4.73205 + 4.73205i) q^{46} +(3.83013 - 6.63397i) q^{47} +(-6.00000 + 3.46410i) q^{48} +(0.232051 + 0.401924i) q^{49} +(-5.36603 - 1.43782i) q^{50} +(8.59808 + 4.96410i) q^{51} +(-6.73205 + 1.80385i) q^{52} +(-7.46410 - 7.46410i) q^{53} +(1.90192 + 7.09808i) q^{54} -4.53590i q^{55} +(7.46410 - 2.00000i) q^{56} +(5.59808 - 1.50000i) q^{57} +(1.73205 + 3.00000i) q^{58} +(-1.96410 + 7.33013i) q^{59} +(0.928203 - 3.46410i) q^{60} +(-3.00000 - 11.1962i) q^{61} +(0.535898 + 0.535898i) q^{62} -8.19615i q^{63} -8.00000i q^{64} +(1.80385 - 3.12436i) q^{65} -10.7321 q^{66} +(6.59808 + 1.76795i) q^{67} +(-9.92820 + 5.73205i) q^{68} -8.19615 q^{69} +(-2.00000 + 3.46410i) q^{70} -2.92820i q^{71} +(-8.19615 - 2.19615i) q^{72} +6.26795i q^{73} +(-8.19615 - 4.73205i) q^{74} +(-3.40192 - 5.89230i) q^{75} +(-1.73205 + 6.46410i) q^{76} +(11.5622 + 3.09808i) q^{77} +(-7.39230 - 4.26795i) q^{78} +(-6.00000 + 10.3923i) q^{79} +(2.92820 + 2.92820i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(-3.00000 + 3.00000i) q^{82} +(0.366025 + 1.36603i) q^{83} +(8.19615 + 4.73205i) q^{84} +(1.53590 - 5.73205i) q^{85} +(10.5622 - 6.09808i) q^{86} +(-1.09808 + 4.09808i) q^{87} +(6.19615 - 10.7321i) q^{88} +2.00000i q^{89} +(3.80385 - 2.19615i) q^{90} +(6.73205 + 6.73205i) q^{91} +(4.73205 - 8.19615i) q^{92} +0.928203i q^{93} +(-2.80385 + 10.4641i) q^{94} +(-1.73205 - 3.00000i) q^{95} +(6.92820 - 6.92820i) q^{96} +(-5.86603 + 10.1603i) q^{97} +(-0.464102 - 0.464102i) q^{98} +(-9.29423 - 9.29423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} + O(q^{10}) \) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} - 10q^{11} - 10q^{13} + 8q^{14} + 12q^{15} + 8q^{16} - 16q^{17} - 12q^{18} - 6q^{19} + 16q^{20} + 6q^{21} + 18q^{22} + 6q^{23} + 12q^{24} + 24q^{25} - 8q^{26} - 8q^{28} - 6q^{29} - 12q^{30} - 8q^{31} + 8q^{32} + 12q^{33} + 14q^{34} + 8q^{35} + 12q^{37} + 6q^{38} + 24q^{39} + 8q^{40} - 12q^{42} - 16q^{43} - 4q^{44} - 12q^{45} - 12q^{46} - 2q^{47} - 24q^{48} - 6q^{49} - 18q^{50} + 24q^{51} - 20q^{52} - 16q^{53} + 18q^{54} + 16q^{56} + 12q^{57} + 6q^{59} - 24q^{60} - 12q^{61} + 16q^{62} + 28q^{65} - 36q^{66} + 16q^{67} - 12q^{68} - 12q^{69} - 8q^{70} - 12q^{72} - 12q^{74} - 24q^{75} + 22q^{77} + 12q^{78} - 24q^{79} - 16q^{80} - 18q^{81} - 12q^{82} - 2q^{83} + 12q^{84} + 20q^{85} + 18q^{86} + 6q^{87} + 4q^{88} + 36q^{90} + 20q^{91} + 12q^{92} - 32q^{94} - 20q^{97} + 12q^{98} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.965926 + 0.258819i
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) −0.267949 + 1.00000i −0.119831 + 0.447214i −0.999603 0.0281817i \(-0.991028\pi\)
0.879772 + 0.475395i \(0.157695\pi\)
\(6\) 2.36603 + 0.633975i 0.965926 + 0.258819i
\(7\) −2.36603 1.36603i −0.894274 0.516309i −0.0189356 0.999821i \(-0.506028\pi\)
−0.875338 + 0.483512i \(0.839361\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 1.46410i 0.462990i
\(11\) −4.23205 + 1.13397i −1.27601 + 0.341906i −0.832331 0.554279i \(-0.812994\pi\)
−0.443680 + 0.896185i \(0.646327\pi\)
\(12\) −3.46410 −1.00000
\(13\) −3.36603 0.901924i −0.933567 0.250149i −0.240192 0.970725i \(-0.577210\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 3.73205 + 1.00000i 0.997433 + 0.267261i
\(15\) 1.26795 1.26795i 0.327383 0.327383i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −5.73205 −1.39023 −0.695113 0.718900i \(-0.744646\pi\)
−0.695113 + 0.718900i \(0.744646\pi\)
\(18\) −3.00000 3.00000i −0.707107 0.707107i
\(19\) −2.36603 + 2.36603i −0.542803 + 0.542803i −0.924350 0.381546i \(-0.875392\pi\)
0.381546 + 0.924350i \(0.375392\pi\)
\(20\) 0.535898 + 2.00000i 0.119831 + 0.447214i
\(21\) 2.36603 + 4.09808i 0.516309 + 0.894274i
\(22\) 5.36603 3.09808i 1.14404 0.660512i
\(23\) 4.09808 2.36603i 0.854508 0.493350i −0.00766135 0.999971i \(-0.502439\pi\)
0.862169 + 0.506620i \(0.169105\pi\)
\(24\) 4.73205 1.26795i 0.965926 0.258819i
\(25\) 3.40192 + 1.96410i 0.680385 + 0.392820i
\(26\) 4.92820 0.966500
\(27\) 5.19615i 1.00000i
\(28\) −5.46410 −1.03262
\(29\) −0.633975 2.36603i −0.117726 0.439360i 0.881750 0.471717i \(-0.156365\pi\)
−0.999476 + 0.0323566i \(0.989699\pi\)
\(30\) −1.26795 + 2.19615i −0.231495 + 0.400961i
\(31\) −0.267949 0.464102i −0.0481251 0.0833551i 0.840959 0.541098i \(-0.181991\pi\)
−0.889085 + 0.457743i \(0.848658\pi\)
\(32\) −1.46410 + 5.46410i −0.258819 + 0.965926i
\(33\) 7.33013 + 1.96410i 1.27601 + 0.341906i
\(34\) 7.83013 2.09808i 1.34286 0.359817i
\(35\) 2.00000 2.00000i 0.338062 0.338062i
\(36\) 5.19615 + 3.00000i 0.866025 + 0.500000i
\(37\) 4.73205 + 4.73205i 0.777944 + 0.777944i 0.979481 0.201537i \(-0.0645935\pi\)
−0.201537 + 0.979481i \(0.564594\pi\)
\(38\) 2.36603 4.09808i 0.383820 0.664796i
\(39\) 4.26795 + 4.26795i 0.683419 + 0.683419i
\(40\) −1.46410 2.53590i −0.231495 0.400961i
\(41\) 2.59808 1.50000i 0.405751 0.234261i −0.283211 0.959058i \(-0.591400\pi\)
0.688963 + 0.724797i \(0.258066\pi\)
\(42\) −4.73205 4.73205i −0.730171 0.730171i
\(43\) −8.33013 + 2.23205i −1.27033 + 0.340385i −0.830158 0.557528i \(-0.811750\pi\)
−0.440174 + 0.897912i \(0.645083\pi\)
\(44\) −6.19615 + 6.19615i −0.934105 + 0.934105i
\(45\) −3.00000 + 0.803848i −0.447214 + 0.119831i
\(46\) −4.73205 + 4.73205i −0.697703 + 0.697703i
\(47\) 3.83013 6.63397i 0.558681 0.967665i −0.438925 0.898523i \(-0.644641\pi\)
0.997607 0.0691412i \(-0.0220259\pi\)
\(48\) −6.00000 + 3.46410i −0.866025 + 0.500000i
\(49\) 0.232051 + 0.401924i 0.0331501 + 0.0574177i
\(50\) −5.36603 1.43782i −0.758871 0.203339i
\(51\) 8.59808 + 4.96410i 1.20397 + 0.695113i
\(52\) −6.73205 + 1.80385i −0.933567 + 0.250149i
\(53\) −7.46410 7.46410i −1.02527 1.02527i −0.999672 0.0256010i \(-0.991850\pi\)
−0.0256010 0.999672i \(-0.508150\pi\)
\(54\) 1.90192 + 7.09808i 0.258819 + 0.965926i
\(55\) 4.53590i 0.611620i
\(56\) 7.46410 2.00000i 0.997433 0.267261i
\(57\) 5.59808 1.50000i 0.741483 0.198680i
\(58\) 1.73205 + 3.00000i 0.227429 + 0.393919i
\(59\) −1.96410 + 7.33013i −0.255704 + 0.954301i 0.711993 + 0.702186i \(0.247793\pi\)
−0.967697 + 0.252115i \(0.918874\pi\)
\(60\) 0.928203 3.46410i 0.119831 0.447214i
\(61\) −3.00000 11.1962i −0.384111 1.43352i −0.839564 0.543261i \(-0.817189\pi\)
0.455453 0.890260i \(1.65052\pi\)
\(62\) 0.535898 + 0.535898i 0.0680592 + 0.0680592i
\(63\) 8.19615i 1.03262i
\(64\) 8.00000i 1.00000i
\(65\) 1.80385 3.12436i 0.223740 0.387529i
\(66\) −10.7321 −1.32102
\(67\) 6.59808 + 1.76795i 0.806083 + 0.215989i 0.638253 0.769827i \(-0.279657\pi\)
0.167830 + 0.985816i \(0.446324\pi\)
\(68\) −9.92820 + 5.73205i −1.20397 + 0.695113i
\(69\) −8.19615 −0.986701
\(70\) −2.00000 + 3.46410i −0.239046 + 0.414039i
\(71\) 2.92820i 0.347514i −0.984789 0.173757i \(-0.944409\pi\)
0.984789 0.173757i \(-0.0555907\pi\)
\(72\) −8.19615 2.19615i −0.965926 0.258819i
\(73\) 6.26795i 0.733608i 0.930298 + 0.366804i \(0.119548\pi\)
−0.930298 + 0.366804i \(0.880452\pi\)
\(74\) −8.19615 4.73205i −0.952783 0.550090i
\(75\) −3.40192 5.89230i −0.392820 0.680385i
\(76\) −1.73205 + 6.46410i −0.198680 + 0.741483i
\(77\) 11.5622 + 3.09808i 1.31763 + 0.353059i
\(78\) −7.39230 4.26795i −0.837014 0.483250i
\(79\) −6.00000 + 10.3923i −0.675053 + 1.16923i 0.301401 + 0.953498i \(0.402546\pi\)
−0.976453 + 0.215728i \(0.930788\pi\)
\(80\) 2.92820 + 2.92820i 0.327383 + 0.327383i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −3.00000 + 3.00000i −0.331295 + 0.331295i
\(83\) 0.366025 + 1.36603i 0.0401765 + 0.149941i 0.983100 0.183068i \(-0.0586028\pi\)
−0.942924 + 0.333009i \(0.891936\pi\)
\(84\) 8.19615 + 4.73205i 0.894274 + 0.516309i
\(85\) 1.53590 5.73205i 0.166592 0.621728i
\(86\) 10.5622 6.09808i 1.13895 0.657572i
\(87\) −1.09808 + 4.09808i −0.117726 + 0.439360i
\(88\) 6.19615 10.7321i 0.660512 1.14404i
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 3.80385 2.19615i 0.400961 0.231495i
\(91\) 6.73205 + 6.73205i 0.705711 + 0.705711i
\(92\) 4.73205 8.19615i 0.493350 0.854508i
\(93\) 0.928203i 0.0962502i
\(94\) −2.80385 + 10.4641i −0.289195 + 1.07929i
\(95\) −1.73205 3.00000i −0.177705 0.307794i
\(96\) 6.92820 6.92820i 0.707107 0.707107i
\(97\) −5.86603 + 10.1603i −0.595605 + 1.03162i 0.397857 + 0.917448i \(0.369754\pi\)
−0.993461 + 0.114170i \(0.963579\pi\)
\(98\) −0.464102 0.464102i −0.0468813 0.0468813i
\(99\) −9.29423 9.29423i −0.934105 0.934105i
\(100\) 7.85641 0.785641
\(101\) −2.00000 + 0.535898i −0.199007 + 0.0533239i −0.356946 0.934125i \(-0.616182\pi\)
0.157938 + 0.987449i \(0.449515\pi\)
\(102\) −13.5622 3.63397i −1.34286 0.359817i
\(103\) −13.0981 + 7.56218i −1.29059 + 0.745124i −0.978759 0.205014i \(-0.934276\pi\)
−0.311833 + 0.950137i \(0.600943\pi\)
\(104\) 8.53590 4.92820i 0.837014 0.483250i
\(105\) −4.73205 + 1.26795i −0.461801 + 0.123739i
\(106\) 12.9282 + 7.46410i 1.25570 + 0.724978i
\(107\) 12.4904 + 12.4904i 1.20749 + 1.20749i 0.971837 + 0.235654i \(0.0757231\pi\)
0.235654 + 0.971837i \(0.424277\pi\)
\(108\) −5.19615 9.00000i −0.500000 0.866025i
\(109\) 10.7321 10.7321i 1.02794 1.02794i 0.0283459 0.999598i \(-0.490976\pi\)
0.999598 0.0283459i \(-0.00902398\pi\)
\(110\) 1.66025 + 6.19615i 0.158299 + 0.590780i
\(111\) −3.00000 11.1962i −0.284747 1.06269i
\(112\) −9.46410 + 5.46410i −0.894274 + 0.516309i
\(113\) −6.92820 12.0000i −0.651751 1.12887i −0.982698 0.185216i \(-0.940702\pi\)
0.330947 0.943649i \(-0.392632\pi\)
\(114\) −7.09808 + 4.09808i −0.664796 + 0.383820i
\(115\) 1.26795 + 4.73205i 0.118237 + 0.441266i
\(116\) −3.46410 3.46410i −0.321634 0.321634i
\(117\) −2.70577 10.0981i −0.250149 0.933567i
\(118\) 10.7321i 0.987965i
\(119\) 13.5622 + 7.83013i 1.24324 + 0.717787i
\(120\) 5.07180i 0.462990i
\(121\) 7.09808 4.09808i 0.645280 0.372552i
\(122\) 8.19615 + 14.1962i 0.742045 + 1.28526i
\(123\) −5.19615 −0.468521
\(124\) −0.928203 0.535898i −0.0833551 0.0481251i
\(125\) −6.53590 + 6.53590i −0.584589 + 0.584589i
\(126\) 3.00000 + 11.1962i 0.267261 + 0.997433i
\(127\) 4.19615 0.372348 0.186174 0.982517i \(-0.440391\pi\)
0.186174 + 0.982517i \(0.440391\pi\)
\(128\) 2.92820 + 10.9282i 0.258819 + 0.965926i
\(129\) 14.4282 + 3.86603i 1.27033 + 0.340385i
\(130\) −1.32051 + 4.92820i −0.115816 + 0.432232i
\(131\) −7.83013 2.09808i −0.684121 0.183310i −0.100014 0.994986i \(-0.531889\pi\)
−0.584108 + 0.811676i \(0.698555\pi\)
\(132\) 14.6603 3.92820i 1.27601 0.341906i
\(133\) 8.83013 2.36603i 0.765669 0.205160i
\(134\) −9.66025 −0.834519
\(135\) 5.19615 + 1.39230i 0.447214 + 0.119831i
\(136\) 11.4641 11.4641i 0.983039 0.983039i
\(137\) −8.25833 4.76795i −0.705557 0.407353i 0.103857 0.994592i \(-0.466882\pi\)
−0.809414 + 0.587239i \(0.800215\pi\)
\(138\) 11.1962 3.00000i 0.953080 0.255377i
\(139\) 3.06218 11.4282i 0.259731 0.969328i −0.705667 0.708544i \(-0.749352\pi\)
0.965397 0.260784i \(-0.0839809\pi\)
\(140\) 1.46410 5.46410i 0.123739 0.461801i
\(141\) −11.4904 + 6.63397i −0.967665 + 0.558681i
\(142\) 1.07180 + 4.00000i 0.0899432 + 0.335673i
\(143\) 15.2679 1.27677
\(144\) 12.0000 1.00000
\(145\) 2.53590 0.210595
\(146\) −2.29423 8.56218i −0.189872 0.708611i
\(147\) 0.803848i 0.0663002i
\(148\) 12.9282 + 3.46410i 1.06269 + 0.284747i
\(149\) −2.09808 + 7.83013i −0.171881 + 0.641469i 0.825181 + 0.564869i \(0.191073\pi\)
−0.997062 + 0.0766003i \(0.975593\pi\)
\(150\) 6.80385 + 6.80385i 0.555532 + 0.555532i
\(151\) −0.633975 0.366025i −0.0515921 0.0297867i 0.473982 0.880534i \(-0.342816\pi\)
−0.525574 + 0.850748i \(0.676149\pi\)
\(152\) 9.46410i 0.767640i
\(153\) −8.59808 14.8923i −0.695113 1.20397i
\(154\) −16.9282 −1.36411
\(155\) 0.535898 0.143594i 0.0430444 0.0115337i
\(156\) 11.6603 + 3.12436i 0.933567 + 0.250149i
\(157\) −4.73205 1.26795i −0.377659 0.101193i 0.0649959 0.997886i \(-0.479297\pi\)
−0.442655 + 0.896692i \(0.645963\pi\)
\(158\) 4.39230 16.3923i 0.349433 1.30410i
\(159\) 4.73205 + 17.6603i 0.375276 + 1.40055i
\(160\) −5.07180 2.92820i −0.400961 0.231495i
\(161\) −12.9282 −1.01889
\(162\) 3.29423 12.2942i 0.258819 0.965926i
\(163\) −7.00000 + 7.00000i −0.548282 + 0.548282i −0.925944 0.377661i \(-0.876728\pi\)
0.377661 + 0.925944i \(0.376728\pi\)
\(164\) 3.00000 5.19615i 0.234261 0.405751i
\(165\) −3.92820 + 6.80385i −0.305810 + 0.529679i
\(166\) −1.00000 1.73205i −0.0776151 0.134433i
\(167\) −6.46410 + 3.73205i −0.500207 + 0.288795i −0.728799 0.684728i \(-0.759921\pi\)
0.228592 + 0.973522i \(0.426588\pi\)
\(168\) −12.9282 3.46410i −0.997433 0.267261i
\(169\) −0.741670 0.428203i −0.0570515 0.0329387i
\(170\) 8.39230i 0.643660i
\(171\) −9.69615 2.59808i −0.741483 0.198680i
\(172\) −12.1962 + 12.1962i −0.929948 + 0.929948i
\(173\) −0.437822 1.63397i −0.0332870 0.124229i 0.947283 0.320398i \(-0.103817\pi\)
−0.980570 + 0.196169i \(0.937150\pi\)
\(174\) 6.00000i 0.454859i
\(175\) −5.36603 9.29423i −0.405633 0.702578i
\(176\) −4.53590 + 16.9282i −0.341906 + 1.27601i
\(177\) 9.29423 9.29423i 0.698597 0.698597i
\(178\) −0.732051 2.73205i −0.0548695 0.204776i
\(179\) −1.92820 + 1.92820i −0.144121 + 0.144121i −0.775486 0.631365i \(-0.782495\pi\)
0.631365 + 0.775486i \(0.282495\pi\)
\(180\) −4.39230 + 4.39230i −0.327383 + 0.327383i
\(181\) −7.39230 7.39230i −0.549466 0.549466i 0.376821 0.926286i \(-0.377017\pi\)
−0.926286 + 0.376821i \(0.877017\pi\)
\(182\) −11.6603 6.73205i −0.864316 0.499013i
\(183\) −5.19615 + 19.3923i −0.384111 + 1.43352i
\(184\) −3.46410 + 12.9282i −0.255377 + 0.953080i
\(185\) −6.00000 + 3.46410i −0.441129 + 0.254686i
\(186\) −0.339746 1.26795i −0.0249114 0.0929705i
\(187\) 24.2583 6.50000i 1.77394 0.475327i
\(188\) 15.3205i 1.11736i
\(189\) −7.09808 + 12.2942i −0.516309 + 0.894274i
\(190\) 3.46410 + 3.46410i 0.251312 + 0.251312i
\(191\) −12.0263 + 20.8301i −0.870191 + 1.50722i −0.00839227 + 0.999965i \(0.502671\pi\)
−0.861799 + 0.507250i \(0.830662\pi\)
\(192\) −6.92820 + 12.0000i −0.500000 + 0.866025i
\(193\) −10.8660 18.8205i −0.782154 1.35473i −0.930685 0.365822i \(-0.880788\pi\)
0.148531 0.988908i \(-0.452545\pi\)
\(194\) 4.29423 16.0263i 0.308308 1.15062i
\(195\) −5.41154 + 3.12436i −0.387529 + 0.223740i
\(196\) 0.803848 + 0.464102i 0.0574177 + 0.0331501i
\(197\) 13.6603 + 13.6603i 0.973253 + 0.973253i 0.999651 0.0263987i \(-0.00840394\pi\)
−0.0263987 + 0.999651i \(0.508404\pi\)
\(198\) 16.0981 + 9.29423i 1.14404 + 0.660512i
\(199\) 25.1244i 1.78102i −0.454965 0.890509i \(-0.650348\pi\)
0.454965 0.890509i \(-0.349652\pi\)
\(200\) −10.7321 + 2.87564i −0.758871 + 0.203339i
\(201\) −8.36603 8.36603i −0.590094 0.590094i
\(202\) 2.53590 1.46410i 0.178425 0.103014i
\(203\) −1.73205 + 6.46410i −0.121566 + 0.453691i
\(204\) 19.8564 1.39023
\(205\) 0.803848 + 3.00000i 0.0561432 + 0.209529i
\(206\) 15.1244 15.1244i 1.05376 1.05376i
\(207\) 12.2942 + 7.09808i 0.854508 + 0.493350i
\(208\) −9.85641 + 9.85641i −0.683419 + 0.683419i
\(209\) 7.33013 12.6962i 0.507035 0.878211i
\(210\) 6.00000 3.46410i 0.414039 0.239046i
\(211\) 4.09808 + 1.09808i 0.282123 + 0.0755947i 0.397106 0.917773i \(-0.370015\pi\)
−0.114983 + 0.993367i \(0.536681\pi\)
\(212\) −20.3923 5.46410i −1.40055 0.375276i
\(213\) −2.53590 + 4.39230i −0.173757 + 0.300956i
\(214\) −21.6340 12.4904i −1.47887 0.853825i
\(215\) 8.92820i 0.608898i
\(216\) 10.3923 + 10.3923i 0.707107 + 0.707107i
\(217\) 1.46410i 0.0993897i
\(218\) −10.7321 + 18.5885i −0.726866 + 1.25897i
\(219\) 5.42820 9.40192i 0.366804 0.635323i
\(220\) −4.53590 7.85641i −0.305810 0.529679i
\(221\) 19.2942 + 5.16987i 1.29787 + 0.347763i
\(222\) 8.19615 + 14.1962i 0.550090 + 0.952783i
\(223\) −8.02628 + 13.9019i −0.537479 + 0.930942i 0.461559 + 0.887109i \(0.347290\pi\)
−0.999039 + 0.0438324i \(0.986043\pi\)
\(224\) 10.9282 10.9282i 0.730171 0.730171i
\(225\) 11.7846i 0.785641i
\(226\) 13.8564 + 13.8564i 0.921714 + 0.921714i
\(227\) −0.571797 2.13397i −0.0379515 0.141637i 0.944351 0.328941i \(-0.106692\pi\)
−0.982302 + 0.187304i \(0.940025\pi\)
\(228\) 8.19615 8.19615i 0.542803 0.542803i
\(229\) −1.83013 + 6.83013i −0.120938 + 0.451347i −0.999662 0.0259823i \(-0.991729\pi\)
0.878724 + 0.477330i \(0.158395\pi\)
\(230\) −3.46410 6.00000i −0.228416 0.395628i
\(231\) −14.6603 14.6603i −0.964574 0.964574i
\(232\) 6.00000 + 3.46410i 0.393919 + 0.227429i
\(233\) 3.19615i 0.209387i 0.994505 + 0.104693i \(0.0333861\pi\)
−0.994505 + 0.104693i \(0.966614\pi\)
\(234\) 7.39230 + 12.8038i 0.483250 + 0.837014i
\(235\) 5.60770 + 5.60770i 0.365806 + 0.365806i
\(236\) 3.92820 + 14.6603i 0.255704 + 0.954301i
\(237\) 18.0000 10.3923i 1.16923 0.675053i
\(238\) −21.3923 5.73205i −1.38666 0.371554i
\(239\) −7.90192 13.6865i −0.511133 0.885308i −0.999917 0.0129033i \(-0.995893\pi\)
0.488784 0.872405i \(-0.337441\pi\)
\(240\) −1.85641 6.92820i −0.119831 0.447214i
\(241\) −11.5981 + 20.0885i −0.747098 + 1.29401i 0.202110 + 0.979363i \(0.435220\pi\)
−0.949208 + 0.314649i \(0.898113\pi\)
\(242\) −8.19615 + 8.19615i −0.526869 + 0.526869i
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) −16.3923 16.3923i −1.04941 1.04941i
\(245\) −0.464102 + 0.124356i −0.0296504 + 0.00794479i
\(246\) 7.09808 1.90192i 0.452557 0.121262i
\(247\) 10.0981 5.83013i 0.642525 0.370962i
\(248\) 1.46410 + 0.392305i 0.0929705 + 0.0249114i
\(249\) 0.633975 2.36603i 0.0401765 0.149941i
\(250\) 6.53590 11.3205i 0.413367 0.715972i
\(251\) −5.83013 5.83013i −0.367994 0.367994i 0.498751 0.866745i \(-0.333792\pi\)
−0.866745 + 0.498751i \(0.833792\pi\)
\(252\) −8.19615 14.1962i −0.516309 0.894274i
\(253\) −14.6603 + 14.6603i −0.921682 + 0.921682i
\(254\) −5.73205 + 1.53590i −0.359661 + 0.0963708i
\(255\) −7.26795 + 7.26795i −0.455137 + 0.455137i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 9.42820 + 16.3301i 0.588115 + 1.01865i 0.994479 + 0.104934i \(0.0334632\pi\)
−0.406364 + 0.913711i \(0.633204\pi\)
\(258\) −21.1244 −1.31514
\(259\) −4.73205 17.6603i −0.294035 1.09735i
\(260\) 7.21539i 0.447480i
\(261\) 5.19615 5.19615i 0.321634 0.321634i
\(262\) 11.4641 0.708255
\(263\) 2.49038 + 1.43782i 0.153563 + 0.0886599i 0.574813 0.818285i \(-0.305075\pi\)
−0.421249 + 0.906945i \(0.638408\pi\)
\(264\) −18.5885 + 10.7321i −1.14404 + 0.660512i
\(265\) 9.46410 5.46410i 0.581375 0.335657i
\(266\) −11.1962 + 6.46410i −0.686480 + 0.396339i
\(267\) 1.73205 3.00000i 0.106000 0.183597i
\(268\) 13.1962 3.53590i 0.806083 0.215989i
\(269\) 1.26795 1.26795i 0.0773082 0.0773082i −0.667395 0.744704i \(-0.732591\pi\)
0.744704 + 0.667395i \(0.232591\pi\)
\(270\) −7.60770 −0.462990
\(271\) −0.392305 −0.0238308 −0.0119154 0.999929i \(-0.503793\pi\)
−0.0119154 + 0.999929i \(0.503793\pi\)
\(272\) −11.4641 + 19.8564i −0.695113 + 1.20397i
\(273\) −4.26795 15.9282i −0.258308 0.964019i
\(274\) 13.0263 + 3.49038i 0.786946 + 0.210862i
\(275\) −16.6244 4.45448i −1.00249 0.268615i
\(276\) −14.1962 + 8.19615i −0.854508 + 0.493350i
\(277\) 25.2224 6.75833i 1.51547 0.406069i 0.597222 0.802076i \(-0.296271\pi\)
0.918247 + 0.396007i \(0.129605\pi\)
\(278\) 16.7321i 1.00352i
\(279\) 0.803848 1.39230i 0.0481251 0.0833551i
\(280\) 8.00000i 0.478091i
\(281\) 8.66025 + 5.00000i 0.516627 + 0.298275i 0.735554 0.677466i \(-0.236922\pi\)
−0.218926 + 0.975741i \(0.570255\pi\)
\(282\) 13.2679 13.2679i 0.790095 0.790095i
\(283\) 5.24167 19.5622i 0.311585 1.16285i −0.615542 0.788104i \(-0.711063\pi\)
0.927127 0.374747i \(-0.122270\pi\)
\(284\) −2.92820 5.07180i −0.173757 0.300956i
\(285\) 6.00000i 0.355409i
\(286\) −20.8564 + 5.58846i −1.23327 + 0.330452i
\(287\) −8.19615 −0.483804
\(288\) −16.3923 + 4.39230i −0.965926 + 0.258819i
\(289\) 15.8564 0.932730
\(290\) −3.46410 + 0.928203i −0.203419 + 0.0545060i
\(291\) 17.5981 10.1603i 1.03162 0.595605i
\(292\) 6.26795 + 10.8564i 0.366804 + 0.635323i
\(293\) 1.43782 5.36603i 0.0839985 0.313487i −0.911124 0.412132i \(-0.864784\pi\)
0.995123 + 0.0986454i \(0.0314509\pi\)
\(294\) 0.294229 + 1.09808i 0.0171598 + 0.0640411i
\(295\) −6.80385 3.92820i −0.396135 0.228709i
\(296\) −18.9282 −1.10018
\(297\) 5.89230 + 21.9904i 0.341906 + 1.27601i
\(298\) 11.4641i 0.664098i
\(299\) −15.9282 + 4.26795i −0.921152 + 0.246822i
\(300\) −11.7846 6.80385i −0.680385 0.392820i
\(301\) 22.7583 + 6.09808i 1.31177 + 0.351487i
\(302\) 1.00000 + 0.267949i 0.0575435 + 0.0154187i
\(303\) 3.46410 + 0.928203i 0.199007 + 0.0533239i
\(304\) 3.46410 + 12.9282i 0.198680 + 0.741483i
\(305\) 12.0000 0.687118
\(306\) 17.1962 + 17.1962i 0.983039 + 0.983039i
\(307\) 3.02628 3.02628i 0.172719 0.172719i −0.615454 0.788173i \(-0.711027\pi\)
0.788173 + 0.615454i \(0.211027\pi\)
\(308\) 23.1244 6.19615i 1.31763 0.353059i
\(309\) 26.1962 1.49025
\(310\) −0.679492 + 0.392305i −0.0385925 + 0.0222814i
\(311\) 19.0981 11.0263i 1.08295 0.625243i 0.151261 0.988494i \(-0.451667\pi\)
0.931691 + 0.363251i \(0.118333\pi\)
\(312\) −17.0718 −0.966500
\(313\) −18.6506 10.7679i −1.05420 0.608640i −0.130375 0.991465i \(-0.541618\pi\)
−0.923821 + 0.382824i \(0.874951\pi\)
\(314\) 6.92820 0.390981
\(315\) 8.19615 + 2.19615i 0.461801 + 0.123739i
\(316\) 24.0000i 1.35011i
\(317\) 5.50962 + 20.5622i 0.309451 + 1.15489i 0.929046 + 0.369965i \(0.120630\pi\)
−0.619595 + 0.784922i \(0.712703\pi\)
\(318\) −12.9282 22.3923i −0.724978 1.25570i
\(319\) 5.36603 + 9.29423i 0.300440 + 0.520377i
\(320\) 8.00000 + 2.14359i 0.447214 + 0.119831i
\(321\) −7.91858 29.5526i −0.441972 1.64946i
\(322\) 17.6603 4.73205i 0.984167 0.263707i
\(323\) 13.5622 13.5622i 0.754620 0.754620i
\(324\) 18.0000i 1.00000i
\(325\) −9.67949 9.67949i −0.536922 0.536922i
\(326\) 7.00000 12.1244i 0.387694 0.671506i
\(327\) −25.3923 + 6.80385i −1.40420 + 0.376254i
\(328\) −2.19615 + 8.19615i −0.121262 + 0.452557i
\(329\) −18.1244 + 10.4641i −0.999228 + 0.576905i
\(330\) 2.87564 10.7321i 0.158299 0.590780i
\(331\) −0.0980762 + 0.0262794i −0.00539076 + 0.00144445i −0.261513 0.965200i \(-0.584222\pi\)
0.256123 + 0.966644i \(0.417555\pi\)
\(332\) 2.00000 + 2.00000i 0.109764 + 0.109764i
\(333\) −5.19615 + 19.3923i −0.284747 + 1.06269i
\(334\) 7.46410 7.46410i 0.408417 0.408417i
\(335\) −3.53590 + 6.12436i −0.193187 + 0.334609i
\(336\) 18.9282 1.03262
\(337\) 8.89230 + 15.4019i 0.484395 + 0.838996i 0.999839 0.0179267i \(-0.00570654\pi\)
−0.515445 + 0.856923i \(0.672373\pi\)
\(338\) 1.16987 + 0.313467i 0.0636327 + 0.0170503i
\(339\) 24.0000i 1.30350i
\(340\) −3.07180 11.4641i −0.166592 0.621728i
\(341\) 1.66025 + 1.66025i 0.0899078 + 0.0899078i
\(342\) 14.1962 0.767640
\(343\) 17.8564i 0.964155i
\(344\) 12.1962 21.1244i 0.657572 1.13895i
\(345\) 2.19615 8.19615i 0.118237 0.441266i
\(346\) 1.19615 + 2.07180i 0.0643056 + 0.111380i
\(347\) 4.72243 17.6244i 0.253513 0.946125i −0.715398 0.698717i \(-0.753755\pi\)
0.968911 0.247408i \(-0.0795787\pi\)
\(348\) 2.19615 + 8.19615i 0.117726 + 0.439360i
\(349\) −4.26795 15.9282i −0.228458 0.852617i −0.980989 0.194061i \(-0.937834\pi\)
0.752531 0.658556i \(1.77117\pi\)
\(350\) 10.7321 + 10.7321i 0.573652 + 0.573652i
\(351\) −4.68653 + 17.4904i −0.250149 + 0.933567i
\(352\) 24.7846i 1.32102i
\(353\) 7.16025 12.4019i 0.381102 0.660088i −0.610118 0.792310i \(-0.708878\pi\)
0.991220 + 0.132223i \(0.0422114\pi\)
\(354\) −9.29423 + 16.0981i −0.493983 + 0.855603i
\(355\) 2.92820 + 0.784610i 0.155413 + 0.0416428i
\(356\) 2.00000 + 3.46410i 0.106000 + 0.183597i
\(357\) −13.5622 23.4904i −0.717787 1.24324i
\(358\) 1.92820 3.33975i 0.101909 0.176511i
\(359\) 11.2679i 0.594700i −0.954769 0.297350i \(-0.903897\pi\)
0.954769 0.297350i \(-0.0961028\pi\)
\(360\) 4.39230 7.60770i 0.231495 0.400961i
\(361\) 7.80385i 0.410729i
\(362\) 12.8038 + 7.39230i 0.672955 + 0.388531i
\(363\) −14.1962 −0.745105
\(364\) 18.3923 + 4.92820i 0.964019 + 0.258308i
\(365\) −6.26795 1.67949i −0.328079 0.0879086i
\(366\) 28.3923i 1.48409i
\(367\) 14.1244 24.4641i 0.737285 1.27702i −0.216428 0.976299i \(-0.569441\pi\)
0.953713 0.300717i \(-0.0972260\pi\)
\(368\) 18.9282i 0.986701i
\(369\) 7.79423 + 4.50000i 0.405751 + 0.234261i
\(370\) 6.92820 6.92820i 0.360180 0.360180i
\(371\) 7.46410 + 27.8564i 0.387517 + 1.44623i
\(372\) 0.928203 + 1.60770i 0.0481251 + 0.0833551i
\(373\) −7.36603 + 27.4904i −0.381398 + 1.42340i 0.462368 + 0.886688i \(0.347000\pi\)
−0.843767 + 0.536710i \(0.819667\pi\)
\(374\) −30.7583 + 17.7583i −1.59048 + 0.918261i
\(375\) 15.4641 4.14359i 0.798563 0.213974i
\(376\) 5.60770 + 20.9282i 0.289195 + 1.07929i
\(377\) 8.53590i 0.439621i
\(378\) 5.19615 19.3923i 0.267261 0.997433i
\(379\) 3.75833 + 3.75833i 0.193052 + 0.193052i 0.797014 0.603961i \(-0.206412\pi\)
−0.603961 + 0.797014i \(0.706412\pi\)
\(380\) −6.00000 3.46410i −0.307794 0.177705i
\(381\) −6.29423 3.63397i −0.322463 0.186174i
\(382\) 8.80385 32.8564i 0.450444 1.68108i
\(383\) −6.73205 11.6603i −0.343992 0.595811i 0.641178 0.767392i \(-0.278446\pi\)
−0.985170 + 0.171581i \(0.945113\pi\)
\(384\) 5.07180 18.9282i 0.258819 0.965926i
\(385\) −6.19615 + 10.7321i −0.315785 + 0.546956i
\(386\) 21.7321 + 21.7321i 1.10613 + 1.10613i
\(387\) −18.2942 18.2942i −0.929948 0.929948i
\(388\) 23.4641i 1.19121i
\(389\) 19.7583 5.29423i 1.00179 0.268428i 0.279593 0.960119i \(-0.409800\pi\)
0.722194 + 0.691691i \(0.243134\pi\)
\(390\) 6.24871 6.24871i 0.316416 0.316416i
\(391\) −23.4904 + 13.5622i −1.18796 + 0.685869i
\(392\) −1.26795 0.339746i −0.0640411 0.0171598i
\(393\) 9.92820 + 9.92820i 0.500812 + 0.500812i
\(394\) −23.6603 13.6603i −1.19199 0.688194i
\(395\) −8.78461 8.78461i −0.442002 0.442002i
\(396\) −25.3923 6.80385i −1.27601 0.341906i
\(397\) −9.26795 + 9.26795i −0.465145 + 0.465145i −0.900337 0.435192i \(-0.856680\pi\)
0.435192 + 0.900337i \(0.356680\pi\)
\(398\) 9.19615 + 34.3205i 0.460961 + 1.72033i
\(399\) −15.2942 4.09808i −0.765669 0.205160i
\(400\) 13.6077 7.85641i 0.680385 0.392820i
\(401\) −1.79423 3.10770i −0.0895995 0.155191i 0.817742 0.575584i \(-0.195225\pi\)
−0.907342 + 0.420393i \(0.861892\pi\)
\(402\) 14.4904 + 8.36603i 0.722715 + 0.417259i
\(403\) 0.483340 + 1.80385i 0.0240769 + 0.0898560i
\(404\) −2.92820 + 2.92820i −0.145684 + 0.145684i
\(405\) −6.58846 6.58846i −0.327383 0.327383i
\(406\) 9.46410i 0.469695i
\(407\) −25.3923 14.6603i −1.25865 0.726682i
\(408\) −27.1244 + 7.26795i −1.34286 + 0.359817i
\(409\) −27.8660 + 16.0885i −1.37789 + 0.795523i −0.991905 0.126984i \(-0.959470\pi\)
−0.385981 + 0.922507i \(0.626137\pi\)
\(410\) −2.19615 3.80385i −0.108460 0.187859i
\(411\) 8.25833 + 14.3038i 0.407353 + 0.705557i
\(412\) −15.1244 + 26.1962i −0.745124 + 1.29059i
\(413\) 14.6603 14.6603i 0.721384 0.721384i
\(414\) −19.3923 5.19615i −0.953080 0.255377i
\(415\) −1.46410 −0.0718699
\(416\) 9.85641 17.0718i 0.483250 0.837014i
\(417\) −14.4904 + 14.4904i −0.709597 + 0.709597i
\(418\) −5.36603 + 20.0263i −0.262461 + 0.979517i
\(419\) −6.63397 1.77757i −0.324091 0.0868399i 0.0931055 0.995656i \(-0.470321\pi\)
−0.417196 + 0.908816i \(0.636987\pi\)
\(420\) −6.92820 + 6.92820i −0.338062 + 0.338062i
\(421\) −30.5885 + 8.19615i −1.49079 + 0.399456i −0.910004 0.414600i \(-0.863922\pi\)
−0.580786 + 0.814056i \(0.697255\pi\)
\(422\) −6.00000 −0.292075
\(423\) 22.9808 1.11736
\(424\) 29.8564 1.44996
\(425\) −19.5000 11.2583i −0.945889 0.546109i
\(426\) 1.85641 6.92820i 0.0899432 0.335673i
\(427\) −8.19615 + 30.5885i −0.396640 + 1.48028i
\(428\) 34.1244 + 9.14359i 1.64946 + 0.441972i
\(429\) −22.9019 13.2224i −1.10572 0.638385i
\(430\) 3.26795 + 12.1962i 0.157595 + 0.588151i
\(431\) −16.1962 −0.780141 −0.390071 0.920785i \(-0.627549\pi\)
−0.390071 + 0.920785i \(0.627549\pi\)
\(432\) −18.0000 10.3923i −0.866025 0.500000i
\(433\) −5.73205 −0.275465 −0.137732 0.990469i \(-0.543981\pi\)
−0.137732 + 0.990469i \(0.543981\pi\)
\(434\) −0.535898 2.00000i −0.0257239 0.0960031i
\(435\) −3.80385 2.19615i −0.182381 0.105297i
\(436\) 7.85641 29.3205i 0.376254 1.40420i
\(437\) −4.09808 + 15.2942i −0.196038 + 0.731622i
\(438\) −3.97372 + 14.8301i −0.189872 + 0.708611i
\(439\) 22.8564 + 13.1962i 1.09088 + 0.629818i 0.933810 0.357770i \(-0.116463\pi\)
0.157067 + 0.987588i \(0.449796\pi\)
\(440\) 9.07180 + 9.07180i 0.432481 + 0.432481i
\(441\) −0.696152 + 1.20577i −0.0331501 + 0.0574177i
\(442\) −28.2487 −1.34365
\(443\) 17.2583 4.62436i 0.819968 0.219710i 0.175636 0.984455i \(-0.443802\pi\)
0.644332 + 0.764745i \(0.277135\pi\)
\(444\) −16.3923 16.3923i −0.777944 0.777944i
\(445\) −2.00000 0.535898i −0.0948091 0.0254040i
\(446\) 5.87564 21.9282i 0.278220 1.03833i
\(447\) 9.92820 9.92820i 0.469588 0.469588i
\(448\) −10.9282 + 18.9282i −0.516309 + 0.894274i
\(449\) −3.33975 −0.157612 −0.0788062 0.996890i \(-0.525111\pi\)
−0.0788062 + 0.996890i \(0.525111\pi\)
\(450\) −4.31347 16.0981i −0.203339 0.758871i
\(451\) −9.29423 + 9.29423i −0.437648 + 0.437648i
\(452\) −24.0000 13.8564i −1.12887 0.651751i
\(453\) 0.633975 + 1.09808i 0.0297867 + 0.0515921i
\(454\) 1.56218 + 2.70577i 0.0733166 + 0.126988i
\(455\) −8.53590 + 4.92820i −0.400169 + 0.231038i
\(456\) −8.19615 + 14.1962i −0.383820 + 0.664796i
\(457\) −2.25833 1.30385i −0.105640 0.0609914i 0.446249 0.894909i \(-0.352760\pi\)
−0.551889 + 0.833917i \(0.686093\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 29.7846i 1.39023i
\(460\) 6.92820 + 6.92820i 0.323029 + 0.323029i
\(461\) −9.56218 35.6865i −0.445355 1.66209i −0.714997 0.699127i \(-0.753572\pi\)
0.269642 0.962961i \(1.58691\pi\)
\(462\) 25.3923 + 14.6603i 1.18136 + 0.682057i
\(463\) 1.19615 + 2.07180i 0.0555899 + 0.0962846i 0.892481 0.451085i \(-0.148963\pi\)
−0.836891 + 0.547369i \(0.815629\pi\)
\(464\) −9.46410 2.53590i −0.439360 0.117726i
\(465\) −0.928203 0.248711i −0.0430444 0.0115337i
\(466\) −1.16987 4.36603i −0.0541933 0.202252i
\(467\) 2.63397 2.63397i 0.121886 0.121886i −0.643533 0.765419i \(-0.722532\pi\)
0.765419 + 0.643533i \(0.222532\pi\)
\(468\) −14.7846 14.7846i −0.683419 0.683419i
\(469\) −13.1962 13.1962i −0.609342 0.609342i
\(470\) −9.71281 5.60770i −0.448019 0.258664i
\(471\) 6.00000 + 6.00000i 0.276465 + 0.276465i
\(472\) −10.7321 18.5885i −0.493983 0.855603i
\(473\) 32.7224 18.8923i 1.50458 0.868669i
\(474\) −20.7846 + 20.7846i −0.954669 + 0.954669i
\(475\) −12.6962 + 3.40192i −0.582539 + 0.156091i
\(476\) 31.3205 1.43557
\(477\) 8.19615 30.5885i 0.375276 1.40055i
\(478\) 15.8038 + 15.8038i 0.722851 + 0.722851i
\(479\) 4.16987 7.22243i 0.190526 0.330001i −0.754898 0.655842i \(-0.772314\pi\)
0.945425 + 0.325840i \(0.105647\pi\)
\(480\) 5.07180 + 8.78461i 0.231495 + 0.400961i
\(481\) −11.6603 20.1962i −0.531662 0.920865i
\(482\) 8.49038 31.6865i 0.386726 1.44328i
\(483\) 19.3923 + 11.1962i 0.882380 + 0.509443i
\(484\) 8.19615 14.1962i 0.372552 0.645280i
\(485\) −8.58846 8.58846i −0.389982 0.389982i
\(486\) −15.5885 + 15.5885i −0.707107 + 0.707107i
\(487\) 5.80385i 0.262997i −0.991316 0.131499i \(-0.958021\pi\)
0.991316 0.131499i \(-0.0419789\pi\)
\(488\) 28.3923 + 16.3923i 1.28526 + 0.742045i
\(489\) 16.5622 4.43782i 0.748968 0.200685i
\(490\) 0.588457 0.339746i 0.0265838 0.0153482i
\(491\) 3.72243 13.8923i 0.167991 0.626951i −0.829649 0.558286i \(-0.811459\pi\)
0.997640 0.0686652i \(-0.0218740\pi\)
\(492\) −9.00000 + 5.19615i −0.405751 + 0.234261i
\(493\) 3.63397 + 13.5622i 0.163666 + 0.610810i
\(494\) −11.6603 + 11.6603i −0.524620 + 0.524620i
\(495\) 11.7846 6.80385i 0.529679 0.305810i
\(496\) −2.14359 −0.0962502
\(497\) −4.00000 + 6.92820i −0.179425 + 0.310772i
\(498\) 3.46410i 0.155230i
\(499\) 8.69615 + 2.33013i 0.389293 + 0.104311i 0.448156 0.893955i \(-0.352081\pi\)
−0.0588630 + 0.998266i \(0.518748\pi\)
\(500\) −4.78461 + 17.8564i −0.213974 + 0.798563i
\(501\) 12.9282 0.577590
\(502\) 10.0981 + 5.83013i 0.450699 + 0.260211i
\(503\) 27.7128i 1.23565i 0.786314 + 0.617827i \(0.211987\pi\)
−0.786314 + 0.617827i \(0.788013\pi\)
\(504\) 16.3923 + 16.3923i 0.730171 + 0.730171i
\(505\) 2.14359i 0.0953887i
\(506\) 14.6603 25.3923i 0.651728 1.12883i
\(507\) 0.741670 + 1.28461i 0.0329387 + 0.0570515i
\(508\) 7.26795 4.19615i 0.322463 0.186174i
\(509\) −11.4641 3.07180i −0.508137 0.136155i −0.00436335 0.999990i \(-0.501389\pi\)
−0.503774 + 0.863835i \(0.668056\pi\)
\(510\) 7.26795 12.5885i 0.321830 0.557426i
\(511\) 8.56218 14.8301i 0.378768 0.656046i
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 12.2942 + 12.2942i 0.542803 + 0.542803i
\(514\) −18.8564 18.8564i −0.831720 0.831720i
\(515\) −4.05256 15.1244i −0.178577 0.666459i
\(516\) 28.8564 7.73205i 1.27033 0.340385i
\(517\) −8.68653 + 32.4186i −0.382033 + 1.42577i
\(518\) 12.9282 + 22.3923i 0.568033 + 0.983861i
\(519\) −0.758330 + 2.83013i −0.0332870 + 0.124229i
\(520\) 2.64102 + 9.85641i 0.115816 + 0.432232i
\(521\) 13.0000i 0.569540i −0.958596 0.284770i \(-0.908083\pi\)
0.958596 0.284770i \(-0.0919173\pi\)
\(522\) −5.19615 + 9.00000i −0.227429 + 0.393919i
\(523\) −7.53590 7.53590i −0.329522 0.329522i 0.522883 0.852405i \(-0.324857\pi\)
−0.852405 + 0.522883i \(0.824857\pi\)
\(524\) −15.6603 + 4.19615i −0.684121 + 0.183310i
\(525\) 18.5885i 0.811267i
\(526\) −3.92820 1.05256i −0.171278 0.0458937i
\(527\) 1.53590 + 2.66025i 0.0669048 + 0.115882i
\(528\) 21.4641 21.4641i 0.934105 0.934105i
\(529\) −0.303848 + 0.526279i −0.0132108 + 0.0228817i
\(530\) −10.9282 + 10.9282i −0.474691 + 0.474691i
\(531\) −21.9904 + 5.89230i −0.954301 + 0.255704i
\(532\) 12.9282 12.9282i 0.560509 0.560509i
\(533\) −10.0981 + 2.70577i −0.437396 + 0.117200i
\(534\) −1.26795 + 4.73205i −0.0548695 + 0.204776i
\(535\) −15.8372 + 9.14359i −0.684701 + 0.395312i
\(536\) −16.7321 + 9.66025i −0.722715 + 0.417259i
\(537\) 4.56218 1.22243i 0.196873 0.0527518i
\(538\) −1.26795 + 2.19615i −0.0546652 + 0.0946829i
\(539\) −1.43782 1.43782i −0.0619314 0.0619314i
\(540\) 10.3923 2.78461i 0.447214 0.119831i
\(541\) 2.19615 2.19615i 0.0944200 0.0944200i −0.658319 0.752739i \(-0.728732\pi\)
0.752739 + 0.658319i \(0.228732\pi\)
\(542\) 0.535898 0.143594i 0.0230188 0.00616787i
\(543\) 4.68653 + 17.4904i 0.201118 + 0.750584i
\(544\) 8.39230 31.3205i 0.359817 1.34286i
\(545\) 7.85641 + 13.6077i 0.336531 + 0.582890i
\(546\) 11.6603 + 20.1962i 0.499013 + 0.864316i
\(547\) −8.74167 32.6244i −0.373767 1.39492i −0.855138 0.518400i \(-0.826528\pi\)
0.481371 0.876517i \(1.65986\pi\)
\(548\) −19.0718 −0.814707
\(549\) 24.5885 24.5885i 1.04941 1.04941i
\(550\) 24.3397 1.03785
\(551\) 7.09808 + 4.09808i 0.302388 + 0.174584i
\(552\) 16.3923 16.3923i 0.697703 0.697703i
\(553\) 28.3923 16.3923i 1.20736 0.697072i
\(554\) −31.9808 + 18.4641i −1.35873 + 0.784465i
\(555\) 12.0000 0.509372
\(556\) −6.12436 22.8564i −0.259731 0.969328i
\(557\) −14.8038 + 14.8038i −0.627259 + 0.627259i −0.947378 0.320118i \(-0.896277\pi\)
0.320118 + 0.947378i \(0.396277\pi\)
\(558\) −0.588457 + 2.19615i −0.0249114 + 0.0929705i
\(559\) 30.0526 1.27109
\(560\) −2.92820 10.9282i −0.123739 0.461801i
\(561\) −42.0167 11.2583i −1.77394 0.475327i
\(562\) −13.6603 3.66025i −0.576223 0.154398i
\(563\) 26.9904 + 7.23205i 1.13751 + 0.304795i 0.777949 0.628327i \(-0.216260\pi\)
0.359560 + 0.933122i \(0.382927\pi\)
\(564\) −13.2679 + 22.9808i −0.558681 + 0.967665i
\(565\) 13.8564 3.71281i 0.582943 0.156199i
\(566\) 28.6410i 1.20387i
\(567\) 21.2942 12.2942i 0.894274 0.516309i
\(568\) 5.85641 + 5.85641i 0.245729 + 0.245729i
\(569\) 18.4019 + 10.6244i 0.771449 + 0.445396i 0.833391 0.552684i \(-0.186396\pi\)
−0.0619424 + 0.998080i \(0.519730\pi\)
\(570\) −2.19615 8.19615i −0.0919867 0.343299i
\(571\) 0.892305 3.33013i 0.0373418 0.139361i −0.944738 0.327825i \(-0.893684\pi\)
0.982080 + 0.188464i \(0.0603509\pi\)
\(572\) 26.4449 15.2679i 1.10572 0.638385i
\(573\) 36.0788 20.8301i 1.50722 0.870191i
\(574\) 11.1962 3.00000i 0.467318 0.125218i
\(575\) 18.5885 0.775192
\(576\) 20.7846 12.0000i 0.866025 0.500000i
\(577\) −5.78461 −0.240816 −0.120408 0.992724i \(-0.538420\pi\)
−0.120408 + 0.992724i \(0.538420\pi\)
\(578\) −21.6603 + 5.80385i −0.900948 + 0.241408i
\(579\) 37.6410i 1.56431i
\(580\) 4.39230 2.53590i 0.182381 0.105297i
\(581\) 1.00000 3.73205i 0.0414870 0.154832i
\(582\) −20.3205 + 20.3205i −0.842312 + 0.842312i
\(583\) 40.0526 + 23.1244i 1.65881 + 0.957713i
\(584\) −12.5359 12.5359i −0.518739 0.518739i
\(585\) 10.8231 0.447480
\(586\) 7.85641i 0.324545i
\(587\) −26.9904 + 7.23205i −1.11401 + 0.298499i −0.768458 0.639900i \(-0.778976\pi\)
−0.345554 + 0.938399i \(0.612309\pi\)
\(588\) −0.803848 1.39230i −0.0331501 0.0574177i
\(589\) 1.73205 + 0.464102i 0.0713679 + 0.0191230i
\(590\) 10.7321 + 2.87564i 0.441832 + 0.118388i
\(591\) −8.66025 32.3205i −0.356235 1.32949i
\(592\) 25.8564 6.92820i 1.06269 0.284747i
\(593\) 17.4641 0.717165 0.358582 0.933498i \(-0.383260\pi\)
0.358582 + 0.933498i \(0.383260\pi\)
\(594\) −16.0981 27.8827i −0.660512 1.14404i
\(595\) −11.4641 + 11.4641i −0.469982 + 0.469982i
\(596\) 4.19615 + 15.6603i 0.171881 + 0.641469i
\(597\) −21.7583 + 37.6865i −0.890509 + 1.54241i
\(598\) 20.1962 11.6603i 0.825882 0.476823i
\(599\) −11.3205 + 6.53590i −0.462543 + 0.267050i −0.713113 0.701049i \(-0.752715\pi\)
0.250570 + 0.968099i \(0.419382\pi\)
\(600\) 18.5885 + 4.98076i 0.758871 + 0.203339i
\(601\) 20.5526 + 11.8660i 0.838356 + 0.484025i 0.856705 0.515806i \(-0.172508\pi\)
−0.0183488 + 0.999832i \(0.505841\pi\)
\(602\) −33.3205 −1.35804
\(603\) 5.30385 + 19.7942i 0.215989 + 0.806083i
\(604\) −1.46410 −0.0595734
\(605\) 2.19615 + 8.19615i 0.0892863 + 0.333221i
\(606\) −5.07180 −0.206028
\(607\) −8.58846 14.8756i −0.348595 0.603784i 0.637405 0.770529i \(-0.280008\pi\)
−0.986000 + 0.166745i \(0.946674\pi\)
\(608\) −9.46410 16.3923i −0.383820 0.664796i
\(609\) 8.19615 8.19615i 0.332125 0.332125i
\(610\) −16.3923 + 4.39230i −0.663705 + 0.177839i
\(611\) −18.8756 + 18.8756i −0.763627 + 0.763627i
\(612\) −29.7846 17.1962i −1.20397 0.695113i
\(613\) −15.6603 15.6603i −0.632512 0.632512i 0.316186 0.948697i \(-0.397598\pi\)
−0.948697 + 0.316186i \(0.897598\pi\)
\(614\) −3.02628 + 5.24167i −0.122131 + 0.211537i
\(615\) 1.39230 5.19615i 0.0561432 0.209529i
\(616\) −29.3205 + 16.9282i −1.18136 + 0.682057i
\(617\) 35.0885 20.2583i 1.41261 0.815570i 0.416975 0.908918i \(-0.363090\pi\)
0.995633 + 0.0933485i \(0.0297571\pi\)
\(618\) −35.7846 + 9.58846i −1.43947 + 0.385704i
\(619\) −15.5981 + 4.17949i −0.626940 + 0.167988i −0.558281 0.829652i \(-0.688539\pi\)
−0.0686590 + 0.997640i \(0.521872\pi\)
\(620\) 0.784610 0.784610i 0.0315107 0.0315107i
\(621\) −12.2942 21.2942i −0.493350 0.854508i
\(622\) −22.0526 + 22.0526i −0.884227 + 0.884227i
\(623\) 2.73205 4.73205i 0.109457 0.189586i
\(624\) 23.3205 6.24871i 0.933567 0.250149i
\(625\) 5.03590 + 8.72243i 0.201436 + 0.348897i
\(626\) 29.4186 + 7.88269i 1.17580 + 0.315055i
\(627\) −21.9904 + 12.6962i −0.878211 + 0.507035i
\(628\) −9.46410 + 2.53590i −0.377659 + 0.101193i
\(629\) −27.1244 27.1244i −1.08152 1.08152i
\(630\) −12.0000 −0.478091
\(631\) 17.6077i 0.700951i −0.936572 0.350476i \(-0.886020\pi\)
0.936572 0.350476i \(-0.113980\pi\)
\(632\) −8.78461 32.7846i −0.349433 1.30410i
\(633\) −5.19615 5.19615i −0.206529 0.206529i
\(634\) −15.0526 26.0718i −0.597813 1.03544i
\(635\) −1.12436 + 4.19615i −0.0446187 + 0.166519i
\(636\) 25.8564 + 25.8564i 1.02527 + 1.02527i
\(637\) −0.418584 1.56218i −0.0165849 0.0618957i
\(638\) −10.7321 10.7321i −0.424886 0.424886i
\(639\) 7.60770 4.39230i 0.300956 0.173757i
\(640\) −11.7128 −0.462990
\(641\) −19.7942 + 34.2846i −0.781825 + 1.35416i 0.149053 + 0.988829i \(0.452378\pi\)
−0.930878 + 0.365331i \(0.880956\pi\)
\(642\) 21.6340 + 37.4711i 0.853825 + 1.47887i
\(643\) 8.76795 + 2.34936i 0.345774 + 0.0926499i 0.427527 0.904003i \(-0.359385\pi\)
−0.0817525 + 0.996653i \(0.526052\pi\)
\(644\) −22.3923 + 12.9282i −0.882380 + 0.509443i
\(645\) −7.73205 + 13.3923i −0.304449 + 0.527321i
\(646\) −13.5622 + 23.4904i −0.533597 + 0.924217i
\(647\) 16.7321i 0.657805i −0.944364 0.328902i \(-0.893321\pi\)
0.944364 0.328902i \(-0.106679\pi\)
\(648\) −6.58846 24.5885i −0.258819 0.965926i
\(649\) 33.2487i 1.30513i
\(650\) 16.7654 + 9.67949i 0.657592 + 0.379661i
\(651\) 1.26795 2.19615i 0.0496948 0.0860740i
\(652\) −5.12436 + 19.1244i −0.200685 + 0.748968i
\(653\) −27.4904 7.36603i −1.07578 0.288255i −0.322915 0.946428i \(-0.604663\pi\)
−0.752867 + 0.658173i \(0.771329\pi\)
\(654\) 32.1962 18.5885i 1.25897 0.726866i
\(655\) 4.19615 7.26795i 0.163957 0.283982i
\(656\) 12.0000i 0.468521i
\(657\) −16.2846 + 9.40192i −0.635323 + 0.366804i
\(658\) 20.9282 20.9282i 0.815866 0.815866i
\(659\) 4.02628 + 15.0263i 0.156842 + 0.585341i 0.998941 + 0.0460178i \(0.0146531\pi\)
−0.842099 + 0.539323i \(0.818680\pi\)
\(660\) 15.7128i 0.611620i
\(661\) 2.19615 8.19615i 0.0854204 0.318793i −0.909973 0.414667i \(-0.863898\pi\)
0.995393 + 0.0958740i \(0.0305646\pi\)
\(662\) 0.124356 0.0717968i 0.00483322 0.00279046i
\(663\) −24.4641 24.4641i −0.950107 0.950107i
\(664\) −3.46410 2.00000i −0.134433 0.0776151i
\(665\) 9.46410i 0.367002i
\(666\) 28.3923i 1.10018i
\(667\) −8.19615 8.19615i −0.317356 0.317356i
\(668\) −7.46410 + 12.9282i −0.288795 + 0.500207i
\(669\) 24.0788 13.9019i 0.930942 0.537479i
\(670\) 2.58846 9.66025i 0.100001 0.373208i
\(671\) 25.3923 + 43.9808i 0.980259 + 1.69786i
\(672\) −25.8564 + 6.92820i −0.997433 + 0.267261i
\(673\) 19.1962 33.2487i 0.739957 1.28164i −0.212557 0.977149i \(-0.568179\pi\)
0.952514 0.304495i \(-0.0984877\pi\)
\(674\) −17.7846 17.7846i −0.685038 0.685038i
\(675\) 10.2058 17.6769i 0.392820 0.680385i
\(676\) −1.71281 −0.0658774
\(677\) −4.73205 + 1.26795i −0.181867 + 0.0487312i −0.348603 0.937270i \(-0.613344\pi\)
0.166736 + 0.986002i \(0.446677\pi\)
\(678\) −8.78461 32.7846i −0.337371 1.25909i
\(679\) 27.7583 16.0263i 1.06527 0.615032i
\(680\) 8.39230 + 14.5359i 0.321830 + 0.557426i
\(681\) −0.990381 + 3.69615i −0.0379515 + 0.141637i
\(682\) −2.87564 1.66025i −0.110114 0.0635744i
\(683\) −20.2942 20.2942i −0.776537 0.776537i 0.202703 0.979240i \(-0.435027\pi\)
−0.979240 + 0.202703i \(0.935027\pi\)
\(684\) −19.3923 + 5.19615i −0.741483 + 0.198680i
\(685\) 6.98076 6.98076i 0.266721 0.266721i
\(686\) −6.53590 24.3923i −0.249542 0.931303i
\(687\) 8.66025 8.66025i 0.330409 0.330409i
\(688\) −8.92820 + 33.3205i −0.340385 + 1.27033i
\(689\) 18.3923 + 31.8564i 0.700691 + 1.21363i
\(690\) 12.0000i 0.456832i
\(691\) −2.49038 9.29423i −0.0947386 0.353569i 0.902241 0.431232i \(-0.141921\pi\)
−0.996980 + 0.0776628i \(0.975254\pi\)
\(692\) −2.39230 2.39230i −0.0909418 0.0909418i
\(693\) 9.29423 + 34.6865i 0.353059 + 1.31763i
\(694\) 25.8038i 0.979501i
\(695\) 10.6077 + 6.12436i 0.402373 + 0.232310i
\(696\) −6.00000 10.3923i −0.227429 0.393919i
\(697\) −14.8923 + 8.59808i −0.564086 + 0.325675i
\(698\) 11.6603 + 20.1962i 0.441347 + 0.764436i
\(699\) 2.76795 4.79423i 0.104693 0.181334i
\(700\) −18.5885 10.7321i −0.702578 0.405633i
\(701\) −6.66025 + 6.66025i −0.251554 + 0.251554i −0.821608 0.570053i \(-0.806923\pi\)
0.570053 + 0.821608i \(0.306923\pi\)
\(702\) 25.6077i 0.966500i
\(703\) −22.3923 −0.844542
\(704\) 9.07180 + 33.8564i 0.341906 + 1.27601i
\(705\) −3.55514 13.2679i −0.133894 0.499700i
\(706\) −5.24167 + 19.5622i −0.197273 + 0.736232i
\(707\) 5.46410 + 1.46410i 0.205499 + 0.0550632i
\(708\) 6.80385 25.3923i 0.255704 0.954301i
\(709\) 36.5885 9.80385i 1.37411 0.368191i 0.505131 0.863043i \(-0.331444\pi\)
0.868978 + 0.494852i \(0.164778\pi\)
\(710\) −4.28719 −0.160895
\(711\) −36.0000 −1.35011
\(712\) −4.00000 4.00000i −0.149906 0.149906i
\(713\) −2.19615 1.26795i −0.0822466 0.0474851i
\(714\) 27.1244 + 27.1244i 1.01510 + 1.01510i
\(715\) −4.09103 + 15.2679i −0.152996 + 0.570989i
\(716\) −1.41154 + 5.26795i −0.0527518 + 0.196873i
\(717\) 27.3731i 1.02227i
\(718\) 4.12436 + 15.3923i 0.153920 + 0.574436i
\(719\) 4.39230 0.163805 0.0819027 0.996640i \(-0.473900\pi\)
0.0819027 + 0.996640i \(0.473900\pi\)
\(720\) −3.21539 + 12.0000i −0.119831 + 0.447214i
\(721\) 41.3205 1.53886
\(722\) −2.85641 10.6603i −0.106304 0.396734i
\(723\) 34.7942 20.0885i 1.29401 0.747098i
\(724\) −20.1962 5.41154i −0.750584 0.201118i
\(725\) 2.49038 9.29423i 0.0924904 0.345179i
\(726\) 19.3923 5.19615i 0.719716 0.192847i
\(727\) 28.8109 + 16.6340i 1.06854 + 0.616920i 0.927781 0.373124i \(-0.121714\pi\)
0.140755 + 0.990044i \(0.455047\pi\)
\(728\) −26.9282 −0.998026
\(729\) −27.0000 −1.00000
\(730\) 9.17691 0.339653
\(731\) 47.7487 12.7942i 1.76605 0.473212i
\(732\) 10.3923 + 38.7846i 0.384111 + 1.43352i
\(733\) −11.0263 2.95448i −0.407265 0.109126i 0.0493698 0.998781i \(-0.484279\pi\)
−0.456635 + 0.889654i \(0.650945\pi\)
\(734\) −10.3397 + 38.5885i −0.381647 + 1.42433i
\(735\) 0.803848 + 0.215390i 0.0296504 + 0.00794479i
\(736\) 6.92820 + 25.8564i 0.255377 + 0.953080i
\(737\) −29.9282 −1.10242
\(738\) −12.2942 3.29423i −0.452557 0.121262i
\(739\) −8.22243 + 8.22243i −0.302467 + 0.302467i −0.841978 0.539511i \(-0.818609\pi\)
0.539511 + 0.841978i \(0.318609\pi\)
\(740\) −6.92820 + 12.0000i −0.254686 + 0.441129i
\(741\) −20.1962 −0.741924
\(742\) −20.3923 35.3205i −0.748625 1.29666i
\(743\) −24.7583 + 14.2942i −0.908295 + 0.524404i −0.879882 0.475192i \(-0.842379\pi\)
−0.0284129 + 0.999596i \(0.509045\pi\)
\(744\) −1.85641 1.85641i −0.0680592 0.0680592i
\(745\) −7.26795 4.19615i −0.266277 0.153735i
\(746\) 40.2487i 1.47361i
\(747\) −3.00000 + 3.00000i −0.109764 + 0.109764i
\(748\) 35.5167 35.5167i 1.29862 1.29862i
\(749\) −12.4904 46.6147i −0.456389 1.70327i
\(750\) −19.6077 + 11.3205i −0.715972 + 0.413367i
\(751\) −8.85641 15.3397i −0.323175 0.559755i 0.657966 0.753047i \(-0.271417\pi\)
−0.981141 + 0.193292i \(0.938084\pi\)
\(752\) −15.3205 26.5359i −0.558681 0.967665i
\(753\) 3.69615 + 13.7942i 0.134695 + 0.502690i
\(754\) −3.12436 11.6603i −0.113782 0.424641i
\(755\) 0.535898 0.535898i 0.0195033 0.0195033i
\(756\) 28.3923i 1.03262i
\(757\) −19.9282 19.9282i −0.724303 0.724303i 0.245176 0.969479i \(-0.421154\pi\)
−0.969479 + 0.245176i \(0.921154\pi\)
\(758\) −6.50962 3.75833i −0.236440 0.136509i
\(759\) 34.6865 9.29423i 1.25904 0.337359i
\(760\) 9.46410 + 2.53590i 0.343299 + 0.0919867i
\(761\) −45.3731 + 26.1962i −1.64477 + 0.949610i −0.665669 + 0.746247i \(0.731854\pi\)
−0.979104 + 0.203363i \(0.934813\pi\)
\(762\) 9.92820 + 2.66025i 0.359661 + 0.0963708i
\(763\) −40.0526 + 10.7321i −1.45000 + 0.388526i
\(764\) 48.1051i 1.74038i
\(765\) 17.1962 4.60770i 0.621728 0.166592i
\(766\) 13.4641 + 13.4641i 0.486478 + 0.486478i
\(767\) 13.2224 22.9019i 0.477434 0.826941i
\(768\) 27.7128i 1.00000i
\(769\) −14.1244 24.4641i −0.509337 0.882198i −0.999942 0.0108155i \(-0.996557\pi\)
0.490604 0.871383i \(-0.336776\pi\)
\(770\) 4.53590 16.9282i 0.163462 0.610050i
\(771\) 32.6603i 1.17623i
\(772\) −37.6410 21.7321i −1.35473 0.782154i
\(773\) 35.5885 + 35.5885i 1.28003 + 1.28003i 0.940650 + 0.339378i \(0.110216\pi\)
0.339378 + 0.940650i \(0.389784\pi\)
\(774\) 31.6865 + 18.2942i 1.13895 + 0.657572i
\(775\) 2.10512i 0.0756181i
\(776\) −8.58846 32.0526i −0.308308 1.15062i
\(777\) −8.19615 + 30.5885i −0.294035 + 1.09735i