Properties

Label 144.2.x.b.13.1
Level 144
Weight 2
Character 144.13
Analytic conductor 1.150
Analytic rank 1
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 13.1
Root \(-0.866025 - 0.500000i\) of \(x^{4} - x^{2} + 1\)
Character \(\chi\) \(=\) 144.13
Dual form 144.2.x.b.133.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-0.267949 - 1.00000i) q^{5} +(2.36603 - 0.633975i) q^{6} +(-2.36603 + 1.36603i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-0.267949 - 1.00000i) q^{5} +(2.36603 - 0.633975i) q^{6} +(-2.36603 + 1.36603i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(1.50000 - 2.59808i) q^{9} +1.46410i q^{10} +(-4.23205 - 1.13397i) q^{11} -3.46410 q^{12} +(-3.36603 + 0.901924i) q^{13} +(3.73205 - 1.00000i) q^{14} +(1.26795 + 1.26795i) q^{15} +(2.00000 + 3.46410i) q^{16} -5.73205 q^{17} +(-3.00000 + 3.00000i) q^{18} +(-2.36603 - 2.36603i) q^{19} +(0.535898 - 2.00000i) q^{20} +(2.36603 - 4.09808i) q^{21} +(5.36603 + 3.09808i) q^{22} +(4.09808 + 2.36603i) q^{23} +(4.73205 + 1.26795i) q^{24} +(3.40192 - 1.96410i) q^{25} +4.92820 q^{26} +5.19615i q^{27} -5.46410 q^{28} +(-0.633975 + 2.36603i) q^{29} +(-1.26795 - 2.19615i) q^{30} +(-0.267949 + 0.464102i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(7.33013 - 1.96410i) q^{33} +(7.83013 + 2.09808i) q^{34} +(2.00000 + 2.00000i) q^{35} +(5.19615 - 3.00000i) q^{36} +(4.73205 - 4.73205i) q^{37} +(2.36603 + 4.09808i) q^{38} +(4.26795 - 4.26795i) q^{39} +(-1.46410 + 2.53590i) q^{40} +(2.59808 + 1.50000i) q^{41} +(-4.73205 + 4.73205i) q^{42} +(-8.33013 - 2.23205i) q^{43} +(-6.19615 - 6.19615i) q^{44} +(-3.00000 - 0.803848i) q^{45} +(-4.73205 - 4.73205i) q^{46} +(3.83013 + 6.63397i) q^{47} +(-6.00000 - 3.46410i) q^{48} +(0.232051 - 0.401924i) q^{49} +(-5.36603 + 1.43782i) q^{50} +(8.59808 - 4.96410i) q^{51} +(-6.73205 - 1.80385i) q^{52} +(-7.46410 + 7.46410i) q^{53} +(1.90192 - 7.09808i) q^{54} +4.53590i q^{55} +(7.46410 + 2.00000i) q^{56} +(5.59808 + 1.50000i) q^{57} +(1.73205 - 3.00000i) q^{58} +(-1.96410 - 7.33013i) q^{59} +(0.928203 + 3.46410i) q^{60} +(-3.00000 + 11.1962i) q^{61} +(0.535898 - 0.535898i) q^{62} +8.19615i q^{63} +8.00000i q^{64} +(1.80385 + 3.12436i) q^{65} -10.7321 q^{66} +(6.59808 - 1.76795i) q^{67} +(-9.92820 - 5.73205i) q^{68} -8.19615 q^{69} +(-2.00000 - 3.46410i) q^{70} +2.92820i q^{71} +(-8.19615 + 2.19615i) q^{72} -6.26795i q^{73} +(-8.19615 + 4.73205i) q^{74} +(-3.40192 + 5.89230i) q^{75} +(-1.73205 - 6.46410i) q^{76} +(11.5622 - 3.09808i) q^{77} +(-7.39230 + 4.26795i) q^{78} +(-6.00000 - 10.3923i) q^{79} +(2.92820 - 2.92820i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-3.00000 - 3.00000i) q^{82} +(0.366025 - 1.36603i) q^{83} +(8.19615 - 4.73205i) q^{84} +(1.53590 + 5.73205i) q^{85} +(10.5622 + 6.09808i) q^{86} +(-1.09808 - 4.09808i) q^{87} +(6.19615 + 10.7321i) q^{88} -2.00000i q^{89} +(3.80385 + 2.19615i) q^{90} +(6.73205 - 6.73205i) q^{91} +(4.73205 + 8.19615i) q^{92} -0.928203i q^{93} +(-2.80385 - 10.4641i) q^{94} +(-1.73205 + 3.00000i) q^{95} +(6.92820 + 6.92820i) q^{96} +(-5.86603 - 10.1603i) q^{97} +(-0.464102 + 0.464102i) q^{98} +(-9.29423 + 9.29423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} + O(q^{10}) \) \( 4q - 2q^{2} - 6q^{3} - 8q^{5} + 6q^{6} - 6q^{7} - 8q^{8} + 6q^{9} - 10q^{11} - 10q^{13} + 8q^{14} + 12q^{15} + 8q^{16} - 16q^{17} - 12q^{18} - 6q^{19} + 16q^{20} + 6q^{21} + 18q^{22} + 6q^{23} + 12q^{24} + 24q^{25} - 8q^{26} - 8q^{28} - 6q^{29} - 12q^{30} - 8q^{31} + 8q^{32} + 12q^{33} + 14q^{34} + 8q^{35} + 12q^{37} + 6q^{38} + 24q^{39} + 8q^{40} - 12q^{42} - 16q^{43} - 4q^{44} - 12q^{45} - 12q^{46} - 2q^{47} - 24q^{48} - 6q^{49} - 18q^{50} + 24q^{51} - 20q^{52} - 16q^{53} + 18q^{54} + 16q^{56} + 12q^{57} + 6q^{59} - 24q^{60} - 12q^{61} + 16q^{62} + 28q^{65} - 36q^{66} + 16q^{67} - 12q^{68} - 12q^{69} - 8q^{70} - 12q^{72} - 12q^{74} - 24q^{75} + 22q^{77} + 12q^{78} - 24q^{79} - 16q^{80} - 18q^{81} - 12q^{82} - 2q^{83} + 12q^{84} + 20q^{85} + 18q^{86} + 6q^{87} + 4q^{88} + 36q^{90} + 20q^{91} + 12q^{92} - 32q^{94} - 20q^{97} + 12q^{98} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −0.267949 1.00000i −0.119831 0.447214i 0.879772 0.475395i \(-0.157695\pi\)
−0.999603 + 0.0281817i \(0.991028\pi\)
\(6\) 2.36603 0.633975i 0.965926 0.258819i
\(7\) −2.36603 + 1.36603i −0.894274 + 0.516309i −0.875338 0.483512i \(-0.839361\pi\)
−0.0189356 + 0.999821i \(0.506028\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 1.46410i 0.462990i
\(11\) −4.23205 1.13397i −1.27601 0.341906i −0.443680 0.896185i \(-0.646327\pi\)
−0.832331 + 0.554279i \(0.812994\pi\)
\(12\) −3.46410 −1.00000
\(13\) −3.36603 + 0.901924i −0.933567 + 0.250149i −0.693375 0.720577i \(-0.743877\pi\)
−0.240192 + 0.970725i \(0.577210\pi\)
\(14\) 3.73205 1.00000i 0.997433 0.267261i
\(15\) 1.26795 + 1.26795i 0.327383 + 0.327383i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) −5.73205 −1.39023 −0.695113 0.718900i \(-0.744646\pi\)
−0.695113 + 0.718900i \(0.744646\pi\)
\(18\) −3.00000 + 3.00000i −0.707107 + 0.707107i
\(19\) −2.36603 2.36603i −0.542803 0.542803i 0.381546 0.924350i \(-0.375392\pi\)
−0.924350 + 0.381546i \(0.875392\pi\)
\(20\) 0.535898 2.00000i 0.119831 0.447214i
\(21\) 2.36603 4.09808i 0.516309 0.894274i
\(22\) 5.36603 + 3.09808i 1.14404 + 0.660512i
\(23\) 4.09808 + 2.36603i 0.854508 + 0.493350i 0.862169 0.506620i \(-0.169105\pi\)
−0.00766135 + 0.999971i \(0.502439\pi\)
\(24\) 4.73205 + 1.26795i 0.965926 + 0.258819i
\(25\) 3.40192 1.96410i 0.680385 0.392820i
\(26\) 4.92820 0.966500
\(27\) 5.19615i 1.00000i
\(28\) −5.46410 −1.03262
\(29\) −0.633975 + 2.36603i −0.117726 + 0.439360i −0.999476 0.0323566i \(-0.989699\pi\)
0.881750 + 0.471717i \(0.156365\pi\)
\(30\) −1.26795 2.19615i −0.231495 0.400961i
\(31\) −0.267949 + 0.464102i −0.0481251 + 0.0833551i −0.889085 0.457743i \(-0.848658\pi\)
0.840959 + 0.541098i \(0.181991\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 7.33013 1.96410i 1.27601 0.341906i
\(34\) 7.83013 + 2.09808i 1.34286 + 0.359817i
\(35\) 2.00000 + 2.00000i 0.338062 + 0.338062i
\(36\) 5.19615 3.00000i 0.866025 0.500000i
\(37\) 4.73205 4.73205i 0.777944 0.777944i −0.201537 0.979481i \(-0.564594\pi\)
0.979481 + 0.201537i \(0.0645935\pi\)
\(38\) 2.36603 + 4.09808i 0.383820 + 0.664796i
\(39\) 4.26795 4.26795i 0.683419 0.683419i
\(40\) −1.46410 + 2.53590i −0.231495 + 0.400961i
\(41\) 2.59808 + 1.50000i 0.405751 + 0.234261i 0.688963 0.724797i \(-0.258066\pi\)
−0.283211 + 0.959058i \(0.591400\pi\)
\(42\) −4.73205 + 4.73205i −0.730171 + 0.730171i
\(43\) −8.33013 2.23205i −1.27033 0.340385i −0.440174 0.897912i \(-0.645083\pi\)
−0.830158 + 0.557528i \(0.811750\pi\)
\(44\) −6.19615 6.19615i −0.934105 0.934105i
\(45\) −3.00000 0.803848i −0.447214 0.119831i
\(46\) −4.73205 4.73205i −0.697703 0.697703i
\(47\) 3.83013 + 6.63397i 0.558681 + 0.967665i 0.997607 + 0.0691412i \(0.0220259\pi\)
−0.438925 + 0.898523i \(0.644641\pi\)
\(48\) −6.00000 3.46410i −0.866025 0.500000i
\(49\) 0.232051 0.401924i 0.0331501 0.0574177i
\(50\) −5.36603 + 1.43782i −0.758871 + 0.203339i
\(51\) 8.59808 4.96410i 1.20397 0.695113i
\(52\) −6.73205 1.80385i −0.933567 0.250149i
\(53\) −7.46410 + 7.46410i −1.02527 + 1.02527i −0.0256010 + 0.999672i \(0.508150\pi\)
−0.999672 + 0.0256010i \(0.991850\pi\)
\(54\) 1.90192 7.09808i 0.258819 0.965926i
\(55\) 4.53590i 0.611620i
\(56\) 7.46410 + 2.00000i 0.997433 + 0.267261i
\(57\) 5.59808 + 1.50000i 0.741483 + 0.198680i
\(58\) 1.73205 3.00000i 0.227429 0.393919i
\(59\) −1.96410 7.33013i −0.255704 0.954301i −0.967697 0.252115i \(-0.918874\pi\)
0.711993 0.702186i \(1.75221\pi\)
\(60\) 0.928203 + 3.46410i 0.119831 + 0.447214i
\(61\) −3.00000 + 11.1962i −0.384111 + 1.43352i 0.455453 + 0.890260i \(0.349477\pi\)
−0.839564 + 0.543261i \(0.817189\pi\)
\(62\) 0.535898 0.535898i 0.0680592 0.0680592i
\(63\) 8.19615i 1.03262i
\(64\) 8.00000i 1.00000i
\(65\) 1.80385 + 3.12436i 0.223740 + 0.387529i
\(66\) −10.7321 −1.32102
\(67\) 6.59808 1.76795i 0.806083 0.215989i 0.167830 0.985816i \(-0.446324\pi\)
0.638253 + 0.769827i \(0.279657\pi\)
\(68\) −9.92820 5.73205i −1.20397 0.695113i
\(69\) −8.19615 −0.986701
\(70\) −2.00000 3.46410i −0.239046 0.414039i
\(71\) 2.92820i 0.347514i 0.984789 + 0.173757i \(0.0555907\pi\)
−0.984789 + 0.173757i \(0.944409\pi\)
\(72\) −8.19615 + 2.19615i −0.965926 + 0.258819i
\(73\) 6.26795i 0.733608i −0.930298 0.366804i \(-0.880452\pi\)
0.930298 0.366804i \(-0.119548\pi\)
\(74\) −8.19615 + 4.73205i −0.952783 + 0.550090i
\(75\) −3.40192 + 5.89230i −0.392820 + 0.680385i
\(76\) −1.73205 6.46410i −0.198680 0.741483i
\(77\) 11.5622 3.09808i 1.31763 0.353059i
\(78\) −7.39230 + 4.26795i −0.837014 + 0.483250i
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) 2.92820 2.92820i 0.327383 0.327383i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −3.00000 3.00000i −0.331295 0.331295i
\(83\) 0.366025 1.36603i 0.0401765 0.149941i −0.942924 0.333009i \(-0.891936\pi\)
0.983100 + 0.183068i \(0.0586028\pi\)
\(84\) 8.19615 4.73205i 0.894274 0.516309i
\(85\) 1.53590 + 5.73205i 0.166592 + 0.621728i
\(86\) 10.5622 + 6.09808i 1.13895 + 0.657572i
\(87\) −1.09808 4.09808i −0.117726 0.439360i
\(88\) 6.19615 + 10.7321i 0.660512 + 1.14404i
\(89\) 2.00000i 0.212000i −0.994366 0.106000i \(-0.966196\pi\)
0.994366 0.106000i \(-0.0338043\pi\)
\(90\) 3.80385 + 2.19615i 0.400961 + 0.231495i
\(91\) 6.73205 6.73205i 0.705711 0.705711i
\(92\) 4.73205 + 8.19615i 0.493350 + 0.854508i
\(93\) 0.928203i 0.0962502i
\(94\) −2.80385 10.4641i −0.289195 1.07929i
\(95\) −1.73205 + 3.00000i −0.177705 + 0.307794i
\(96\) 6.92820 + 6.92820i 0.707107 + 0.707107i
\(97\) −5.86603 10.1603i −0.595605 1.03162i −0.993461 0.114170i \(-0.963579\pi\)
0.397857 0.917448i \(-0.369754\pi\)
\(98\) −0.464102 + 0.464102i −0.0468813 + 0.0468813i
\(99\) −9.29423 + 9.29423i −0.934105 + 0.934105i
\(100\) 7.85641 0.785641
\(101\) −2.00000 0.535898i −0.199007 0.0533239i 0.157938 0.987449i \(-0.449515\pi\)
−0.356946 + 0.934125i \(0.616182\pi\)
\(102\) −13.5622 + 3.63397i −1.34286 + 0.359817i
\(103\) −13.0981 7.56218i −1.29059 0.745124i −0.311833 0.950137i \(-0.600943\pi\)
−0.978759 + 0.205014i \(0.934276\pi\)
\(104\) 8.53590 + 4.92820i 0.837014 + 0.483250i
\(105\) −4.73205 1.26795i −0.461801 0.123739i
\(106\) 12.9282 7.46410i 1.25570 0.724978i
\(107\) 12.4904 12.4904i 1.20749 1.20749i 0.235654 0.971837i \(-0.424277\pi\)
0.971837 0.235654i \(-0.0757231\pi\)
\(108\) −5.19615 + 9.00000i −0.500000 + 0.866025i
\(109\) 10.7321 + 10.7321i 1.02794 + 1.02794i 0.999598 + 0.0283459i \(0.00902398\pi\)
0.0283459 + 0.999598i \(0.490976\pi\)
\(110\) 1.66025 6.19615i 0.158299 0.590780i
\(111\) −3.00000 + 11.1962i −0.284747 + 1.06269i
\(112\) −9.46410 5.46410i −0.894274 0.516309i
\(113\) −6.92820 + 12.0000i −0.651751 + 1.12887i 0.330947 + 0.943649i \(0.392632\pi\)
−0.982698 + 0.185216i \(0.940702\pi\)
\(114\) −7.09808 4.09808i −0.664796 0.383820i
\(115\) 1.26795 4.73205i 0.118237 0.441266i
\(116\) −3.46410 + 3.46410i −0.321634 + 0.321634i
\(117\) −2.70577 + 10.0981i −0.250149 + 0.933567i
\(118\) 10.7321i 0.987965i
\(119\) 13.5622 7.83013i 1.24324 0.717787i
\(120\) 5.07180i 0.462990i
\(121\) 7.09808 + 4.09808i 0.645280 + 0.372552i
\(122\) 8.19615 14.1962i 0.742045 1.28526i
\(123\) −5.19615 −0.468521
\(124\) −0.928203 + 0.535898i −0.0833551 + 0.0481251i
\(125\) −6.53590 6.53590i −0.584589 0.584589i
\(126\) 3.00000 11.1962i 0.267261 0.997433i
\(127\) 4.19615 0.372348 0.186174 0.982517i \(-0.440391\pi\)
0.186174 + 0.982517i \(0.440391\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 14.4282 3.86603i 1.27033 0.340385i
\(130\) −1.32051 4.92820i −0.115816 0.432232i
\(131\) −7.83013 + 2.09808i −0.684121 + 0.183310i −0.584108 0.811676i \(-0.698555\pi\)
−0.100014 + 0.994986i \(0.531889\pi\)
\(132\) 14.6603 + 3.92820i 1.27601 + 0.341906i
\(133\) 8.83013 + 2.36603i 0.765669 + 0.205160i
\(134\) −9.66025 −0.834519
\(135\) 5.19615 1.39230i 0.447214 0.119831i
\(136\) 11.4641 + 11.4641i 0.983039 + 0.983039i
\(137\) −8.25833 + 4.76795i −0.705557 + 0.407353i −0.809414 0.587239i \(-0.800215\pi\)
0.103857 + 0.994592i \(0.466882\pi\)
\(138\) 11.1962 + 3.00000i 0.953080 + 0.255377i
\(139\) 3.06218 + 11.4282i 0.259731 + 0.969328i 0.965397 + 0.260784i \(0.0839809\pi\)
−0.705667 + 0.708544i \(0.749352\pi\)
\(140\) 1.46410 + 5.46410i 0.123739 + 0.461801i
\(141\) −11.4904 6.63397i −0.967665 0.558681i
\(142\) 1.07180 4.00000i 0.0899432 0.335673i
\(143\) 15.2679 1.27677
\(144\) 12.0000 1.00000
\(145\) 2.53590 0.210595
\(146\) −2.29423 + 8.56218i −0.189872 + 0.708611i
\(147\) 0.803848i 0.0663002i
\(148\) 12.9282 3.46410i 1.06269 0.284747i
\(149\) −2.09808 7.83013i −0.171881 0.641469i −0.997062 0.0766003i \(-0.975593\pi\)
0.825181 0.564869i \(1.80893\pi\)
\(150\) 6.80385 6.80385i 0.555532 0.555532i
\(151\) −0.633975 + 0.366025i −0.0515921 + 0.0297867i −0.525574 0.850748i \(-0.676149\pi\)
0.473982 + 0.880534i \(0.342816\pi\)
\(152\) 9.46410i 0.767640i
\(153\) −8.59808 + 14.8923i −0.695113 + 1.20397i
\(154\) −16.9282 −1.36411
\(155\) 0.535898 + 0.143594i 0.0430444 + 0.0115337i
\(156\) 11.6603 3.12436i 0.933567 0.250149i
\(157\) −4.73205 + 1.26795i −0.377659 + 0.101193i −0.442655 0.896692i \(-0.645963\pi\)
0.0649959 + 0.997886i \(0.479297\pi\)
\(158\) 4.39230 + 16.3923i 0.349433 + 1.30410i
\(159\) 4.73205 17.6603i 0.375276 1.40055i
\(160\) −5.07180 + 2.92820i −0.400961 + 0.231495i
\(161\) −12.9282 −1.01889
\(162\) 3.29423 + 12.2942i 0.258819 + 0.965926i
\(163\) −7.00000 7.00000i −0.548282 0.548282i 0.377661 0.925944i \(-0.376728\pi\)
−0.925944 + 0.377661i \(0.876728\pi\)
\(164\) 3.00000 + 5.19615i 0.234261 + 0.405751i
\(165\) −3.92820 6.80385i −0.305810 0.529679i
\(166\) −1.00000 + 1.73205i −0.0776151 + 0.134433i
\(167\) −6.46410 3.73205i −0.500207 0.288795i 0.228592 0.973522i \(-0.426588\pi\)
−0.728799 + 0.684728i \(0.759921\pi\)
\(168\) −12.9282 + 3.46410i −0.997433 + 0.267261i
\(169\) −0.741670 + 0.428203i −0.0570515 + 0.0329387i
\(170\) 8.39230i 0.643660i
\(171\) −9.69615 + 2.59808i −0.741483 + 0.198680i
\(172\) −12.1962 12.1962i −0.929948 0.929948i
\(173\) −0.437822 + 1.63397i −0.0332870 + 0.124229i −0.980570 0.196169i \(-0.937150\pi\)
0.947283 + 0.320398i \(0.103817\pi\)
\(174\) 6.00000i 0.454859i
\(175\) −5.36603 + 9.29423i −0.405633 + 0.702578i
\(176\) −4.53590 16.9282i −0.341906 1.27601i
\(177\) 9.29423 + 9.29423i 0.698597 + 0.698597i
\(178\) −0.732051 + 2.73205i −0.0548695 + 0.204776i
\(179\) −1.92820 1.92820i −0.144121 0.144121i 0.631365 0.775486i \(-0.282495\pi\)
−0.775486 + 0.631365i \(0.782495\pi\)
\(180\) −4.39230 4.39230i −0.327383 0.327383i
\(181\) −7.39230 + 7.39230i −0.549466 + 0.549466i −0.926286 0.376821i \(-0.877017\pi\)
0.376821 + 0.926286i \(0.377017\pi\)
\(182\) −11.6603 + 6.73205i −0.864316 + 0.499013i
\(183\) −5.19615 19.3923i −0.384111 1.43352i
\(184\) −3.46410 12.9282i −0.255377 0.953080i
\(185\) −6.00000 3.46410i −0.441129 0.254686i
\(186\) −0.339746 + 1.26795i −0.0249114 + 0.0929705i
\(187\) 24.2583 + 6.50000i 1.77394 + 0.475327i
\(188\) 15.3205i 1.11736i
\(189\) −7.09808 12.2942i −0.516309 0.894274i
\(190\) 3.46410 3.46410i 0.251312 0.251312i
\(191\) −12.0263 20.8301i −0.870191 1.50722i −0.861799 0.507250i \(-0.830662\pi\)
−0.00839227 0.999965i \(-0.502671\pi\)
\(192\) −6.92820 12.0000i −0.500000 0.866025i
\(193\) −10.8660 + 18.8205i −0.782154 + 1.35473i 0.148531 + 0.988908i \(0.452545\pi\)
−0.930685 + 0.365822i \(0.880788\pi\)
\(194\) 4.29423 + 16.0263i 0.308308 + 1.15062i
\(195\) −5.41154 3.12436i −0.387529 0.223740i
\(196\) 0.803848 0.464102i 0.0574177 0.0331501i
\(197\) 13.6603 13.6603i 0.973253 0.973253i −0.0263987 0.999651i \(-0.508404\pi\)
0.999651 + 0.0263987i \(0.00840394\pi\)
\(198\) 16.0981 9.29423i 1.14404 0.660512i
\(199\) 25.1244i 1.78102i 0.454965 + 0.890509i \(0.349652\pi\)
−0.454965 + 0.890509i \(0.650348\pi\)
\(200\) −10.7321 2.87564i −0.758871 0.203339i
\(201\) −8.36603 + 8.36603i −0.590094 + 0.590094i
\(202\) 2.53590 + 1.46410i 0.178425 + 0.103014i
\(203\) −1.73205 6.46410i −0.121566 0.453691i
\(204\) 19.8564 1.39023
\(205\) 0.803848 3.00000i 0.0561432 0.209529i
\(206\) 15.1244 + 15.1244i 1.05376 + 1.05376i
\(207\) 12.2942 7.09808i 0.854508 0.493350i
\(208\) −9.85641 9.85641i −0.683419 0.683419i
\(209\) 7.33013 + 12.6962i 0.507035 + 0.878211i
\(210\) 6.00000 + 3.46410i 0.414039 + 0.239046i
\(211\) 4.09808 1.09808i 0.282123 0.0755947i −0.114983 0.993367i \(-0.536681\pi\)
0.397106 + 0.917773i \(0.370015\pi\)
\(212\) −20.3923 + 5.46410i −1.40055 + 0.375276i
\(213\) −2.53590 4.39230i −0.173757 0.300956i
\(214\) −21.6340 + 12.4904i −1.47887 + 0.853825i
\(215\) 8.92820i 0.608898i
\(216\) 10.3923 10.3923i 0.707107 0.707107i
\(217\) 1.46410i 0.0993897i
\(218\) −10.7321 18.5885i −0.726866 1.25897i
\(219\) 5.42820 + 9.40192i 0.366804 + 0.635323i
\(220\) −4.53590 + 7.85641i −0.305810 + 0.529679i
\(221\) 19.2942 5.16987i 1.29787 0.347763i
\(222\) 8.19615 14.1962i 0.550090 0.952783i
\(223\) −8.02628 13.9019i −0.537479 0.930942i −0.999039 0.0438324i \(-0.986043\pi\)
0.461559 0.887109i \(-0.347290\pi\)
\(224\) 10.9282 + 10.9282i 0.730171 + 0.730171i
\(225\) 11.7846i 0.785641i
\(226\) 13.8564 13.8564i 0.921714 0.921714i
\(227\) −0.571797 + 2.13397i −0.0379515 + 0.141637i −0.982302 0.187304i \(-0.940025\pi\)
0.944351 + 0.328941i \(0.106692\pi\)
\(228\) 8.19615 + 8.19615i 0.542803 + 0.542803i
\(229\) −1.83013 6.83013i −0.120938 0.451347i 0.878724 0.477330i \(-0.158395\pi\)
−0.999662 + 0.0259823i \(0.991729\pi\)
\(230\) −3.46410 + 6.00000i −0.228416 + 0.395628i
\(231\) −14.6603 + 14.6603i −0.964574 + 0.964574i
\(232\) 6.00000 3.46410i 0.393919 0.227429i
\(233\) 3.19615i 0.209387i −0.994505 0.104693i \(-0.966614\pi\)
0.994505 0.104693i \(-0.0333861\pi\)
\(234\) 7.39230 12.8038i 0.483250 0.837014i
\(235\) 5.60770 5.60770i 0.365806 0.365806i
\(236\) 3.92820 14.6603i 0.255704 0.954301i
\(237\) 18.0000 + 10.3923i 1.16923 + 0.675053i
\(238\) −21.3923 + 5.73205i −1.38666 + 0.371554i
\(239\) −7.90192 + 13.6865i −0.511133 + 0.885308i 0.488784 + 0.872405i \(0.337441\pi\)
−0.999917 + 0.0129033i \(0.995893\pi\)
\(240\) −1.85641 + 6.92820i −0.119831 + 0.447214i
\(241\) −11.5981 20.0885i −0.747098 1.29401i −0.949208 0.314649i \(-0.898113\pi\)
0.202110 0.979363i \(-0.435220\pi\)
\(242\) −8.19615 8.19615i −0.526869 0.526869i
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) −16.3923 + 16.3923i −1.04941 + 1.04941i
\(245\) −0.464102 0.124356i −0.0296504 0.00794479i
\(246\) 7.09808 + 1.90192i 0.452557 + 0.121262i
\(247\) 10.0981 + 5.83013i 0.642525 + 0.370962i
\(248\) 1.46410 0.392305i 0.0929705 0.0249114i
\(249\) 0.633975 + 2.36603i 0.0401765 + 0.149941i
\(250\) 6.53590 + 11.3205i 0.413367 + 0.715972i
\(251\) −5.83013 + 5.83013i −0.367994 + 0.367994i −0.866745 0.498751i \(-0.833792\pi\)
0.498751 + 0.866745i \(0.333792\pi\)
\(252\) −8.19615 + 14.1962i −0.516309 + 0.894274i
\(253\) −14.6603 14.6603i −0.921682 0.921682i
\(254\) −5.73205 1.53590i −0.359661 0.0963708i
\(255\) −7.26795 7.26795i −0.455137 0.455137i
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 9.42820 16.3301i 0.588115 1.01865i −0.406364 0.913711i \(-0.633204\pi\)
0.994479 0.104934i \(-0.0334632\pi\)
\(258\) −21.1244 −1.31514
\(259\) −4.73205 + 17.6603i −0.294035 + 1.09735i
\(260\) 7.21539i 0.447480i
\(261\) 5.19615 + 5.19615i 0.321634 + 0.321634i
\(262\) 11.4641 0.708255
\(263\) 2.49038 1.43782i 0.153563 0.0886599i −0.421249 0.906945i \(-0.638408\pi\)
0.574813 + 0.818285i \(0.305075\pi\)
\(264\) −18.5885 10.7321i −1.14404 0.660512i
\(265\) 9.46410 + 5.46410i 0.581375 + 0.335657i
\(266\) −11.1962 6.46410i −0.686480 0.396339i
\(267\) 1.73205 + 3.00000i 0.106000 + 0.183597i
\(268\) 13.1962 + 3.53590i 0.806083 + 0.215989i
\(269\) 1.26795 + 1.26795i 0.0773082 + 0.0773082i 0.744704 0.667395i \(-0.232591\pi\)
−0.667395 + 0.744704i \(0.732591\pi\)
\(270\) −7.60770 −0.462990
\(271\) −0.392305 −0.0238308 −0.0119154 0.999929i \(-0.503793\pi\)
−0.0119154 + 0.999929i \(0.503793\pi\)
\(272\) −11.4641 19.8564i −0.695113 1.20397i
\(273\) −4.26795 + 15.9282i −0.258308 + 0.964019i
\(274\) 13.0263 3.49038i 0.786946 0.210862i
\(275\) −16.6244 + 4.45448i −1.00249 + 0.268615i
\(276\) −14.1962 8.19615i −0.854508 0.493350i
\(277\) 25.2224 + 6.75833i 1.51547 + 0.406069i 0.918247 0.396007i \(-0.129605\pi\)
0.597222 + 0.802076i \(0.296271\pi\)
\(278\) 16.7321i 1.00352i
\(279\) 0.803848 + 1.39230i 0.0481251 + 0.0833551i
\(280\) 8.00000i 0.478091i
\(281\) 8.66025 5.00000i 0.516627 0.298275i −0.218926 0.975741i \(-0.570255\pi\)
0.735554 + 0.677466i \(0.236922\pi\)
\(282\) 13.2679 + 13.2679i 0.790095 + 0.790095i
\(283\) 5.24167 + 19.5622i 0.311585 + 1.16285i 0.927127 + 0.374747i \(0.122270\pi\)
−0.615542 + 0.788104i \(0.711063\pi\)
\(284\) −2.92820 + 5.07180i −0.173757 + 0.300956i
\(285\) 6.00000i 0.355409i
\(286\) −20.8564 5.58846i −1.23327 0.330452i
\(287\) −8.19615 −0.483804
\(288\) −16.3923 4.39230i −0.965926 0.258819i
\(289\) 15.8564 0.932730
\(290\) −3.46410 0.928203i −0.203419 0.0545060i
\(291\) 17.5981 + 10.1603i 1.03162 + 0.595605i
\(292\) 6.26795 10.8564i 0.366804 0.635323i
\(293\) 1.43782 + 5.36603i 0.0839985 + 0.313487i 0.995123 0.0986454i \(-0.0314509\pi\)
−0.911124 + 0.412132i \(0.864784\pi\)
\(294\) 0.294229 1.09808i 0.0171598 0.0640411i
\(295\) −6.80385 + 3.92820i −0.396135 + 0.228709i
\(296\) −18.9282 −1.10018
\(297\) 5.89230 21.9904i 0.341906 1.27601i
\(298\) 11.4641i 0.664098i
\(299\) −15.9282 4.26795i −0.921152 0.246822i
\(300\) −11.7846 + 6.80385i −0.680385 + 0.392820i
\(301\) 22.7583 6.09808i 1.31177 0.351487i
\(302\) 1.00000 0.267949i 0.0575435 0.0154187i
\(303\) 3.46410 0.928203i 0.199007 0.0533239i
\(304\) 3.46410 12.9282i 0.198680 0.741483i
\(305\) 12.0000 0.687118
\(306\) 17.1962 17.1962i 0.983039 0.983039i
\(307\) 3.02628 + 3.02628i 0.172719 + 0.172719i 0.788173 0.615454i \(-0.211027\pi\)
−0.615454 + 0.788173i \(0.711027\pi\)
\(308\) 23.1244 + 6.19615i 1.31763 + 0.353059i
\(309\) 26.1962 1.49025
\(310\) −0.679492 0.392305i −0.0385925 0.0222814i
\(311\) 19.0981 + 11.0263i 1.08295 + 0.625243i 0.931691 0.363251i \(-0.118333\pi\)
0.151261 + 0.988494i \(0.451667\pi\)
\(312\) −17.0718 −0.966500
\(313\) −18.6506 + 10.7679i −1.05420 + 0.608640i −0.923821 0.382824i \(-0.874951\pi\)
−0.130375 + 0.991465i \(0.541618\pi\)
\(314\) 6.92820 0.390981
\(315\) 8.19615 2.19615i 0.461801 0.123739i
\(316\) 24.0000i 1.35011i
\(317\) 5.50962 20.5622i 0.309451 1.15489i −0.619595 0.784922i \(-0.712703\pi\)
0.929046 0.369965i \(-0.120630\pi\)
\(318\) −12.9282 + 22.3923i −0.724978 + 1.25570i
\(319\) 5.36603 9.29423i 0.300440 0.520377i
\(320\) 8.00000 2.14359i 0.447214 0.119831i
\(321\) −7.91858 + 29.5526i −0.441972 + 1.64946i
\(322\) 17.6603 + 4.73205i 0.984167 + 0.263707i
\(323\) 13.5622 + 13.5622i 0.754620 + 0.754620i
\(324\) 18.0000i 1.00000i
\(325\) −9.67949 + 9.67949i −0.536922 + 0.536922i
\(326\) 7.00000 + 12.1244i 0.387694 + 0.671506i
\(327\) −25.3923 6.80385i −1.40420 0.376254i
\(328\) −2.19615 8.19615i −0.121262 0.452557i
\(329\) −18.1244 10.4641i −0.999228 0.576905i
\(330\) 2.87564 + 10.7321i 0.158299 + 0.590780i
\(331\) −0.0980762 0.0262794i −0.00539076 0.00144445i 0.256123 0.966644i \(-0.417555\pi\)
−0.261513 + 0.965200i \(0.584222\pi\)
\(332\) 2.00000 2.00000i 0.109764 0.109764i
\(333\) −5.19615 19.3923i −0.284747 1.06269i
\(334\) 7.46410 + 7.46410i 0.408417 + 0.408417i
\(335\) −3.53590 6.12436i −0.193187 0.334609i
\(336\) 18.9282 1.03262
\(337\) 8.89230 15.4019i 0.484395 0.838996i −0.515445 0.856923i \(-0.672373\pi\)
0.999839 + 0.0179267i \(0.00570654\pi\)
\(338\) 1.16987 0.313467i 0.0636327 0.0170503i
\(339\) 24.0000i 1.30350i
\(340\) −3.07180 + 11.4641i −0.166592 + 0.621728i
\(341\) 1.66025 1.66025i 0.0899078 0.0899078i
\(342\) 14.1962 0.767640
\(343\) 17.8564i 0.964155i
\(344\) 12.1962 + 21.1244i 0.657572 + 1.13895i
\(345\) 2.19615 + 8.19615i 0.118237 + 0.441266i
\(346\) 1.19615 2.07180i 0.0643056 0.111380i
\(347\) 4.72243 + 17.6244i 0.253513 + 0.946125i 0.968911 + 0.247408i \(0.0795787\pi\)
−0.715398 + 0.698717i \(0.753755\pi\)
\(348\) 2.19615 8.19615i 0.117726 0.439360i
\(349\) −4.26795 + 15.9282i −0.228458 + 0.852617i 0.752531 + 0.658556i \(0.228833\pi\)
−0.980989 + 0.194061i \(0.937834\pi\)
\(350\) 10.7321 10.7321i 0.573652 0.573652i
\(351\) −4.68653 17.4904i −0.250149 0.933567i
\(352\) 24.7846i 1.32102i
\(353\) 7.16025 + 12.4019i 0.381102 + 0.660088i 0.991220 0.132223i \(-0.0422114\pi\)
−0.610118 + 0.792310i \(0.708878\pi\)
\(354\) −9.29423 16.0981i −0.493983 0.855603i
\(355\) 2.92820 0.784610i 0.155413 0.0416428i
\(356\) 2.00000 3.46410i 0.106000 0.183597i
\(357\) −13.5622 + 23.4904i −0.717787 + 1.24324i
\(358\) 1.92820 + 3.33975i 0.101909 + 0.176511i
\(359\) 11.2679i 0.594700i 0.954769 + 0.297350i \(0.0961028\pi\)
−0.954769 + 0.297350i \(0.903897\pi\)
\(360\) 4.39230 + 7.60770i 0.231495 + 0.400961i
\(361\) 7.80385i 0.410729i
\(362\) 12.8038 7.39230i 0.672955 0.388531i
\(363\) −14.1962 −0.745105
\(364\) 18.3923 4.92820i 0.964019 0.258308i
\(365\) −6.26795 + 1.67949i −0.328079 + 0.0879086i
\(366\) 28.3923i 1.48409i
\(367\) 14.1244 + 24.4641i 0.737285 + 1.27702i 0.953713 + 0.300717i \(0.0972260\pi\)
−0.216428 + 0.976299i \(0.569441\pi\)
\(368\) 18.9282i 0.986701i
\(369\) 7.79423 4.50000i 0.405751 0.234261i
\(370\) 6.92820 + 6.92820i 0.360180 + 0.360180i
\(371\) 7.46410 27.8564i 0.387517 1.44623i
\(372\) 0.928203 1.60770i 0.0481251 0.0833551i
\(373\) −7.36603 27.4904i −0.381398 1.42340i −0.843767 0.536710i \(-0.819667\pi\)
0.462368 0.886688i \(1.65300\pi\)
\(374\) −30.7583 17.7583i −1.59048 0.918261i
\(375\) 15.4641 + 4.14359i 0.798563 + 0.213974i
\(376\) 5.60770 20.9282i 0.289195 1.07929i
\(377\) 8.53590i 0.439621i
\(378\) 5.19615 + 19.3923i 0.267261 + 0.997433i
\(379\) 3.75833 3.75833i 0.193052 0.193052i −0.603961 0.797014i \(-0.706412\pi\)
0.797014 + 0.603961i \(0.206412\pi\)
\(380\) −6.00000 + 3.46410i −0.307794 + 0.177705i
\(381\) −6.29423 + 3.63397i −0.322463 + 0.186174i
\(382\) 8.80385 + 32.8564i 0.450444 + 1.68108i
\(383\) −6.73205 + 11.6603i −0.343992 + 0.595811i −0.985170 0.171581i \(-0.945113\pi\)
0.641178 + 0.767392i \(0.278446\pi\)
\(384\) 5.07180 + 18.9282i 0.258819 + 0.965926i
\(385\) −6.19615 10.7321i −0.315785 0.546956i
\(386\) 21.7321 21.7321i 1.10613 1.10613i
\(387\) −18.2942 + 18.2942i −0.929948 + 0.929948i
\(388\) 23.4641i 1.19121i
\(389\) 19.7583 + 5.29423i 1.00179 + 0.268428i 0.722194 0.691691i \(-0.243134\pi\)
0.279593 + 0.960119i \(0.409800\pi\)
\(390\) 6.24871 + 6.24871i 0.316416 + 0.316416i
\(391\) −23.4904 13.5622i −1.18796 0.685869i
\(392\) −1.26795 + 0.339746i −0.0640411 + 0.0171598i
\(393\) 9.92820 9.92820i 0.500812 0.500812i
\(394\) −23.6603 + 13.6603i −1.19199 + 0.688194i
\(395\) −8.78461 + 8.78461i −0.442002 + 0.442002i
\(396\) −25.3923 + 6.80385i −1.27601 + 0.341906i
\(397\) −9.26795 9.26795i −0.465145 0.465145i 0.435192 0.900337i \(-0.356680\pi\)
−0.900337 + 0.435192i \(0.856680\pi\)
\(398\) 9.19615 34.3205i 0.460961 1.72033i
\(399\) −15.2942 + 4.09808i −0.765669 + 0.205160i
\(400\) 13.6077 + 7.85641i 0.680385 + 0.392820i
\(401\) −1.79423 + 3.10770i −0.0895995 + 0.155191i −0.907342 0.420393i \(-0.861892\pi\)
0.817742 + 0.575584i \(0.195225\pi\)
\(402\) 14.4904 8.36603i 0.722715 0.417259i
\(403\) 0.483340 1.80385i 0.0240769 0.0898560i
\(404\) −2.92820 2.92820i −0.145684 0.145684i
\(405\) −6.58846 + 6.58846i −0.327383 + 0.327383i
\(406\) 9.46410i 0.469695i
\(407\) −25.3923 + 14.6603i −1.25865 + 0.726682i
\(408\) −27.1244 7.26795i −1.34286 0.359817i
\(409\) −27.8660 16.0885i −1.37789 0.795523i −0.385981 0.922507i \(-0.626137\pi\)
−0.991905 + 0.126984i \(0.959470\pi\)
\(410\) −2.19615 + 3.80385i −0.108460 + 0.187859i
\(411\) 8.25833 14.3038i 0.407353 0.705557i
\(412\) −15.1244 26.1962i −0.745124 1.29059i
\(413\) 14.6603 + 14.6603i 0.721384 + 0.721384i
\(414\) −19.3923 + 5.19615i −0.953080 + 0.255377i
\(415\) −1.46410 −0.0718699
\(416\) 9.85641 + 17.0718i 0.483250 + 0.837014i
\(417\) −14.4904 14.4904i −0.709597 0.709597i
\(418\) −5.36603 20.0263i −0.262461 0.979517i
\(419\) −6.63397 + 1.77757i −0.324091 + 0.0868399i −0.417196 0.908816i \(-0.636987\pi\)
0.0931055 + 0.995656i \(0.470321\pi\)
\(420\) −6.92820 6.92820i −0.338062 0.338062i
\(421\) −30.5885 8.19615i −1.49079 0.399456i −0.580786 0.814056i \(-0.697255\pi\)
−0.910004 + 0.414600i \(0.863922\pi\)
\(422\) −6.00000 −0.292075
\(423\) 22.9808 1.11736
\(424\) 29.8564 1.44996
\(425\) −19.5000 + 11.2583i −0.945889 + 0.546109i
\(426\) 1.85641 + 6.92820i 0.0899432 + 0.335673i
\(427\) −8.19615 30.5885i −0.396640 1.48028i
\(428\) 34.1244 9.14359i 1.64946 0.441972i
\(429\) −22.9019 + 13.2224i −1.10572 + 0.638385i
\(430\) 3.26795 12.1962i 0.157595 0.588151i
\(431\) −16.1962 −0.780141 −0.390071 0.920785i \(-0.627549\pi\)
−0.390071 + 0.920785i \(0.627549\pi\)
\(432\) −18.0000 + 10.3923i −0.866025 + 0.500000i
\(433\) −5.73205 −0.275465 −0.137732 0.990469i \(-0.543981\pi\)
−0.137732 + 0.990469i \(0.543981\pi\)
\(434\) −0.535898 + 2.00000i −0.0257239 + 0.0960031i
\(435\) −3.80385 + 2.19615i −0.182381 + 0.105297i
\(436\) 7.85641 + 29.3205i 0.376254 + 1.40420i
\(437\) −4.09808 15.2942i −0.196038 0.731622i
\(438\) −3.97372 14.8301i −0.189872 0.708611i
\(439\) 22.8564 13.1962i 1.09088 0.629818i 0.157067 0.987588i \(-0.449796\pi\)
0.933810 + 0.357770i \(0.116463\pi\)
\(440\) 9.07180 9.07180i 0.432481 0.432481i
\(441\) −0.696152 1.20577i −0.0331501 0.0574177i
\(442\) −28.2487 −1.34365
\(443\) 17.2583 + 4.62436i 0.819968 + 0.219710i 0.644332 0.764745i \(-0.277135\pi\)
0.175636 + 0.984455i \(0.443802\pi\)
\(444\) −16.3923 + 16.3923i −0.777944 + 0.777944i
\(445\) −2.00000 + 0.535898i −0.0948091 + 0.0254040i
\(446\) 5.87564 + 21.9282i 0.278220 + 1.03833i
\(447\) 9.92820 + 9.92820i 0.469588 + 0.469588i
\(448\) −10.9282 18.9282i −0.516309 0.894274i
\(449\) −3.33975 −0.157612 −0.0788062 0.996890i \(-0.525111\pi\)
−0.0788062 + 0.996890i \(0.525111\pi\)
\(450\) −4.31347 + 16.0981i −0.203339 + 0.758871i
\(451\) −9.29423 9.29423i −0.437648 0.437648i
\(452\) −24.0000 + 13.8564i −1.12887 + 0.651751i
\(453\) 0.633975 1.09808i 0.0297867 0.0515921i
\(454\) 1.56218 2.70577i 0.0733166 0.126988i
\(455\) −8.53590 4.92820i −0.400169 0.231038i
\(456\) −8.19615 14.1962i −0.383820 0.664796i
\(457\) −2.25833 + 1.30385i −0.105640 + 0.0609914i −0.551889 0.833917i \(-0.686093\pi\)
0.446249 + 0.894909i \(0.352760\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 29.7846i 1.39023i
\(460\) 6.92820 6.92820i 0.323029 0.323029i
\(461\) −9.56218 + 35.6865i −0.445355 + 1.66209i 0.269642 + 0.962961i \(0.413094\pi\)
−0.714997 + 0.699127i \(0.753572\pi\)
\(462\) 25.3923 14.6603i 1.18136 0.682057i
\(463\) 1.19615 2.07180i 0.0555899 0.0962846i −0.836891 0.547369i \(-0.815629\pi\)
0.892481 + 0.451085i \(0.148963\pi\)
\(464\) −9.46410 + 2.53590i −0.439360 + 0.117726i
\(465\) −0.928203 + 0.248711i −0.0430444 + 0.0115337i
\(466\) −1.16987 + 4.36603i −0.0541933 + 0.202252i
\(467\) 2.63397 + 2.63397i 0.121886 + 0.121886i 0.765419 0.643533i \(-0.222532\pi\)
−0.643533 + 0.765419i \(0.722532\pi\)
\(468\) −14.7846 + 14.7846i −0.683419 + 0.683419i
\(469\) −13.1962 + 13.1962i −0.609342 + 0.609342i
\(470\) −9.71281 + 5.60770i −0.448019 + 0.258664i
\(471\) 6.00000 6.00000i 0.276465 0.276465i
\(472\) −10.7321 + 18.5885i −0.493983 + 0.855603i
\(473\) 32.7224 + 18.8923i 1.50458 + 0.868669i
\(474\) −20.7846 20.7846i −0.954669 0.954669i
\(475\) −12.6962 3.40192i −0.582539 0.156091i
\(476\) 31.3205 1.43557
\(477\) 8.19615 + 30.5885i 0.375276 + 1.40055i
\(478\) 15.8038 15.8038i 0.722851 0.722851i
\(479\) 4.16987 + 7.22243i 0.190526 + 0.330001i 0.945425 0.325840i \(-0.105647\pi\)
−0.754898 + 0.655842i \(0.772314\pi\)
\(480\) 5.07180 8.78461i 0.231495 0.400961i
\(481\) −11.6603 + 20.1962i −0.531662 + 0.920865i
\(482\) 8.49038 + 31.6865i 0.386726 + 1.44328i
\(483\) 19.3923 11.1962i 0.882380 0.509443i
\(484\) 8.19615 + 14.1962i 0.372552 + 0.645280i
\(485\) −8.58846 + 8.58846i −0.389982 + 0.389982i
\(486\) −15.5885 15.5885i −0.707107 0.707107i
\(487\) 5.80385i 0.262997i 0.991316 + 0.131499i \(0.0419789\pi\)
−0.991316 + 0.131499i \(0.958021\pi\)
\(488\) 28.3923 16.3923i 1.28526 0.742045i
\(489\) 16.5622 + 4.43782i 0.748968 + 0.200685i
\(490\) 0.588457 + 0.339746i 0.0265838 + 0.0153482i
\(491\) 3.72243 + 13.8923i 0.167991 + 0.626951i 0.997640 + 0.0686652i \(0.0218740\pi\)
−0.829649 + 0.558286i \(0.811459\pi\)
\(492\) −9.00000 5.19615i −0.405751 0.234261i
\(493\) 3.63397 13.5622i 0.163666 0.610810i
\(494\) −11.6603 11.6603i −0.524620 0.524620i
\(495\) 11.7846 + 6.80385i 0.529679 + 0.305810i
\(496\) −2.14359 −0.0962502
\(497\) −4.00000 6.92820i −0.179425 0.310772i
\(498\) 3.46410i 0.155230i
\(499\) 8.69615 2.33013i 0.389293 0.104311i −0.0588630 0.998266i \(-0.518748\pi\)
0.448156 + 0.893955i \(0.352081\pi\)
\(500\) −4.78461 17.8564i −0.213974 0.798563i
\(501\) 12.9282 0.577590
\(502\) 10.0981 5.83013i 0.450699 0.260211i
\(503\) 27.7128i 1.23565i −0.786314 0.617827i \(-0.788013\pi\)
0.786314 0.617827i \(-0.211987\pi\)
\(504\) 16.3923 16.3923i 0.730171 0.730171i
\(505\) 2.14359i 0.0953887i
\(506\) 14.6603 + 25.3923i 0.651728 + 1.12883i
\(507\) 0.741670 1.28461i 0.0329387 0.0570515i
\(508\) 7.26795 + 4.19615i 0.322463 + 0.186174i
\(509\) −11.4641 + 3.07180i −0.508137 + 0.136155i −0.503774 0.863835i \(-0.668056\pi\)
−0.00436335 + 0.999990i \(0.501389\pi\)
\(510\) 7.26795 + 12.5885i 0.321830 + 0.557426i
\(511\) 8.56218 + 14.8301i 0.378768 + 0.656046i
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 12.2942 12.2942i 0.542803 0.542803i
\(514\) −18.8564 + 18.8564i −0.831720 + 0.831720i
\(515\) −4.05256 + 15.1244i −0.178577 + 0.666459i
\(516\) 28.8564 + 7.73205i 1.27033 + 0.340385i
\(517\) −8.68653 32.4186i −0.382033 1.42577i
\(518\) 12.9282 22.3923i 0.568033 0.983861i
\(519\) −0.758330 2.83013i −0.0332870 0.124229i
\(520\) 2.64102 9.85641i 0.115816 0.432232i
\(521\) 13.0000i 0.569540i 0.958596 + 0.284770i \(0.0919173\pi\)
−0.958596 + 0.284770i \(0.908083\pi\)
\(522\) −5.19615 9.00000i −0.227429 0.393919i
\(523\) −7.53590 + 7.53590i −0.329522 + 0.329522i −0.852405 0.522883i \(-0.824857\pi\)
0.522883 + 0.852405i \(0.324857\pi\)
\(524\) −15.6603 4.19615i −0.684121 0.183310i
\(525\) 18.5885i 0.811267i
\(526\) −3.92820 + 1.05256i −0.171278 + 0.0458937i
\(527\) 1.53590 2.66025i 0.0669048 0.115882i
\(528\) 21.4641 + 21.4641i 0.934105 + 0.934105i
\(529\) −0.303848 0.526279i −0.0132108 0.0228817i
\(530\) −10.9282 10.9282i −0.474691 0.474691i
\(531\) −21.9904 5.89230i −0.954301 0.255704i
\(532\) 12.9282 + 12.9282i 0.560509 + 0.560509i
\(533\) −10.0981 2.70577i −0.437396 0.117200i
\(534\) −1.26795 4.73205i −0.0548695 0.204776i
\(535\) −15.8372 9.14359i −0.684701 0.395312i
\(536\) −16.7321 9.66025i −0.722715 0.417259i
\(537\) 4.56218 + 1.22243i 0.196873 + 0.0527518i
\(538\) −1.26795 2.19615i −0.0546652 0.0946829i
\(539\) −1.43782 + 1.43782i −0.0619314 + 0.0619314i
\(540\) 10.3923 + 2.78461i 0.447214 + 0.119831i
\(541\) 2.19615 + 2.19615i 0.0944200 + 0.0944200i 0.752739 0.658319i \(-0.228732\pi\)
−0.658319 + 0.752739i \(0.728732\pi\)
\(542\) 0.535898 + 0.143594i 0.0230188 + 0.00616787i
\(543\) 4.68653 17.4904i 0.201118 0.750584i
\(544\) 8.39230 + 31.3205i 0.359817 + 1.34286i
\(545\) 7.85641 13.6077i 0.336531 0.582890i
\(546\) 11.6603 20.1962i 0.499013 0.864316i
\(547\) −8.74167 + 32.6244i −0.373767 + 1.39492i 0.481371 + 0.876517i \(0.340139\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −19.0718 −0.814707
\(549\) 24.5885 + 24.5885i 1.04941 + 1.04941i
\(550\) 24.3397 1.03785
\(551\) 7.09808 4.09808i 0.302388 0.174584i
\(552\) 16.3923 + 16.3923i 0.697703 + 0.697703i
\(553\) 28.3923 + 16.3923i 1.20736 + 0.697072i
\(554\) −31.9808 18.4641i −1.35873 0.784465i
\(555\) 12.0000 0.509372
\(556\) −6.12436 + 22.8564i −0.259731 + 0.969328i
\(557\) −14.8038 14.8038i −0.627259 0.627259i 0.320118 0.947378i \(-0.396277\pi\)
−0.947378 + 0.320118i \(0.896277\pi\)
\(558\) −0.588457 2.19615i −0.0249114 0.0929705i
\(559\) 30.0526 1.27109
\(560\) −2.92820 + 10.9282i −0.123739 + 0.461801i
\(561\) −42.0167 + 11.2583i −1.77394 + 0.475327i
\(562\) −13.6603 + 3.66025i −0.576223 + 0.154398i
\(563\) 26.9904 7.23205i 1.13751 0.304795i 0.359560 0.933122i \(-0.382927\pi\)
0.777949 + 0.628327i \(0.216260\pi\)
\(564\) −13.2679 22.9808i −0.558681 0.967665i
\(565\) 13.8564 + 3.71281i 0.582943 + 0.156199i
\(566\) 28.6410i 1.20387i
\(567\) 21.2942 + 12.2942i 0.894274 + 0.516309i
\(568\) 5.85641 5.85641i 0.245729 0.245729i
\(569\) 18.4019 10.6244i 0.771449 0.445396i −0.0619424 0.998080i \(-0.519730\pi\)
0.833391 + 0.552684i \(0.186396\pi\)
\(570\) −2.19615 + 8.19615i −0.0919867 + 0.343299i
\(571\) 0.892305 + 3.33013i 0.0373418 + 0.139361i 0.982080 0.188464i \(-0.0603509\pi\)
−0.944738 + 0.327825i \(0.893684\pi\)
\(572\) 26.4449 + 15.2679i 1.10572 + 0.638385i
\(573\) 36.0788 + 20.8301i 1.50722 + 0.870191i
\(574\) 11.1962 + 3.00000i 0.467318 + 0.125218i
\(575\) 18.5885 0.775192
\(576\) 20.7846 + 12.0000i 0.866025 + 0.500000i
\(577\) −5.78461 −0.240816 −0.120408 0.992724i \(-0.538420\pi\)
−0.120408 + 0.992724i \(0.538420\pi\)
\(578\) −21.6603 5.80385i −0.900948 0.241408i
\(579\) 37.6410i 1.56431i
\(580\) 4.39230 + 2.53590i 0.182381 + 0.105297i
\(581\) 1.00000 + 3.73205i 0.0414870 + 0.154832i
\(582\) −20.3205 20.3205i −0.842312 0.842312i
\(583\) 40.0526 23.1244i 1.65881 0.957713i
\(584\) −12.5359 + 12.5359i −0.518739 + 0.518739i
\(585\) 10.8231 0.447480
\(586\) 7.85641i 0.324545i
\(587\) −26.9904 7.23205i −1.11401 0.298499i −0.345554 0.938399i \(-0.612309\pi\)
−0.768458 + 0.639900i \(0.778976\pi\)
\(588\) −0.803848 + 1.39230i −0.0331501 + 0.0574177i
\(589\) 1.73205 0.464102i 0.0713679 0.0191230i
\(590\) 10.7321 2.87564i 0.441832 0.118388i
\(591\) −8.66025 + 32.3205i −0.356235 + 1.32949i
\(592\) 25.8564 + 6.92820i 1.06269 + 0.284747i
\(593\) 17.4641 0.717165 0.358582 0.933498i \(-0.383260\pi\)
0.358582 + 0.933498i \(0.383260\pi\)
\(594\) −16.0981 + 27.8827i −0.660512 + 1.14404i
\(595\) −11.4641 11.4641i −0.469982 0.469982i
\(596\) 4.19615 15.6603i 0.171881 0.641469i
\(597\) −21.7583 37.6865i −0.890509 1.54241i
\(598\) 20.1962 + 11.6603i 0.825882 + 0.476823i
\(599\) −11.3205 6.53590i −0.462543 0.267050i 0.250570 0.968099i \(-0.419382\pi\)
−0.713113 + 0.701049i \(0.752715\pi\)
\(600\) 18.5885 4.98076i 0.758871 0.203339i
\(601\) 20.5526 11.8660i 0.838356 0.484025i −0.0183488 0.999832i \(-0.505841\pi\)
0.856705 + 0.515806i \(0.172508\pi\)
\(602\) −33.3205 −1.35804
\(603\) 5.30385 19.7942i 0.215989 0.806083i
\(604\) −1.46410 −0.0595734
\(605\) 2.19615 8.19615i 0.0892863 0.333221i
\(606\) −5.07180 −0.206028
\(607\) −8.58846 + 14.8756i −0.348595 + 0.603784i −0.986000 0.166745i \(-0.946674\pi\)
0.637405 + 0.770529i \(0.280008\pi\)
\(608\) −9.46410 + 16.3923i −0.383820 + 0.664796i
\(609\) 8.19615 + 8.19615i 0.332125 + 0.332125i
\(610\) −16.3923 4.39230i −0.663705 0.177839i
\(611\) −18.8756 18.8756i −0.763627 0.763627i
\(612\) −29.7846 + 17.1962i −1.20397 + 0.695113i
\(613\) −15.6603 + 15.6603i −0.632512 + 0.632512i −0.948697 0.316186i \(-0.897598\pi\)
0.316186 + 0.948697i \(0.397598\pi\)
\(614\) −3.02628 5.24167i −0.122131 0.211537i
\(615\) 1.39230 + 5.19615i 0.0561432 + 0.209529i
\(616\) −29.3205 16.9282i −1.18136 0.682057i
\(617\) 35.0885 + 20.2583i 1.41261 + 0.815570i 0.995633 0.0933485i \(-0.0297571\pi\)
0.416975 + 0.908918i \(0.363090\pi\)
\(618\) −35.7846 9.58846i −1.43947 0.385704i
\(619\) −15.5981 4.17949i −0.626940 0.167988i −0.0686590 0.997640i \(-0.521872\pi\)
−0.558281 + 0.829652i \(0.688539\pi\)
\(620\) 0.784610 + 0.784610i 0.0315107 + 0.0315107i
\(621\) −12.2942 + 21.2942i −0.493350 + 0.854508i
\(622\) −22.0526 22.0526i −0.884227 0.884227i
\(623\) 2.73205 + 4.73205i 0.109457 + 0.189586i
\(624\) 23.3205 + 6.24871i 0.933567 + 0.250149i
\(625\) 5.03590 8.72243i 0.201436 0.348897i
\(626\) 29.4186 7.88269i 1.17580 0.315055i
\(627\) −21.9904 12.6962i −0.878211 0.507035i
\(628\) −9.46410 2.53590i −0.377659 0.101193i
\(629\) −27.1244 + 27.1244i −1.08152 + 1.08152i
\(630\) −12.0000 −0.478091
\(631\) 17.6077i 0.700951i 0.936572 + 0.350476i \(0.113980\pi\)
−0.936572 + 0.350476i \(0.886020\pi\)
\(632\) −8.78461 + 32.7846i −0.349433 + 1.30410i
\(633\) −5.19615 + 5.19615i −0.206529 + 0.206529i
\(634\) −15.0526 + 26.0718i −0.597813 + 1.03544i
\(635\) −1.12436 4.19615i −0.0446187 0.166519i
\(636\) 25.8564 25.8564i 1.02527 1.02527i
\(637\) −0.418584 + 1.56218i −0.0165849 + 0.0618957i
\(638\) −10.7321 + 10.7321i −0.424886 + 0.424886i
\(639\) 7.60770 + 4.39230i 0.300956 + 0.173757i
\(640\) −11.7128 −0.462990
\(641\) −19.7942 34.2846i −0.781825 1.35416i −0.930878 0.365331i \(-0.880956\pi\)
0.149053 0.988829i \(-0.452378\pi\)
\(642\) 21.6340 37.4711i 0.853825 1.47887i
\(643\) 8.76795 2.34936i 0.345774 0.0926499i −0.0817525 0.996653i \(-0.526052\pi\)
0.427527 + 0.904003i \(0.359385\pi\)
\(644\) −22.3923 12.9282i −0.882380 0.509443i
\(645\) −7.73205 13.3923i −0.304449 0.527321i
\(646\) −13.5622 23.4904i −0.533597 0.924217i
\(647\) 16.7321i 0.657805i 0.944364 + 0.328902i \(0.106679\pi\)
−0.944364 + 0.328902i \(0.893321\pi\)
\(648\) −6.58846 + 24.5885i −0.258819 + 0.965926i
\(649\) 33.2487i 1.30513i
\(650\) 16.7654 9.67949i 0.657592 0.379661i
\(651\) 1.26795 + 2.19615i 0.0496948 + 0.0860740i
\(652\) −5.12436 19.1244i −0.200685 0.748968i
\(653\) −27.4904 + 7.36603i −1.07578 + 0.288255i −0.752867 0.658173i \(-0.771329\pi\)
−0.322915 + 0.946428i \(0.604663\pi\)
\(654\) 32.1962 + 18.5885i 1.25897 + 0.726866i
\(655\) 4.19615 + 7.26795i 0.163957 + 0.283982i
\(656\) 12.0000i 0.468521i
\(657\) −16.2846 9.40192i −0.635323 0.366804i
\(658\) 20.9282 + 20.9282i 0.815866 + 0.815866i
\(659\) 4.02628 15.0263i 0.156842 0.585341i −0.842099 0.539323i \(-0.818680\pi\)
0.998941 0.0460178i \(-0.0146531\pi\)
\(660\) 15.7128i 0.611620i
\(661\) 2.19615 + 8.19615i 0.0854204 + 0.318793i 0.995393 0.0958740i \(-0.0305646\pi\)
−0.909973 + 0.414667i \(0.863898\pi\)
\(662\) 0.124356 + 0.0717968i 0.00483322 + 0.00279046i
\(663\) −24.4641 + 24.4641i −0.950107 + 0.950107i
\(664\) −3.46410 + 2.00000i −0.134433 + 0.0776151i
\(665\) 9.46410i 0.367002i
\(666\) 28.3923i 1.10018i
\(667\) −8.19615 + 8.19615i −0.317356 + 0.317356i
\(668\) −7.46410 12.9282i −0.288795 0.500207i
\(669\) 24.0788 + 13.9019i 0.930942 + 0.537479i
\(670\) 2.58846 + 9.66025i 0.100001 + 0.373208i
\(671\) 25.3923 43.9808i 0.980259 1.69786i
\(672\) −25.8564 6.92820i −0.997433 0.267261i
\(673\) 19.1962 + 33.2487i 0.739957 + 1.28164i 0.952514 + 0.304495i \(0.0984877\pi\)
−0.212557 + 0.977149i \(0.568179\pi\)
\(674\) −17.7846 + 17.7846i −0.685038 + 0.685038i
\(675\) 10.2058 + 17.6769i 0.392820 + 0.680385i
\(676\) −1.71281 −0.0658774
\(677\) −4.73205 1.26795i −0.181867 0.0487312i 0.166736 0.986002i \(-0.446677\pi\)
−0.348603 + 0.937270i \(0.613344\pi\)
\(678\) −8.78461 + 32.7846i −0.337371 + 1.25909i
\(679\) 27.7583 + 16.0263i 1.06527 + 0.615032i
\(680\) 8.39230 14.5359i 0.321830 0.557426i
\(681\) −0.990381 3.69615i −0.0379515 0.141637i
\(682\) −2.87564 + 1.66025i −0.110114 + 0.0635744i
\(683\) −20.2942 + 20.2942i −0.776537 + 0.776537i −0.979240 0.202703i \(-0.935027\pi\)
0.202703 + 0.979240i \(0.435027\pi\)
\(684\) −19.3923 5.19615i −0.741483 0.198680i
\(685\) 6.98076 + 6.98076i 0.266721 + 0.266721i
\(686\) −6.53590 + 24.3923i −0.249542 + 0.931303i
\(687\) 8.66025 + 8.66025i 0.330409 + 0.330409i
\(688\) −8.92820 33.3205i −0.340385 1.27033i
\(689\) 18.3923 31.8564i 0.700691 1.21363i
\(690\) 12.0000i 0.456832i
\(691\) −2.49038 + 9.29423i −0.0947386 + 0.353569i −0.996980 0.0776628i \(-0.975254\pi\)
0.902241 + 0.431232i \(0.141921\pi\)
\(692\) −2.39230 + 2.39230i −0.0909418 + 0.0909418i
\(693\) 9.29423 34.6865i 0.353059 1.31763i
\(694\) 25.8038i 0.979501i
\(695\) 10.6077 6.12436i 0.402373 0.232310i
\(696\) −6.00000 + 10.3923i −0.227429 + 0.393919i
\(697\) −14.8923 8.59808i −0.564086 0.325675i
\(698\) 11.6603 20.1962i 0.441347 0.764436i
\(699\) 2.76795 + 4.79423i 0.104693 + 0.181334i
\(700\) −18.5885 + 10.7321i −0.702578 + 0.405633i
\(701\) −6.66025 6.66025i −0.251554 0.251554i 0.570053 0.821608i \(-0.306923\pi\)
−0.821608 + 0.570053i \(0.806923\pi\)
\(702\) 25.6077i 0.966500i
\(703\) −22.3923 −0.844542
\(704\) 9.07180 33.8564i 0.341906 1.27601i
\(705\) −3.55514 + 13.2679i −0.133894 + 0.499700i
\(706\) −5.24167 19.5622i −0.197273 0.736232i
\(707\) 5.46410 1.46410i 0.205499 0.0550632i
\(708\) 6.80385 + 25.3923i 0.255704 + 0.954301i
\(709\) 36.5885 + 9.80385i 1.37411 + 0.368191i 0.868978 0.494852i \(-0.164778\pi\)
0.505131 + 0.863043i \(0.331444\pi\)
\(710\) −4.28719 −0.160895
\(711\) −36.0000 −1.35011
\(712\) −4.00000 + 4.00000i −0.149906 + 0.149906i
\(713\) −2.19615 + 1.26795i −0.0822466 + 0.0474851i
\(714\) 27.1244 27.1244i 1.01510 1.01510i
\(715\) −4.09103 15.2679i −0.152996 0.570989i
\(716\) −1.41154 5.26795i −0.0527518 0.196873i
\(717\) 27.3731i 1.02227i
\(718\) 4.12436 15.3923i 0.153920 0.574436i
\(719\) 4.39230 0.163805 0.0819027 0.996640i \(-0.473900\pi\)
0.0819027 + 0.996640i \(0.473900\pi\)
\(720\) −3.21539 12.0000i −0.119831 0.447214i
\(721\) 41.3205 1.53886
\(722\) −2.85641 + 10.6603i −0.106304 + 0.396734i
\(723\) 34.7942 + 20.0885i 1.29401 + 0.747098i
\(724\) −20.1962 + 5.41154i −0.750584 + 0.201118i
\(725\) 2.49038 + 9.29423i 0.0924904 + 0.345179i
\(726\) 19.3923 + 5.19615i 0.719716 + 0.192847i
\(727\) 28.8109 16.6340i 1.06854 0.616920i 0.140755 0.990044i \(-0.455047\pi\)
0.927781 + 0.373124i \(0.121714\pi\)
\(728\) −26.9282 −0.998026
\(729\) −27.0000 −1.00000
\(730\) 9.17691 0.339653
\(731\) 47.7487 + 12.7942i 1.76605 + 0.473212i
\(732\) 10.3923 38.7846i 0.384111 1.43352i
\(733\) −11.0263 + 2.95448i −0.407265 + 0.109126i −0.456635 0.889654i \(-0.650945\pi\)
0.0493698 + 0.998781i \(0.484279\pi\)
\(734\) −10.3397 38.5885i −0.381647 1.42433i
\(735\) 0.803848 0.215390i 0.0296504 0.00794479i
\(736\) 6.92820 25.8564i 0.255377 0.953080i
\(737\) −29.9282 −1.10242
\(738\) −12.2942 + 3.29423i −0.452557 + 0.121262i
\(739\) −8.22243 8.22243i −0.302467 0.302467i 0.539511 0.841978i \(-0.318609\pi\)
−0.841978 + 0.539511i \(0.818609\pi\)
\(740\) −6.92820 12.0000i −0.254686 0.441129i
\(741\) −20.1962 −0.741924
\(742\) −20.3923 + 35.3205i −0.748625 + 1.29666i
\(743\) −24.7583 14.2942i −0.908295 0.524404i −0.0284129 0.999596i \(-0.509045\pi\)
−0.879882 + 0.475192i \(0.842379\pi\)
\(744\) −1.85641 + 1.85641i −0.0680592 + 0.0680592i
\(745\) −7.26795 + 4.19615i −0.266277 + 0.153735i
\(746\) 40.2487i 1.47361i
\(747\) −3.00000 3.00000i −0.109764 0.109764i
\(748\) 35.5167 + 35.5167i 1.29862 + 1.29862i
\(749\) −12.4904 + 46.6147i −0.456389 + 1.70327i
\(750\) −19.6077 11.3205i −0.715972 0.413367i
\(751\) −8.85641 + 15.3397i −0.323175 + 0.559755i −0.981141 0.193292i \(-0.938084\pi\)
0.657966 + 0.753047i \(0.271417\pi\)
\(752\) −15.3205 + 26.5359i −0.558681 + 0.967665i
\(753\) 3.69615 13.7942i 0.134695 0.502690i
\(754\) −3.12436 + 11.6603i −0.113782 + 0.424641i
\(755\) 0.535898 + 0.535898i 0.0195033 + 0.0195033i
\(756\) 28.3923i 1.03262i
\(757\) −19.9282 + 19.9282i −0.724303 + 0.724303i −0.969479 0.245176i \(-0.921154\pi\)
0.245176 + 0.969479i \(0.421154\pi\)
\(758\) −6.50962 + 3.75833i −0.236440 + 0.136509i
\(759\) 34.6865 + 9.29423i 1.25904 + 0.337359i
\(760\) 9.46410 2.53590i 0.343299 0.0919867i
\(761\) −45.3731 26.1962i −1.64477 0.949610i −0.979104 0.203363i \(-0.934813\pi\)
−0.665669 0.746247i \(1.26815\pi\)
\(762\) 9.92820 2.66025i 0.359661 0.0963708i
\(763\) −40.0526 10.7321i −1.45000 0.388526i
\(764\) 48.1051i 1.74038i
\(765\) 17.1962 + 4.60770i 0.621728 + 0.166592i
\(766\) 13.4641 13.4641i 0.486478 0.486478i
\(767\) 13.2224 + 22.9019i 0.477434 + 0.826941i
\(768\) 27.7128i 1.00000i
\(769\) −14.1244 + 24.4641i −0.509337 + 0.882198i 0.490604 + 0.871383i \(0.336776\pi\)
−0.999942 + 0.0108155i \(0.996557\pi\)
\(770\) 4.53590 + 16.9282i 0.163462 + 0.610050i
\(771\) 32.6603i 1.17623i
\(772\) −37.6410 + 21.7321i −1.35473 + 0.782154i
\(773\) 35.5885 35.5885i 1.28003 1.28003i 0.339378 0.940650i \(-0.389784\pi\)
0.940650 0.339378i \(-0.110216\pi\)
\(774\) 31.6865 18.2942i 1.13895 0.657572i
\(775\) 2.10512i 0.0756181i
\(776\) −8.58846 + 32.0526i −0.308308 + 1.15062i
\(777\) −8.19615 30.5885i −0.294035 1.09735i