Properties

Label 144.2.x.a
Level 144
Weight 2
Character orbit 144.x
Analytic conductor 1.150
Analytic rank 0
Dimension 4
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 144.x (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 - \zeta_{12}^{3} ) q^{2} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12}^{3} q^{4} + ( -1 - \zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( 1 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{6} + ( 4 + \zeta_{12} - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + ( 2 - 2 \zeta_{12}^{3} ) q^{8} + 3 q^{9} +O(q^{10})\) \( q + ( -1 - \zeta_{12}^{3} ) q^{2} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{3} + 2 \zeta_{12}^{3} q^{4} + ( -1 - \zeta_{12} + \zeta_{12}^{3} ) q^{5} + ( 1 - 2 \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{6} + ( 4 + \zeta_{12} - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + ( 2 - 2 \zeta_{12}^{3} ) q^{8} + 3 q^{9} + ( 1 + \zeta_{12} + \zeta_{12}^{2} ) q^{10} + ( -1 + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{11} + ( -2 + 4 \zeta_{12}^{2} ) q^{12} + ( 3 - 3 \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{13} + ( -4 - 3 \zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{14} + ( -2 - 2 \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{15} -4 q^{16} + 4 q^{17} + ( -3 - 3 \zeta_{12}^{3} ) q^{18} + ( -3 + 3 \zeta_{12}^{3} ) q^{19} + ( -2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{20} + ( 2 + 6 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{21} + ( 2 + \zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{22} + ( -2 - 3 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{23} + ( 2 + 4 \zeta_{12} - 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{24} + ( 2 - 3 \zeta_{12} - \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{25} + ( -5 + \zeta_{12} + 5 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{26} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( 4 \zeta_{12} + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{28} + ( 1 - \zeta_{12} - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{29} + ( 1 + 3 \zeta_{12} + \zeta_{12}^{2} ) q^{30} + ( -4 - 3 \zeta_{12} + 4 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{31} + ( 4 + 4 \zeta_{12}^{3} ) q^{32} + ( -1 - \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{33} + ( -4 - 4 \zeta_{12}^{3} ) q^{34} + ( -5 - 3 \zeta_{12} + 3 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{35} + 6 \zeta_{12}^{3} q^{36} + ( -7 + 2 \zeta_{12} + 2 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{37} + 6 q^{38} + ( -4 + 4 \zeta_{12} - \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{39} + ( -2 - 2 \zeta_{12} + 2 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{40} + ( -3 + 6 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{41} + ( -2 - 7 \zeta_{12} - 5 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{42} + ( 1 - 6 \zeta_{12} + 5 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{43} + ( -2 - 2 \zeta_{12} ) q^{44} + ( -3 - 3 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{45} + ( -1 + \zeta_{12} + 5 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{46} + ( -3 \zeta_{12} + 4 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{47} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{48} + ( 6 + 4 \zeta_{12} - 6 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{49} + ( -2 + 2 \zeta_{12} + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{50} + ( 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{51} + ( 4 + 4 \zeta_{12} - 6 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{52} + ( 3 + 2 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{53} + ( 3 - 6 \zeta_{12} - 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{54} + ( 1 - 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{55} + ( 8 - 2 \zeta_{12} - 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{56} + ( -3 - 6 \zeta_{12} + 6 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{57} + ( -\zeta_{12} + 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{58} + ( -3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{59} + ( 2 - 2 \zeta_{12} - 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{60} + ( -7 + \zeta_{12} + 8 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{61} + ( 7 + 7 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{62} + ( 12 + 3 \zeta_{12} - 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{63} -8 \zeta_{12}^{3} q^{64} + ( 2 \zeta_{12} + \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{65} + ( 2 + 3 \zeta_{12} - \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{66} + ( 2 - 2 \zeta_{12} - 5 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{67} + 8 \zeta_{12}^{3} q^{68} + ( -3 - 6 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{69} + ( 7 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{70} + ( -4 + 8 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{71} + ( 6 - 6 \zeta_{12}^{3} ) q^{72} + ( 2 - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{73} + ( 2 - 4 \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{74} + ( -6 + 3 \zeta_{12} + 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{75} + ( -6 - 6 \zeta_{12}^{3} ) q^{76} + ( -2 + 2 \zeta_{12} + 5 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{77} + ( 3 - 5 \zeta_{12} - 3 \zeta_{12}^{2} + 10 \zeta_{12}^{3} ) q^{78} + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{79} + ( 4 + 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{80} + 9 q^{81} + ( 9 - 9 \zeta_{12} - 3 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{82} + ( -1 - 10 \zeta_{12} - 9 \zeta_{12}^{2} + 9 \zeta_{12}^{3} ) q^{83} + ( 2 \zeta_{12} + 12 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{84} + ( -4 - 4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{85} + ( -2 + 11 \zeta_{12} + \zeta_{12}^{2} - 11 \zeta_{12}^{3} ) q^{86} + ( -3 + 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{87} + ( 2 \zeta_{12} + 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} + ( 8 - 16 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{89} + ( 3 + 3 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{90} + ( 5 - 9 \zeta_{12} - 9 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{91} + ( 6 + 4 \zeta_{12} - 6 \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{92} + ( -9 - 4 \zeta_{12} + 9 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{93} + ( -6 + 7 \zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{94} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{95} + ( -4 + 8 \zeta_{12} + 8 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{96} -\zeta_{12}^{2} q^{97} + ( -10 - 10 \zeta_{12} + 2 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{98} + ( -3 + 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} - 4q^{5} + 12q^{7} + 8q^{8} + 12q^{9} + O(q^{10}) \) \( 4q - 4q^{2} - 4q^{5} + 12q^{7} + 8q^{8} + 12q^{9} + 6q^{10} - 2q^{11} + 8q^{13} - 14q^{14} - 6q^{15} - 16q^{16} + 16q^{17} - 12q^{18} - 12q^{19} - 4q^{20} + 6q^{21} + 6q^{22} - 12q^{23} + 6q^{25} - 10q^{26} + 4q^{28} + 6q^{30} - 8q^{31} + 16q^{32} - 16q^{34} - 14q^{35} - 24q^{37} + 24q^{38} - 18q^{39} - 4q^{40} - 18q^{41} - 18q^{42} + 14q^{43} - 8q^{44} - 12q^{45} + 6q^{46} + 8q^{47} + 12q^{49} + 4q^{52} + 16q^{53} + 20q^{56} + 6q^{58} - 6q^{59} - 12q^{61} + 26q^{62} + 36q^{63} + 2q^{65} + 6q^{66} - 2q^{67} - 18q^{69} + 28q^{70} + 24q^{72} - 18q^{75} - 24q^{76} + 2q^{77} + 6q^{78} + 16q^{80} + 36q^{81} + 30q^{82} - 22q^{83} + 24q^{84} - 16q^{85} - 6q^{86} - 6q^{87} + 4q^{88} + 18q^{90} + 2q^{91} + 12q^{92} - 18q^{93} - 26q^{94} + 6q^{95} - 2q^{97} - 36q^{98} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(\zeta_{12}^{3}\) \(-1 + \zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
−0.866025 0.500000i
0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
−1.00000 + 1.00000i −1.73205 2.00000i −0.133975 0.500000i 1.73205 1.73205i 2.13397 1.23205i 2.00000 + 2.00000i 3.00000 0.633975 + 0.366025i
61.1 −1.00000 + 1.00000i 1.73205 2.00000i −1.86603 0.500000i −1.73205 + 1.73205i 3.86603 + 2.23205i 2.00000 + 2.00000i 3.00000 2.36603 1.36603i
85.1 −1.00000 1.00000i 1.73205 2.00000i −1.86603 + 0.500000i −1.73205 1.73205i 3.86603 2.23205i 2.00000 2.00000i 3.00000 2.36603 + 1.36603i
133.1 −1.00000 1.00000i −1.73205 2.00000i −0.133975 + 0.500000i 1.73205 + 1.73205i 2.13397 + 1.23205i 2.00000 2.00000i 3.00000 0.633975 0.366025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
144.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.2.x.a 4
3.b odd 2 1 432.2.y.d 4
4.b odd 2 1 576.2.bb.a 4
9.c even 3 1 144.2.x.d yes 4
9.d odd 6 1 432.2.y.a 4
12.b even 2 1 1728.2.bc.c 4
16.e even 4 1 144.2.x.d yes 4
16.f odd 4 1 576.2.bb.b 4
36.f odd 6 1 576.2.bb.b 4
36.h even 6 1 1728.2.bc.b 4
48.i odd 4 1 432.2.y.a 4
48.k even 4 1 1728.2.bc.b 4
144.u even 12 1 1728.2.bc.c 4
144.v odd 12 1 576.2.bb.a 4
144.w odd 12 1 432.2.y.d 4
144.x even 12 1 inner 144.2.x.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.2.x.a 4 1.a even 1 1 trivial
144.2.x.a 4 144.x even 12 1 inner
144.2.x.d yes 4 9.c even 3 1
144.2.x.d yes 4 16.e even 4 1
432.2.y.a 4 9.d odd 6 1
432.2.y.a 4 48.i odd 4 1
432.2.y.d 4 3.b odd 2 1
432.2.y.d 4 144.w odd 12 1
576.2.bb.a 4 4.b odd 2 1
576.2.bb.a 4 144.v odd 12 1
576.2.bb.b 4 16.f odd 4 1
576.2.bb.b 4 36.f odd 6 1
1728.2.bc.b 4 36.h even 6 1
1728.2.bc.b 4 48.k even 4 1
1728.2.bc.c 4 12.b even 2 1
1728.2.bc.c 4 144.u even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 4 T_{5}^{3} + 5 T_{5}^{2} + 2 T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(144, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 2 T + 2 T^{2} )^{2} \)
$3$ \( ( 1 - 3 T^{2} )^{2} \)
$5$ \( 1 + 4 T + 5 T^{2} - 8 T^{3} - 44 T^{4} - 40 T^{5} + 125 T^{6} + 500 T^{7} + 625 T^{8} \)
$7$ \( 1 - 12 T + 73 T^{2} - 300 T^{3} + 912 T^{4} - 2100 T^{5} + 3577 T^{6} - 4116 T^{7} + 2401 T^{8} \)
$11$ \( 1 + 2 T + 5 T^{2} + 26 T^{3} - 32 T^{4} + 286 T^{5} + 605 T^{6} + 2662 T^{7} + 14641 T^{8} \)
$13$ \( ( 1 - 6 T + 13 T^{2} )^{2}( 1 + 4 T + 3 T^{2} + 52 T^{3} + 169 T^{4} ) \)
$17$ \( ( 1 - 4 T + 17 T^{2} )^{4} \)
$19$ \( ( 1 + 6 T + 18 T^{2} + 114 T^{3} + 361 T^{4} )^{2} \)
$23$ \( 1 + 12 T + 97 T^{2} + 588 T^{3} + 2976 T^{4} + 13524 T^{5} + 51313 T^{6} + 146004 T^{7} + 279841 T^{8} \)
$29$ \( 1 + 9 T^{2} - 156 T^{3} - 484 T^{4} - 4524 T^{5} + 7569 T^{6} + 707281 T^{8} \)
$31$ \( 1 + 8 T + 13 T^{2} - 88 T^{3} - 344 T^{4} - 2728 T^{5} + 12493 T^{6} + 238328 T^{7} + 923521 T^{8} \)
$37$ \( 1 + 24 T + 288 T^{2} + 2472 T^{3} + 16862 T^{4} + 91464 T^{5} + 394272 T^{6} + 1215672 T^{7} + 1874161 T^{8} \)
$41$ \( 1 + 18 T + 181 T^{2} + 1314 T^{3} + 8076 T^{4} + 53874 T^{5} + 304261 T^{6} + 1240578 T^{7} + 2825761 T^{8} \)
$43$ \( 1 - 14 T + 65 T^{2} + 474 T^{3} - 6280 T^{4} + 20382 T^{5} + 120185 T^{6} - 1113098 T^{7} + 3418801 T^{8} \)
$47$ \( 1 - 8 T - 19 T^{2} + 88 T^{3} + 1672 T^{4} + 4136 T^{5} - 41971 T^{6} - 830584 T^{7} + 4879681 T^{8} \)
$53$ \( 1 - 16 T + 128 T^{2} - 1264 T^{3} + 11806 T^{4} - 66992 T^{5} + 359552 T^{6} - 2382032 T^{7} + 7890481 T^{8} \)
$59$ \( 1 + 6 T + 45 T^{2} + 462 T^{3} + 848 T^{4} + 27258 T^{5} + 156645 T^{6} + 1232274 T^{7} + 12117361 T^{8} \)
$61$ \( 1 + 12 T + 261 T^{2} + 2088 T^{3} + 24452 T^{4} + 127368 T^{5} + 971181 T^{6} + 2723772 T^{7} + 13845841 T^{8} \)
$67$ \( 1 + 2 T + 65 T^{2} + 762 T^{3} + 2600 T^{4} + 51054 T^{5} + 291785 T^{6} + 601526 T^{7} + 20151121 T^{8} \)
$71$ \( 1 - 156 T^{2} + 13094 T^{4} - 786396 T^{6} + 25411681 T^{8} \)
$73$ \( 1 - 236 T^{2} + 23814 T^{4} - 1257644 T^{6} + 28398241 T^{8} \)
$79$ \( 1 - 155 T^{2} + 17784 T^{4} - 967355 T^{6} + 38950081 T^{8} \)
$83$ \( 1 + 22 T + 185 T^{2} - 290 T^{3} - 14024 T^{4} - 24070 T^{5} + 1274465 T^{6} + 12579314 T^{7} + 47458321 T^{8} \)
$89$ \( 1 + 36 T^{2} + 13094 T^{4} + 285156 T^{6} + 62742241 T^{8} \)
$97$ \( ( 1 + T - 96 T^{2} + 97 T^{3} + 9409 T^{4} )^{2} \)
show more
show less