Properties

Label 144.2.u
Level 144
Weight 2
Character orbit u
Rep. character \(\chi_{144}(11,\cdot)\)
Character field \(\Q(\zeta_{12})\)
Dimension 88
Newform subspaces 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.u (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 144 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} + 2q^{6} - 4q^{7} + O(q^{10}) \) \( 88q - 6q^{2} - 4q^{3} - 2q^{4} - 6q^{5} + 2q^{6} - 4q^{7} - 8q^{10} - 6q^{11} - 16q^{12} - 2q^{13} - 6q^{14} - 2q^{16} - 10q^{18} - 8q^{19} - 48q^{20} + 2q^{21} - 2q^{22} - 12q^{23} - 16q^{27} + 8q^{28} - 6q^{29} - 34q^{30} - 6q^{32} - 8q^{33} + 2q^{34} - 26q^{36} - 8q^{37} - 6q^{38} - 32q^{39} - 2q^{40} + 48q^{42} - 2q^{43} + 6q^{45} - 40q^{46} + 42q^{48} - 24q^{49} + 72q^{50} - 12q^{51} - 2q^{52} - 38q^{54} - 16q^{55} + 36q^{56} + 16q^{58} - 42q^{59} + 70q^{60} - 2q^{61} - 44q^{64} - 12q^{65} + 104q^{66} - 2q^{67} + 96q^{68} - 10q^{69} - 16q^{70} - 10q^{72} + 78q^{74} - 56q^{75} - 14q^{76} - 6q^{77} + 12q^{78} - 8q^{81} - 36q^{82} + 54q^{83} + 158q^{84} + 8q^{85} + 54q^{86} + 48q^{87} + 22q^{88} + 64q^{90} + 20q^{91} + 108q^{92} - 34q^{93} + 6q^{94} - 58q^{96} - 4q^{97} + 46q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
144.2.u.a \(88\) \(1.150\) None \(-6\) \(-4\) \(-6\) \(-4\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database