Properties

Label 144.2.s
Level $144$
Weight $2$
Character orbit 144.s
Rep. character $\chi_{144}(47,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $5$
Sturm bound $48$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(48\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 60 12 48
Cusp forms 36 12 24
Eisenstein series 24 0 24

Trace form

\( 12q + 6q^{9} + O(q^{10}) \) \( 12q + 6q^{9} - 12q^{21} + 6q^{25} - 36q^{29} - 18q^{33} - 18q^{41} - 36q^{45} + 6q^{49} + 30q^{57} + 72q^{65} + 72q^{69} - 36q^{73} + 72q^{77} + 54q^{81} - 18q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
144.2.s.a \(2\) \(1.150\) \(\Q(\sqrt{-3}) \) None \(0\) \(-3\) \(-6\) \(-6\) \(q+(-1-\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+(-2+\cdots)q^{7}+\cdots\)
144.2.s.b \(2\) \(1.150\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(3\) \(-3\) \(q+(1-2\zeta_{6})q^{3}+(2-\zeta_{6})q^{5}+(-1-\zeta_{6})q^{7}+\cdots\)
144.2.s.c \(2\) \(1.150\) \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(3\) \(3\) \(q+(-1+2\zeta_{6})q^{3}+(2-\zeta_{6})q^{5}+(1+\zeta_{6})q^{7}+\cdots\)
144.2.s.d \(2\) \(1.150\) \(\Q(\sqrt{-3}) \) None \(0\) \(3\) \(-6\) \(6\) \(q+(1+\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+(2+2\zeta_{6})q^{7}+\cdots\)
144.2.s.e \(4\) \(1.150\) \(\Q(\zeta_{12})\) None \(0\) \(0\) \(6\) \(0\) \(q-\zeta_{12}^{3}q^{3}+(1+\zeta_{12})q^{5}+(-\zeta_{12}^{2}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)