## Defining parameters

Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |

Weight: | \( k \) | \(=\) | \( 2 \) |

Character orbit: | \([\chi]\) | \(=\) | 144.p (of order \(6\) and degree \(2\)) |

Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 72 \) |

Character field: | \(\Q(\zeta_{6})\) | ||

Newform subspaces: | \( 0 \) | ||

Sturm bound: | \(48\) | ||

Trace bound: | \(0\) |

## Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total | New | Old | |
---|---|---|---|

Modular forms | 56 | 0 | 56 |

Cusp forms | 40 | 0 | 40 |

Eisenstein series | 16 | 0 | 16 |

## Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)