# Properties

 Label 144.2.l.a Level $144$ Weight $2$ Character orbit 144.l Analytic conductor $1.150$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$144 = 2^{4} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 144.l (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.14984578911$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$8$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 4 x^{14} + 6 x^{12} - 12 x^{10} + 33 x^{8} - 48 x^{6} + 96 x^{4} - 256 x^{2} + 256$$ Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$2^{10}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{15}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{11} q^{2} -\beta_{7} q^{4} + \beta_{6} q^{5} + ( -\beta_{4} - \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{8} + \beta_{12} - \beta_{13} ) q^{8} +O(q^{10})$$ $$q + \beta_{11} q^{2} -\beta_{7} q^{4} + \beta_{6} q^{5} + ( -\beta_{4} - \beta_{9} ) q^{7} + ( -\beta_{2} - \beta_{8} + \beta_{12} - \beta_{13} ) q^{8} + ( \beta_{1} + \beta_{3} + \beta_{4} - \beta_{5} - \beta_{7} + \beta_{10} ) q^{10} + ( 2 \beta_{2} - \beta_{12} - \beta_{13} - \beta_{14} - \beta_{15} ) q^{11} + ( -1 + \beta_{1} - \beta_{3} + \beta_{5} + \beta_{7} + \beta_{9} ) q^{13} + ( -\beta_{6} + \beta_{8} + \beta_{11} + \beta_{12} + \beta_{13} + \beta_{14} - \beta_{15} ) q^{14} + ( -1 - \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{7} ) q^{16} + ( -\beta_{2} + \beta_{6} + \beta_{8} - 2 \beta_{11} + \beta_{12} + 2 \beta_{15} ) q^{17} + ( 2 + 2 \beta_{5} + 2 \beta_{7} - 2 \beta_{10} ) q^{19} + ( -\beta_{8} - \beta_{11} + \beta_{12} - 2 \beta_{14} + \beta_{15} ) q^{20} + ( -3 + \beta_{1} + \beta_{5} + 2 \beta_{9} - \beta_{10} ) q^{22} + ( \beta_{2} - \beta_{6} - \beta_{8} - 2 \beta_{12} + \beta_{13} - \beta_{15} ) q^{23} + ( \beta_{3} + \beta_{4} - \beta_{5} - \beta_{9} + 3 \beta_{10} ) q^{25} + ( -\beta_{6} + \beta_{8} + \beta_{11} - \beta_{12} + \beta_{13} + 3 \beta_{14} + \beta_{15} ) q^{26} + ( -2 - 2 \beta_{1} - 2 \beta_{4} - 4 \beta_{5} - \beta_{7} - \beta_{9} ) q^{28} + ( -\beta_{2} + \beta_{8} - 2 \beta_{11} + \beta_{12} + 2 \beta_{13} + \beta_{14} ) q^{29} + ( -2 \beta_{1} + \beta_{3} - 2 \beta_{4} - 4 \beta_{5} - 2 \beta_{7} - \beta_{10} ) q^{31} + ( -2 \beta_{11} - 2 \beta_{12} - 2 \beta_{13} - 2 \beta_{14} ) q^{32} + ( 3 + 2 \beta_{3} + 2 \beta_{5} - 2 \beta_{9} + \beta_{10} ) q^{34} + ( -2 \beta_{2} - 2 \beta_{6} - \beta_{12} - \beta_{13} + \beta_{14} - \beta_{15} ) q^{35} + ( -1 - 2 \beta_{1} - 2 \beta_{3} - \beta_{5} + 2 \beta_{9} - 2 \beta_{10} ) q^{37} + ( 2 \beta_{11} - 4 \beta_{12} + 2 \beta_{13} - 2 \beta_{15} ) q^{38} + ( 5 - \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} + \beta_{9} - 2 \beta_{10} ) q^{40} + ( \beta_{2} + \beta_{6} - \beta_{8} + 2 \beta_{11} + \beta_{14} + 2 \beta_{15} ) q^{41} + ( -2 - 2 \beta_{1} - \beta_{3} + \beta_{4} + 2 \beta_{5} + 2 \beta_{7} - \beta_{9} + \beta_{10} ) q^{43} + ( -\beta_{2} + \beta_{6} - \beta_{8} - 2 \beta_{11} - \beta_{12} + \beta_{13} + 3 \beta_{14} + \beta_{15} ) q^{44} + ( 1 + \beta_{1} - 2 \beta_{3} - \beta_{5} + 2 \beta_{7} + 2 \beta_{9} - \beta_{10} ) q^{46} + ( \beta_{2} - \beta_{6} + \beta_{8} + 2 \beta_{11} + \beta_{13} - 2 \beta_{14} + \beta_{15} ) q^{47} + ( 3 + 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{7} ) q^{49} + ( \beta_{2} + 2 \beta_{8} - 2 \beta_{11} + 2 \beta_{12} - 4 \beta_{14} + 2 \beta_{15} ) q^{50} + ( -2 \beta_{4} + 2 \beta_{5} - \beta_{7} - \beta_{9} + 2 \beta_{10} ) q^{52} + ( -2 \beta_{2} - \beta_{6} + 2 \beta_{11} + \beta_{12} - \beta_{14} - 2 \beta_{15} ) q^{53} + ( -4 + 4 \beta_{1} + 2 \beta_{3} - 4 \beta_{7} + 2 \beta_{10} ) q^{55} + ( 3 \beta_{2} + \beta_{6} + \beta_{8} - 2 \beta_{11} + 3 \beta_{12} - \beta_{13} + \beta_{14} - \beta_{15} ) q^{56} + ( 2 - \beta_{1} + \beta_{3} - \beta_{4} - 5 \beta_{5} + \beta_{7} - 2 \beta_{9} + \beta_{10} ) q^{58} + ( -2 \beta_{8} + 2 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} + 2 \beta_{14} ) q^{59} + ( -3 + 2 \beta_{1} + 3 \beta_{5} + 2 \beta_{9} ) q^{61} + ( 2 \beta_{2} + 3 \beta_{6} - \beta_{8} - \beta_{11} + 3 \beta_{12} - \beta_{13} + \beta_{14} - \beta_{15} ) q^{62} + ( -2 + 2 \beta_{1} + 6 \beta_{5} + 2 \beta_{7} - 2 \beta_{10} ) q^{64} + ( -3 \beta_{2} - \beta_{6} - \beta_{8} + 2 \beta_{11} - 2 \beta_{13} ) q^{65} + ( 2 \beta_{1} - \beta_{3} + 3 \beta_{4} + \beta_{9} - \beta_{10} ) q^{67} + ( -2 \beta_{2} + \beta_{8} + \beta_{11} + \beta_{12} + 2 \beta_{13} - 4 \beta_{14} - \beta_{15} ) q^{68} + ( -5 - \beta_{1} - 2 \beta_{3} - 2 \beta_{4} + 3 \beta_{5} + 2 \beta_{7} - 2 \beta_{9} - \beta_{10} ) q^{70} + ( \beta_{2} + \beta_{6} + \beta_{8} - 2 \beta_{11} + 4 \beta_{12} + \beta_{13} + \beta_{15} ) q^{71} + ( -2 \beta_{1} - 2 \beta_{5} - 2 \beta_{7} - 2 \beta_{9} + 2 \beta_{10} ) q^{73} + ( \beta_{2} + 2 \beta_{6} - 2 \beta_{8} - \beta_{11} - 2 \beta_{12} - 4 \beta_{13} + 2 \beta_{14} ) q^{74} + ( 4 \beta_{1} - 4 \beta_{5} - 2 \beta_{7} ) q^{76} + ( 2 \beta_{2} - 2 \beta_{8} - 2 \beta_{13} - 2 \beta_{15} ) q^{77} + ( -2 \beta_{1} - \beta_{3} - 2 \beta_{7} - 2 \beta_{9} + \beta_{10} ) q^{79} + ( \beta_{2} + \beta_{6} - \beta_{8} + 4 \beta_{11} - 5 \beta_{12} - \beta_{13} - \beta_{14} - \beta_{15} ) q^{80} + ( 4 + \beta_{1} + 2 \beta_{4} + 3 \beta_{5} - 2 \beta_{7} + 2 \beta_{9} + 2 \beta_{10} ) q^{82} + ( -2 \beta_{2} + 2 \beta_{6} + 3 \beta_{12} - \beta_{13} - 3 \beta_{14} - \beta_{15} ) q^{83} + ( -2 - \beta_{1} - \beta_{4} - 2 \beta_{5} + \beta_{7} - \beta_{10} ) q^{85} + ( 2 \beta_{8} - 4 \beta_{11} - 2 \beta_{12} - 2 \beta_{13} - 4 \beta_{14} ) q^{86} + ( 2 + 2 \beta_{1} + 2 \beta_{4} + 2 \beta_{7} + 4 \beta_{10} ) q^{88} + ( 2 \beta_{2} - 2 \beta_{6} + 2 \beta_{8} - \beta_{14} ) q^{89} + ( 2 + 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + 4 \beta_{9} + 2 \beta_{10} ) q^{91} + ( 3 \beta_{2} - \beta_{6} + \beta_{8} + 4 \beta_{11} - 3 \beta_{12} + \beta_{13} + 5 \beta_{14} + \beta_{15} ) q^{92} + ( 5 - \beta_{1} - 2 \beta_{4} + \beta_{5} - 2 \beta_{7} - 3 \beta_{10} ) q^{94} + ( -4 \beta_{2} + 2 \beta_{6} - 2 \beta_{8} + 2 \beta_{11} + 2 \beta_{13} + 6 \beta_{14} ) q^{95} + ( 2 + \beta_{3} - \beta_{4} - 3 \beta_{9} - \beta_{10} ) q^{97} + ( -2 \beta_{2} - 4 \beta_{8} + \beta_{11} - 4 \beta_{14} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16 q + O(q^{10})$$ $$16 q - 8 q^{10} - 16 q^{16} + 16 q^{19} - 40 q^{22} - 24 q^{28} + 24 q^{34} + 72 q^{40} - 32 q^{43} + 40 q^{46} + 16 q^{49} + 24 q^{52} - 64 q^{55} + 24 q^{58} - 32 q^{61} - 48 q^{64} - 16 q^{67} - 72 q^{70} + 80 q^{82} - 32 q^{85} + 48 q^{88} + 48 q^{91} + 72 q^{94} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{16} - 4 x^{14} + 6 x^{12} - 12 x^{10} + 33 x^{8} - 48 x^{6} + 96 x^{4} - 256 x^{2} + 256$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$-\nu^{14} + 21 \nu^{12} - 18 \nu^{10} + 18 \nu^{8} - 189 \nu^{6} + 81 \nu^{4} + 72 \nu^{2} + 1072$$$$)/480$$ $$\beta_{2}$$ $$=$$ $$($$$$-\nu^{15} - 6 \nu^{11} - 12 \nu^{9} - 81 \nu^{7} - 276 \nu^{5} + 336 \nu^{3} + 64 \nu$$$$)/1536$$ $$\beta_{3}$$ $$=$$ $$($$$$3 \nu^{14} + 2 \nu^{12} - 6 \nu^{10} + 16 \nu^{8} + 27 \nu^{6} + 62 \nu^{4} - 256 \nu^{2} - 96$$$$)/320$$ $$\beta_{4}$$ $$=$$ $$($$$$-29 \nu^{14} + 24 \nu^{12} + 18 \nu^{10} + 372 \nu^{8} - 141 \nu^{6} - 876 \nu^{4} - 1872 \nu^{2} + 1088$$$$)/1920$$ $$\beta_{5}$$ $$=$$ $$($$$$43 \nu^{14} - 108 \nu^{12} + 114 \nu^{10} - 324 \nu^{8} + 747 \nu^{6} - 528 \nu^{4} + 3024 \nu^{2} - 6016$$$$)/1920$$ $$\beta_{6}$$ $$=$$ $$($$$$11 \nu^{15} - 66 \nu^{13} + 138 \nu^{11} - 168 \nu^{9} + 339 \nu^{7} - 486 \nu^{5} + 1008 \nu^{3} - 1952 \nu$$$$)/1920$$ $$\beta_{7}$$ $$=$$ $$($$$$\nu^{14} - \nu^{12} + 2 \nu^{10} - 10 \nu^{8} + 13 \nu^{6} - 13 \nu^{4} + 56 \nu^{2} - 80$$$$)/32$$ $$\beta_{8}$$ $$=$$ $$($$$$27 \nu^{15} - 72 \nu^{13} + 66 \nu^{11} - 236 \nu^{9} + 1003 \nu^{7} - 812 \nu^{5} + 1936 \nu^{3} - 2624 \nu$$$$)/2560$$ $$\beta_{9}$$ $$=$$ $$($$$$89 \nu^{14} - 204 \nu^{12} + 102 \nu^{10} - 732 \nu^{8} + 1401 \nu^{6} - 984 \nu^{4} + 4752 \nu^{2} - 9728$$$$)/1920$$ $$\beta_{10}$$ $$=$$ $$($$$$11 \nu^{14} - 24 \nu^{12} + 18 \nu^{10} - 108 \nu^{8} + 219 \nu^{6} - 156 \nu^{4} + 864 \nu^{2} - 1472$$$$)/192$$ $$\beta_{11}$$ $$=$$ $$($$$$-39 \nu^{15} + 64 \nu^{13} - 42 \nu^{11} + 172 \nu^{9} - 471 \nu^{7} + 564 \nu^{5} - 1552 \nu^{3} + 4288 \nu$$$$)/2560$$ $$\beta_{12}$$ $$=$$ $$($$$$-\nu^{15} + \nu^{13} - 2 \nu^{11} + 10 \nu^{9} - 13 \nu^{7} + 13 \nu^{5} - 56 \nu^{3} + 80 \nu$$$$)/64$$ $$\beta_{13}$$ $$=$$ $$($$$$-71 \nu^{15} + 216 \nu^{13} - 138 \nu^{11} + 828 \nu^{9} - 2199 \nu^{7} + 1356 \nu^{5} - 5328 \nu^{3} + 14912 \nu$$$$)/3840$$ $$\beta_{14}$$ $$=$$ $$($$$$89 \nu^{15} - 204 \nu^{13} + 102 \nu^{11} - 732 \nu^{9} + 1401 \nu^{7} - 984 \nu^{5} + 4752 \nu^{3} - 9728 \nu$$$$)/3840$$ $$\beta_{15}$$ $$=$$ $$($$$$149 \nu^{15} - 264 \nu^{13} + 222 \nu^{11} - 1332 \nu^{9} + 2181 \nu^{7} - 1764 \nu^{5} + 11952 \nu^{3} - 18368 \nu$$$$)/3840$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{14} + \beta_{13} + \beta_{11} + \beta_{8}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{10} - \beta_{9} - \beta_{7} + \beta_{5} + \beta_{1} + 1$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$($$$$2 \beta_{15} - \beta_{14} + \beta_{13} + 2 \beta_{12} + \beta_{11} + \beta_{8}$$$$)/2$$ $$\nu^{4}$$ $$=$$ $$($$$$-2 \beta_{9} - \beta_{7} + 3 \beta_{5} - 3 \beta_{4} + \beta_{3} - \beta_{1} + 1$$$$)/2$$ $$\nu^{5}$$ $$=$$ $$($$$$2 \beta_{15} + \beta_{14} + \beta_{13} + 2 \beta_{12} + 3 \beta_{11} - \beta_{8} - 8 \beta_{2}$$$$)/2$$ $$\nu^{6}$$ $$=$$ $$($$$$5 \beta_{10} - 5 \beta_{9} - \beta_{7} - 3 \beta_{5} + 4 \beta_{3} - 3 \beta_{1} + 9$$$$)/2$$ $$\nu^{7}$$ $$=$$ $$($$$$-3 \beta_{14} - \beta_{13} + \beta_{11} + 7 \beta_{8} - 2 \beta_{6} - 6 \beta_{2}$$$$)/2$$ $$\nu^{8}$$ $$=$$ $$($$$$4 \beta_{10} - 6 \beta_{9} - 9 \beta_{7} + 15 \beta_{5} + 5 \beta_{4} + 9 \beta_{3} + 7 \beta_{1} + 9$$$$)/2$$ $$\nu^{9}$$ $$=$$ $$($$$$8 \beta_{15} - 13 \beta_{14} + 7 \beta_{13} + 20 \beta_{12} - 21 \beta_{11} + 9 \beta_{8} + 2 \beta_{6} - 10 \beta_{2}$$$$)/2$$ $$\nu^{10}$$ $$=$$ $$($$$$-15 \beta_{10} - 17 \beta_{9} + 19 \beta_{7} + 45 \beta_{5} - 4 \beta_{4} - 4 \beta_{3} - 11 \beta_{1} + 13$$$$)/2$$ $$\nu^{11}$$ $$=$$ $$($$$$6 \beta_{15} - 29 \beta_{14} + 5 \beta_{13} - 10 \beta_{12} - 15 \beta_{11} - 3 \beta_{8} + 28 \beta_{6} - 28 \beta_{2}$$$$)/2$$ $$\nu^{12}$$ $$=$$ $$($$$$24 \beta_{10} - 42 \beta_{9} + 23 \beta_{7} - 13 \beta_{5} + 5 \beta_{4} + 25 \beta_{3} + 7 \beta_{1} - 23$$$$)/2$$ $$\nu^{13}$$ $$=$$ $$($$$$6 \beta_{15} - 91 \beta_{14} - 19 \beta_{13} - 66 \beta_{12} - 37 \beta_{11} + 3 \beta_{8} - 20 \beta_{6} - 20 \beta_{2}$$$$)/2$$ $$\nu^{14}$$ $$=$$ $$($$$$-27 \beta_{10} + 27 \beta_{9} + 15 \beta_{7} + 69 \beta_{5} + 24 \beta_{4} + 84 \beta_{3} + 69 \beta_{1} + 41$$$$)/2$$ $$\nu^{15}$$ $$=$$ $$($$$$-12 \beta_{15} + 25 \beta_{14} + 91 \beta_{13} - 60 \beta_{12} - 167 \beta_{11} + 19 \beta_{8} - 30 \beta_{6} - 90 \beta_{2}$$$$)/2$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/144\mathbb{Z}\right)^\times$$.

 $$n$$ $$37$$ $$65$$ $$127$$ $$\chi(n)$$ $$\beta_{5}$$ $$-1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
35.1
 0.944649 − 1.05244i −1.36166 + 0.381939i −1.40927 + 0.118126i 0.517174 + 1.31626i −0.517174 − 1.31626i 1.40927 − 0.118126i 1.36166 − 0.381939i −0.944649 + 1.05244i 0.944649 + 1.05244i −1.36166 − 0.381939i −1.40927 − 0.118126i 0.517174 − 1.31626i −0.517174 + 1.31626i 1.40927 + 0.118126i 1.36166 + 0.381939i −0.944649 − 1.05244i
−1.32068 + 0.505776i 0 1.48838 1.33594i −2.10489 2.10489i 0 −4.40731 −1.28999 + 2.51713i 0 3.84448 + 1.71528i
35.2 −1.12697 + 0.854358i 0 0.540143 1.92568i 0.763878 + 0.763878i 0 1.33620 1.03649 + 2.63167i 0 −1.51350 0.208245i
35.3 −0.957325 1.04093i 0 −0.167056 + 1.99301i 0.236253 + 0.236253i 0 3.27830 2.23450 1.73407i 0 0.0197510 0.472092i
35.4 −0.263185 + 1.38951i 0 −1.86147 0.731395i 2.63251 + 2.63251i 0 −0.207188 1.50619 2.39403i 0 −4.35074 + 2.96506i
35.5 0.263185 1.38951i 0 −1.86147 0.731395i −2.63251 2.63251i 0 −0.207188 −1.50619 + 2.39403i 0 −4.35074 + 2.96506i
35.6 0.957325 + 1.04093i 0 −0.167056 + 1.99301i −0.236253 0.236253i 0 3.27830 −2.23450 + 1.73407i 0 0.0197510 0.472092i
35.7 1.12697 0.854358i 0 0.540143 1.92568i −0.763878 0.763878i 0 1.33620 −1.03649 2.63167i 0 −1.51350 0.208245i
35.8 1.32068 0.505776i 0 1.48838 1.33594i 2.10489 + 2.10489i 0 −4.40731 1.28999 2.51713i 0 3.84448 + 1.71528i
107.1 −1.32068 0.505776i 0 1.48838 + 1.33594i −2.10489 + 2.10489i 0 −4.40731 −1.28999 2.51713i 0 3.84448 1.71528i
107.2 −1.12697 0.854358i 0 0.540143 + 1.92568i 0.763878 0.763878i 0 1.33620 1.03649 2.63167i 0 −1.51350 + 0.208245i
107.3 −0.957325 + 1.04093i 0 −0.167056 1.99301i 0.236253 0.236253i 0 3.27830 2.23450 + 1.73407i 0 0.0197510 + 0.472092i
107.4 −0.263185 1.38951i 0 −1.86147 + 0.731395i 2.63251 2.63251i 0 −0.207188 1.50619 + 2.39403i 0 −4.35074 2.96506i
107.5 0.263185 + 1.38951i 0 −1.86147 + 0.731395i −2.63251 + 2.63251i 0 −0.207188 −1.50619 2.39403i 0 −4.35074 2.96506i
107.6 0.957325 1.04093i 0 −0.167056 1.99301i −0.236253 + 0.236253i 0 3.27830 −2.23450 1.73407i 0 0.0197510 + 0.472092i
107.7 1.12697 + 0.854358i 0 0.540143 + 1.92568i −0.763878 + 0.763878i 0 1.33620 −1.03649 + 2.63167i 0 −1.51350 + 0.208245i
107.8 1.32068 + 0.505776i 0 1.48838 + 1.33594i 2.10489 2.10489i 0 −4.40731 1.28999 + 2.51713i 0 3.84448 1.71528i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 107.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
16.f odd 4 1 inner
48.k even 4 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.2.l.a 16
3.b odd 2 1 inner 144.2.l.a 16
4.b odd 2 1 576.2.l.a 16
8.b even 2 1 1152.2.l.a 16
8.d odd 2 1 1152.2.l.b 16
12.b even 2 1 576.2.l.a 16
16.e even 4 1 576.2.l.a 16
16.e even 4 1 1152.2.l.b 16
16.f odd 4 1 inner 144.2.l.a 16
16.f odd 4 1 1152.2.l.a 16
24.f even 2 1 1152.2.l.b 16
24.h odd 2 1 1152.2.l.a 16
48.i odd 4 1 576.2.l.a 16
48.i odd 4 1 1152.2.l.b 16
48.k even 4 1 inner 144.2.l.a 16
48.k even 4 1 1152.2.l.a 16

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.2.l.a 16 1.a even 1 1 trivial
144.2.l.a 16 3.b odd 2 1 inner
144.2.l.a 16 16.f odd 4 1 inner
144.2.l.a 16 48.k even 4 1 inner
576.2.l.a 16 4.b odd 2 1
576.2.l.a 16 12.b even 2 1
576.2.l.a 16 16.e even 4 1
576.2.l.a 16 48.i odd 4 1
1152.2.l.a 16 8.b even 2 1
1152.2.l.a 16 16.f odd 4 1
1152.2.l.a 16 24.h odd 2 1
1152.2.l.a 16 48.k even 4 1
1152.2.l.b 16 8.d odd 2 1
1152.2.l.b 16 16.e even 4 1
1152.2.l.b 16 24.f even 2 1
1152.2.l.b 16 48.i odd 4 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{2}^{\mathrm{new}}(144, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$256 + 64 T^{4} + 32 T^{6} + 4 T^{8} + 8 T^{10} + 4 T^{12} + T^{16}$$
$3$ $$T^{16}$$
$5$ $$256 + 20736 T^{4} + 15456 T^{8} + 272 T^{12} + T^{16}$$
$7$ $$( 4 + 16 T - 16 T^{2} + T^{4} )^{4}$$
$11$ $$65536 + 7585792 T^{4} + 181760 T^{8} + 960 T^{12} + T^{16}$$
$13$ $$( 400 - 1280 T + 2048 T^{2} + 1792 T^{3} + 744 T^{4} + 64 T^{5} + T^{8} )^{2}$$
$17$ $$( 1936 + 5024 T^{2} + 1208 T^{4} + 72 T^{6} + T^{8} )^{2}$$
$19$ $$( 30976 - 50688 T + 41472 T^{2} - 10624 T^{3} + 1376 T^{4} - 32 T^{5} + 32 T^{6} - 8 T^{7} + T^{8} )^{2}$$
$23$ $$( 6400 + 5632 T^{2} + 1440 T^{4} + 96 T^{6} + T^{8} )^{2}$$
$29$ $$16062013696 + 1768163584 T^{4} + 7056992 T^{8} + 5520 T^{12} + T^{16}$$
$31$ $$( 1648656 + 288256 T^{2} + 12296 T^{4} + 192 T^{6} + T^{8} )^{2}$$
$37$ $$( 35344 - 96256 T + 131072 T^{2} - 47104 T^{3} + 8840 T^{4} - 512 T^{5} + T^{8} )^{2}$$
$41$ $$( 144 - 30752 T^{2} + 7032 T^{4} - 168 T^{6} + T^{8} )^{2}$$
$43$ $$( 4129024 + 2080768 T + 524288 T^{2} + 65280 T^{3} + 5088 T^{4} + 512 T^{5} + 128 T^{6} + 16 T^{7} + T^{8} )^{2}$$
$47$ $$( 665856 - 129536 T^{2} + 7840 T^{4} - 160 T^{6} + T^{8} )^{2}$$
$53$ $$22663495936 + 1216180480 T^{4} + 6358112 T^{8} + 5904 T^{12} + T^{16}$$
$59$ $$2186423566336 + 18575523840 T^{4} + 34824192 T^{8} + 15104 T^{12} + T^{16}$$
$61$ $$( 258064 + 178816 T + 61952 T^{2} + 6720 T^{3} + 1032 T^{4} + 416 T^{5} + 128 T^{6} + 16 T^{7} + T^{8} )^{2}$$
$67$ $$( 7573504 + 4755456 T + 1492992 T^{2} + 243200 T^{3} + 21888 T^{4} + 704 T^{5} + 32 T^{6} + 8 T^{7} + T^{8} )^{2}$$
$71$ $$( 73984 + 78848 T^{2} + 7712 T^{4} + 192 T^{6} + T^{8} )^{2}$$
$73$ $$( 20736 + 90880 T^{2} + 8032 T^{4} + 176 T^{6} + T^{8} )^{2}$$
$79$ $$( 3825936 + 415360 T^{2} + 15432 T^{4} + 224 T^{6} + T^{8} )^{2}$$
$83$ $$102776124276736 + 231440760832 T^{4} + 167437824 T^{8} + 40384 T^{12} + T^{16}$$
$89$ $$( 104976 - 60704 T^{2} + 8600 T^{4} - 200 T^{6} + T^{8} )^{2}$$
$97$ $$( -176 - 256 T - 72 T^{2} + T^{4} )^{4}$$