Properties

Label 144.2.l
Level 144
Weight 2
Character orbit l
Rep. character \(\chi_{144}(35,\cdot)\)
Character field \(\Q(\zeta_{4})\)
Dimension 16
Newforms 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 144.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 48 \)
Character field: \(\Q(i)\)
Newforms: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

Trace form

\( 16q + O(q^{10}) \) \( 16q - 8q^{10} - 16q^{16} + 16q^{19} - 40q^{22} - 24q^{28} + 24q^{34} + 72q^{40} - 32q^{43} + 40q^{46} + 16q^{49} + 24q^{52} - 64q^{55} + 24q^{58} - 32q^{61} - 48q^{64} - 16q^{67} - 72q^{70} + 80q^{82} - 32q^{85} + 48q^{88} + 48q^{91} + 72q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
144.2.l.a \(16\) \(1.150\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q+\beta _{11}q^{2}-\beta _{7}q^{4}+\beta _{6}q^{5}+(-\beta _{4}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)