# Properties

 Label 144.2.l Level $144$ Weight $2$ Character orbit 144.l Rep. character $\chi_{144}(35,\cdot)$ Character field $\Q(\zeta_{4})$ Dimension $16$ Newform subspaces $1$ Sturm bound $48$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$144 = 2^{4} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 144.l (of order $$4$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$48$$ Character field: $$\Q(i)$$ Newform subspaces: $$1$$ Sturm bound: $$48$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(144, [\chi])$$.

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

## Trace form

 $$16 q + O(q^{10})$$ $$16 q - 8 q^{10} - 16 q^{16} + 16 q^{19} - 40 q^{22} - 24 q^{28} + 24 q^{34} + 72 q^{40} - 32 q^{43} + 40 q^{46} + 16 q^{49} + 24 q^{52} - 64 q^{55} + 24 q^{58} - 32 q^{61} - 48 q^{64} - 16 q^{67} - 72 q^{70} + 80 q^{82} - 32 q^{85} + 48 q^{88} + 48 q^{91} + 72 q^{94} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(144, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.2.l.a $16$ $1.150$ $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ None $$0$$ $$0$$ $$0$$ $$0$$ $$q+\beta _{11}q^{2}-\beta _{7}q^{4}+\beta _{6}q^{5}+(-\beta _{4}+\cdots)q^{7}+\cdots$$

## Decomposition of $$S_{2}^{\mathrm{old}}(144, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(144, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(48, [\chi])$$$$^{\oplus 2}$$