Newspace parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.14984578911\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 16) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).
\(n\) | \(37\) | \(65\) | \(127\) |
\(\chi(n)\) | \(i\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 |
|
1.00000 | + | 1.00000i | 0 | 2.00000i | 1.00000 | + | 1.00000i | 0 | − | 2.00000i | −2.00000 | + | 2.00000i | 0 | 2.00000i | |||||||||||||||||
109.1 | 1.00000 | − | 1.00000i | 0 | − | 2.00000i | 1.00000 | − | 1.00000i | 0 | 2.00000i | −2.00000 | − | 2.00000i | 0 | − | 2.00000i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
16.e | even | 4 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 2T_{5} + 2 \)
acting on \(S_{2}^{\mathrm{new}}(144, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} - 2T + 2 \)
$3$
\( T^{2} \)
$5$
\( T^{2} - 2T + 2 \)
$7$
\( T^{2} + 4 \)
$11$
\( T^{2} + 2T + 2 \)
$13$
\( T^{2} + 2T + 2 \)
$17$
\( (T - 2)^{2} \)
$19$
\( T^{2} - 6T + 18 \)
$23$
\( T^{2} + 36 \)
$29$
\( T^{2} + 6T + 18 \)
$31$
\( (T + 8)^{2} \)
$37$
\( T^{2} - 6T + 18 \)
$41$
\( T^{2} \)
$43$
\( T^{2} - 10T + 50 \)
$47$
\( (T + 8)^{2} \)
$53$
\( T^{2} - 10T + 50 \)
$59$
\( T^{2} - 6T + 18 \)
$61$
\( T^{2} + 18T + 162 \)
$67$
\( T^{2} + 10T + 50 \)
$71$
\( T^{2} + 100 \)
$73$
\( T^{2} + 16 \)
$79$
\( T^{2} \)
$83$
\( T^{2} - 2T + 2 \)
$89$
\( T^{2} + 16 \)
$97$
\( (T + 2)^{2} \)
show more
show less