Properties

Label 144.2.k
Level 144144
Weight 22
Character orbit 144.k
Rep. character χ144(37,)\chi_{144}(37,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 1818
Newform subspaces 33
Sturm bound 4848
Trace bound 44

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 144=2432 144 = 2^{4} \cdot 3^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 144.k (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 16 16
Character field: Q(i)\Q(i)
Newform subspaces: 3 3
Sturm bound: 4848
Trace bound: 44
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(144,[χ])M_{2}(144, [\chi]).

Total New Old
Modular forms 56 22 34
Cusp forms 40 18 22
Eisenstein series 16 4 12

Trace form

18q+2q2+2q5+8q8+8q10+6q112q138q148q16+4q1710q1920q208q2224q2616q28+10q2916q318q3236q34++46q98+O(q100) 18 q + 2 q^{2} + 2 q^{5} + 8 q^{8} + 8 q^{10} + 6 q^{11} - 2 q^{13} - 8 q^{14} - 8 q^{16} + 4 q^{17} - 10 q^{19} - 20 q^{20} - 8 q^{22} - 24 q^{26} - 16 q^{28} + 10 q^{29} - 16 q^{31} - 8 q^{32} - 36 q^{34}+ \cdots + 46 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(144,[χ])S_{2}^{\mathrm{new}}(144, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
144.2.k.a 144.k 16.e 22 1.1501.150 Q(1)\Q(\sqrt{-1}) None 16.2.e.a 22 00 22 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q2+2iq4+(i+1)q5+q+(i+1)q^{2}+2 i q^{4}+(i+1)q^{5}+\cdots
144.2.k.b 144.k 16.e 88 1.1501.150 8.0.18939904.2 None 48.2.j.a 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ6q2+(1β1β3+β4β5+)q4+q-\beta _{6}q^{2}+(-1-\beta _{1}-\beta _{3}+\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots
144.2.k.c 144.k 16.e 88 1.1501.150 8.0.629407744.1 None 144.2.k.c 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q2+β2q4+(β4β6)q5+(1+)q7+q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{4}-\beta _{6})q^{5}+(-1+\cdots)q^{7}+\cdots

Decomposition of S2old(144,[χ])S_{2}^{\mathrm{old}}(144, [\chi]) into lower level spaces

S2old(144,[χ]) S_{2}^{\mathrm{old}}(144, [\chi]) \simeq S2new(16,[χ])S_{2}^{\mathrm{new}}(16, [\chi])3^{\oplus 3}\oplusS2new(48,[χ])S_{2}^{\mathrm{new}}(48, [\chi])2^{\oplus 2}