Properties

Label 144.2.i.d.49.2
Level $144$
Weight $2$
Character 144.49
Analytic conductor $1.150$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \(x^{4} - x^{3} - 2 x^{2} - 3 x + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 49.2
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 144.49
Dual form 144.2.i.d.97.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.18614 + 1.26217i) q^{3} +(1.68614 - 2.92048i) q^{5} +(-0.686141 - 1.18843i) q^{7} +(-0.186141 + 2.99422i) q^{9} +O(q^{10})\) \(q+(1.18614 + 1.26217i) q^{3} +(1.68614 - 2.92048i) q^{5} +(-0.686141 - 1.18843i) q^{7} +(-0.186141 + 2.99422i) q^{9} +(0.500000 + 0.866025i) q^{11} +(-2.68614 + 4.65253i) q^{13} +(5.68614 - 1.33591i) q^{15} +0.372281 q^{17} -6.37228 q^{19} +(0.686141 - 2.27567i) q^{21} +(2.68614 - 4.65253i) q^{23} +(-3.18614 - 5.51856i) q^{25} +(-4.00000 + 3.31662i) q^{27} +(-0.686141 - 1.18843i) q^{29} +(0.313859 - 0.543620i) q^{31} +(-0.500000 + 1.65831i) q^{33} -4.62772 q^{35} -2.74456 q^{37} +(-9.05842 + 2.12819i) q^{39} +(0.127719 - 0.221215i) q^{41} +(4.87228 + 8.43904i) q^{43} +(8.43070 + 5.59230i) q^{45} +(-0.686141 - 1.18843i) q^{47} +(2.55842 - 4.43132i) q^{49} +(0.441578 + 0.469882i) q^{51} -10.7446 q^{53} +3.37228 q^{55} +(-7.55842 - 8.04290i) q^{57} +(3.50000 - 6.06218i) q^{59} +(1.68614 + 2.92048i) q^{61} +(3.68614 - 1.83324i) q^{63} +(9.05842 + 15.6896i) q^{65} +(3.87228 - 6.70699i) q^{67} +(9.05842 - 2.12819i) q^{69} +4.00000 q^{71} +5.11684 q^{73} +(3.18614 - 10.5672i) q^{75} +(0.686141 - 1.18843i) q^{77} +(-0.313859 - 0.543620i) q^{79} +(-8.93070 - 1.11469i) q^{81} +(7.68614 + 13.3128i) q^{83} +(0.627719 - 1.08724i) q^{85} +(0.686141 - 2.27567i) q^{87} +6.00000 q^{89} +7.37228 q^{91} +(1.05842 - 0.248667i) q^{93} +(-10.7446 + 18.6101i) q^{95} +(4.87228 + 8.43904i) q^{97} +(-2.68614 + 1.33591i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - q^{3} + q^{5} + 3q^{7} + 5q^{9} + O(q^{10}) \) \( 4q - q^{3} + q^{5} + 3q^{7} + 5q^{9} + 2q^{11} - 5q^{13} + 17q^{15} - 10q^{17} - 14q^{19} - 3q^{21} + 5q^{23} - 7q^{25} - 16q^{27} + 3q^{29} + 7q^{31} - 2q^{33} - 30q^{35} + 12q^{37} - 19q^{39} + 12q^{41} + 8q^{43} + 5q^{45} + 3q^{47} - 7q^{49} + 19q^{51} - 20q^{53} + 2q^{55} - 13q^{57} + 14q^{59} + q^{61} + 9q^{63} + 19q^{65} + 4q^{67} + 19q^{69} + 16q^{71} - 14q^{73} + 7q^{75} - 3q^{77} - 7q^{79} - 7q^{81} + 25q^{83} + 14q^{85} - 3q^{87} + 24q^{89} + 18q^{91} - 13q^{93} - 20q^{95} + 8q^{97} - 5q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.18614 + 1.26217i 0.684819 + 0.728714i
\(4\) 0 0
\(5\) 1.68614 2.92048i 0.754065 1.30608i −0.191773 0.981439i \(-0.561424\pi\)
0.945838 0.324640i \(-0.105243\pi\)
\(6\) 0 0
\(7\) −0.686141 1.18843i −0.259337 0.449185i 0.706728 0.707486i \(-0.250171\pi\)
−0.966064 + 0.258301i \(0.916837\pi\)
\(8\) 0 0
\(9\) −0.186141 + 2.99422i −0.0620469 + 0.998073i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) −2.68614 + 4.65253i −0.745001 + 1.29038i 0.205193 + 0.978722i \(0.434218\pi\)
−0.950194 + 0.311659i \(0.899115\pi\)
\(14\) 0 0
\(15\) 5.68614 1.33591i 1.46816 0.344930i
\(16\) 0 0
\(17\) 0.372281 0.0902915 0.0451457 0.998980i \(-0.485625\pi\)
0.0451457 + 0.998980i \(0.485625\pi\)
\(18\) 0 0
\(19\) −6.37228 −1.46190 −0.730951 0.682430i \(-0.760923\pi\)
−0.730951 + 0.682430i \(0.760923\pi\)
\(20\) 0 0
\(21\) 0.686141 2.27567i 0.149728 0.496592i
\(22\) 0 0
\(23\) 2.68614 4.65253i 0.560099 0.970120i −0.437388 0.899273i \(-0.644096\pi\)
0.997487 0.0708472i \(-0.0225703\pi\)
\(24\) 0 0
\(25\) −3.18614 5.51856i −0.637228 1.10371i
\(26\) 0 0
\(27\) −4.00000 + 3.31662i −0.769800 + 0.638285i
\(28\) 0 0
\(29\) −0.686141 1.18843i −0.127413 0.220686i 0.795261 0.606268i \(-0.207334\pi\)
−0.922674 + 0.385582i \(0.874001\pi\)
\(30\) 0 0
\(31\) 0.313859 0.543620i 0.0563708 0.0976371i −0.836463 0.548023i \(-0.815380\pi\)
0.892834 + 0.450386i \(0.148714\pi\)
\(32\) 0 0
\(33\) −0.500000 + 1.65831i −0.0870388 + 0.288675i
\(34\) 0 0
\(35\) −4.62772 −0.782227
\(36\) 0 0
\(37\) −2.74456 −0.451203 −0.225602 0.974220i \(-0.572435\pi\)
−0.225602 + 0.974220i \(0.572435\pi\)
\(38\) 0 0
\(39\) −9.05842 + 2.12819i −1.45051 + 0.340784i
\(40\) 0 0
\(41\) 0.127719 0.221215i 0.0199463 0.0345480i −0.855880 0.517175i \(-0.826984\pi\)
0.875826 + 0.482627i \(0.160317\pi\)
\(42\) 0 0
\(43\) 4.87228 + 8.43904i 0.743016 + 1.28694i 0.951116 + 0.308834i \(0.0999387\pi\)
−0.208100 + 0.978108i \(0.566728\pi\)
\(44\) 0 0
\(45\) 8.43070 + 5.59230i 1.25678 + 0.833650i
\(46\) 0 0
\(47\) −0.686141 1.18843i −0.100084 0.173350i 0.811635 0.584165i \(-0.198578\pi\)
−0.911719 + 0.410814i \(0.865244\pi\)
\(48\) 0 0
\(49\) 2.55842 4.43132i 0.365489 0.633045i
\(50\) 0 0
\(51\) 0.441578 + 0.469882i 0.0618333 + 0.0657966i
\(52\) 0 0
\(53\) −10.7446 −1.47588 −0.737940 0.674867i \(-0.764201\pi\)
−0.737940 + 0.674867i \(0.764201\pi\)
\(54\) 0 0
\(55\) 3.37228 0.454718
\(56\) 0 0
\(57\) −7.55842 8.04290i −1.00114 1.06531i
\(58\) 0 0
\(59\) 3.50000 6.06218i 0.455661 0.789228i −0.543065 0.839691i \(-0.682736\pi\)
0.998726 + 0.0504625i \(0.0160695\pi\)
\(60\) 0 0
\(61\) 1.68614 + 2.92048i 0.215888 + 0.373929i 0.953547 0.301244i \(-0.0974020\pi\)
−0.737659 + 0.675174i \(0.764069\pi\)
\(62\) 0 0
\(63\) 3.68614 1.83324i 0.464410 0.230967i
\(64\) 0 0
\(65\) 9.05842 + 15.6896i 1.12356 + 1.94606i
\(66\) 0 0
\(67\) 3.87228 6.70699i 0.473074 0.819389i −0.526451 0.850206i \(-0.676477\pi\)
0.999525 + 0.0308167i \(0.00981082\pi\)
\(68\) 0 0
\(69\) 9.05842 2.12819i 1.09051 0.256204i
\(70\) 0 0
\(71\) 4.00000 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(72\) 0 0
\(73\) 5.11684 0.598881 0.299441 0.954115i \(-0.403200\pi\)
0.299441 + 0.954115i \(0.403200\pi\)
\(74\) 0 0
\(75\) 3.18614 10.5672i 0.367904 1.22020i
\(76\) 0 0
\(77\) 0.686141 1.18843i 0.0781930 0.135434i
\(78\) 0 0
\(79\) −0.313859 0.543620i −0.0353119 0.0611621i 0.847829 0.530269i \(-0.177909\pi\)
−0.883141 + 0.469107i \(0.844576\pi\)
\(80\) 0 0
\(81\) −8.93070 1.11469i −0.992300 0.123855i
\(82\) 0 0
\(83\) 7.68614 + 13.3128i 0.843664 + 1.46127i 0.886777 + 0.462198i \(0.152939\pi\)
−0.0431132 + 0.999070i \(0.513728\pi\)
\(84\) 0 0
\(85\) 0.627719 1.08724i 0.0680856 0.117928i
\(86\) 0 0
\(87\) 0.686141 2.27567i 0.0735620 0.243978i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 7.37228 0.772825
\(92\) 0 0
\(93\) 1.05842 0.248667i 0.109753 0.0257855i
\(94\) 0 0
\(95\) −10.7446 + 18.6101i −1.10237 + 1.90936i
\(96\) 0 0
\(97\) 4.87228 + 8.43904i 0.494705 + 0.856855i 0.999981 0.00610314i \(-0.00194270\pi\)
−0.505276 + 0.862958i \(0.668609\pi\)
\(98\) 0 0
\(99\) −2.68614 + 1.33591i −0.269967 + 0.134264i
\(100\) 0 0
\(101\) −5.05842 8.76144i −0.503332 0.871796i −0.999993 0.00385151i \(-0.998774\pi\)
0.496661 0.867945i \(-0.334559\pi\)
\(102\) 0 0
\(103\) −3.31386 + 5.73977i −0.326524 + 0.565557i −0.981820 0.189816i \(-0.939211\pi\)
0.655295 + 0.755373i \(0.272544\pi\)
\(104\) 0 0
\(105\) −5.48913 5.84096i −0.535684 0.570020i
\(106\) 0 0
\(107\) −15.8614 −1.53338 −0.766690 0.642017i \(-0.778098\pi\)
−0.766690 + 0.642017i \(0.778098\pi\)
\(108\) 0 0
\(109\) 6.74456 0.646012 0.323006 0.946397i \(-0.395307\pi\)
0.323006 + 0.946397i \(0.395307\pi\)
\(110\) 0 0
\(111\) −3.25544 3.46410i −0.308992 0.328798i
\(112\) 0 0
\(113\) −0.686141 + 1.18843i −0.0645467 + 0.111798i −0.896493 0.443058i \(-0.853893\pi\)
0.831946 + 0.554856i \(0.187227\pi\)
\(114\) 0 0
\(115\) −9.05842 15.6896i −0.844702 1.46307i
\(116\) 0 0
\(117\) −13.4307 8.90892i −1.24167 0.823630i
\(118\) 0 0
\(119\) −0.255437 0.442430i −0.0234159 0.0405575i
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 0 0
\(123\) 0.430703 0.101190i 0.0388352 0.00912398i
\(124\) 0 0
\(125\) −4.62772 −0.413916
\(126\) 0 0
\(127\) 4.74456 0.421012 0.210506 0.977593i \(-0.432489\pi\)
0.210506 + 0.977593i \(0.432489\pi\)
\(128\) 0 0
\(129\) −4.87228 + 16.1595i −0.428980 + 1.42277i
\(130\) 0 0
\(131\) 6.31386 10.9359i 0.551644 0.955476i −0.446512 0.894778i \(-0.647334\pi\)
0.998156 0.0606984i \(-0.0193328\pi\)
\(132\) 0 0
\(133\) 4.37228 + 7.57301i 0.379125 + 0.656664i
\(134\) 0 0
\(135\) 2.94158 + 17.2742i 0.253171 + 1.48673i
\(136\) 0 0
\(137\) −3.12772 5.41737i −0.267219 0.462837i 0.700924 0.713236i \(-0.252771\pi\)
−0.968143 + 0.250399i \(0.919438\pi\)
\(138\) 0 0
\(139\) −2.87228 + 4.97494i −0.243624 + 0.421969i −0.961744 0.273951i \(-0.911670\pi\)
0.718120 + 0.695919i \(0.245003\pi\)
\(140\) 0 0
\(141\) 0.686141 2.27567i 0.0577835 0.191646i
\(142\) 0 0
\(143\) −5.37228 −0.449253
\(144\) 0 0
\(145\) −4.62772 −0.384311
\(146\) 0 0
\(147\) 8.62772 2.02700i 0.711602 0.167185i
\(148\) 0 0
\(149\) 1.31386 2.27567i 0.107636 0.186430i −0.807176 0.590310i \(-0.799005\pi\)
0.914812 + 0.403880i \(0.132339\pi\)
\(150\) 0 0
\(151\) −2.68614 4.65253i −0.218595 0.378618i 0.735784 0.677217i \(-0.236814\pi\)
−0.954379 + 0.298599i \(0.903481\pi\)
\(152\) 0 0
\(153\) −0.0692967 + 1.11469i −0.00560231 + 0.0901175i
\(154\) 0 0
\(155\) −1.05842 1.83324i −0.0850145 0.147249i
\(156\) 0 0
\(157\) −7.05842 + 12.2255i −0.563323 + 0.975705i 0.433880 + 0.900971i \(0.357144\pi\)
−0.997203 + 0.0747341i \(0.976189\pi\)
\(158\) 0 0
\(159\) −12.7446 13.5615i −1.01071 1.07549i
\(160\) 0 0
\(161\) −7.37228 −0.581017
\(162\) 0 0
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) 0 0
\(165\) 4.00000 + 4.25639i 0.311400 + 0.331359i
\(166\) 0 0
\(167\) −0.941578 + 1.63086i −0.0728615 + 0.126200i −0.900154 0.435571i \(-0.856546\pi\)
0.827293 + 0.561771i \(0.189880\pi\)
\(168\) 0 0
\(169\) −7.93070 13.7364i −0.610054 1.05664i
\(170\) 0 0
\(171\) 1.18614 19.0800i 0.0907064 1.45908i
\(172\) 0 0
\(173\) 5.31386 + 9.20387i 0.404005 + 0.699758i 0.994205 0.107500i \(-0.0342844\pi\)
−0.590200 + 0.807257i \(0.700951\pi\)
\(174\) 0 0
\(175\) −4.37228 + 7.57301i −0.330513 + 0.572466i
\(176\) 0 0
\(177\) 11.8030 2.77300i 0.887167 0.208432i
\(178\) 0 0
\(179\) 22.9783 1.71748 0.858738 0.512416i \(-0.171249\pi\)
0.858738 + 0.512416i \(0.171249\pi\)
\(180\) 0 0
\(181\) −23.4891 −1.74593 −0.872966 0.487780i \(-0.837807\pi\)
−0.872966 + 0.487780i \(0.837807\pi\)
\(182\) 0 0
\(183\) −1.68614 + 5.59230i −0.124643 + 0.413394i
\(184\) 0 0
\(185\) −4.62772 + 8.01544i −0.340237 + 0.589307i
\(186\) 0 0
\(187\) 0.186141 + 0.322405i 0.0136120 + 0.0235766i
\(188\) 0 0
\(189\) 6.68614 + 2.47805i 0.486345 + 0.180252i
\(190\) 0 0
\(191\) −9.43070 16.3345i −0.682382 1.18192i −0.974252 0.225462i \(-0.927611\pi\)
0.291870 0.956458i \(-0.405722\pi\)
\(192\) 0 0
\(193\) 4.87228 8.43904i 0.350714 0.607455i −0.635660 0.771969i \(-0.719272\pi\)
0.986375 + 0.164514i \(0.0526054\pi\)
\(194\) 0 0
\(195\) −9.05842 + 30.0434i −0.648687 + 2.15145i
\(196\) 0 0
\(197\) 26.7446 1.90547 0.952736 0.303801i \(-0.0982557\pi\)
0.952736 + 0.303801i \(0.0982557\pi\)
\(198\) 0 0
\(199\) −18.2337 −1.29255 −0.646276 0.763104i \(-0.723674\pi\)
−0.646276 + 0.763104i \(0.723674\pi\)
\(200\) 0 0
\(201\) 13.0584 3.06796i 0.921070 0.216397i
\(202\) 0 0
\(203\) −0.941578 + 1.63086i −0.0660858 + 0.114464i
\(204\) 0 0
\(205\) −0.430703 0.746000i −0.0300816 0.0521029i
\(206\) 0 0
\(207\) 13.4307 + 8.90892i 0.933498 + 0.619213i
\(208\) 0 0
\(209\) −3.18614 5.51856i −0.220390 0.381727i
\(210\) 0 0
\(211\) −7.68614 + 13.3128i −0.529136 + 0.916490i 0.470287 + 0.882514i \(0.344150\pi\)
−0.999423 + 0.0339764i \(0.989183\pi\)
\(212\) 0 0
\(213\) 4.74456 + 5.04868i 0.325092 + 0.345930i
\(214\) 0 0
\(215\) 32.8614 2.24113
\(216\) 0 0
\(217\) −0.861407 −0.0584761
\(218\) 0 0
\(219\) 6.06930 + 6.45832i 0.410125 + 0.436413i
\(220\) 0 0
\(221\) −1.00000 + 1.73205i −0.0672673 + 0.116510i
\(222\) 0 0
\(223\) 12.8030 + 22.1754i 0.857351 + 1.48498i 0.874446 + 0.485122i \(0.161225\pi\)
−0.0170952 + 0.999854i \(0.505442\pi\)
\(224\) 0 0
\(225\) 17.1168 8.51278i 1.14112 0.567518i
\(226\) 0 0
\(227\) −7.50000 12.9904i −0.497792 0.862202i 0.502204 0.864749i \(-0.332523\pi\)
−0.999997 + 0.00254715i \(0.999189\pi\)
\(228\) 0 0
\(229\) 8.80298 15.2472i 0.581718 1.00756i −0.413558 0.910478i \(-0.635714\pi\)
0.995276 0.0970868i \(-0.0309524\pi\)
\(230\) 0 0
\(231\) 2.31386 0.543620i 0.152241 0.0357676i
\(232\) 0 0
\(233\) −0.372281 −0.0243890 −0.0121945 0.999926i \(-0.503882\pi\)
−0.0121945 + 0.999926i \(0.503882\pi\)
\(234\) 0 0
\(235\) −4.62772 −0.301879
\(236\) 0 0
\(237\) 0.313859 1.04095i 0.0203874 0.0676172i
\(238\) 0 0
\(239\) 7.43070 12.8704i 0.480652 0.832514i −0.519101 0.854713i \(-0.673733\pi\)
0.999754 + 0.0221986i \(0.00706661\pi\)
\(240\) 0 0
\(241\) 2.87228 + 4.97494i 0.185020 + 0.320464i 0.943583 0.331135i \(-0.107432\pi\)
−0.758563 + 0.651599i \(0.774098\pi\)
\(242\) 0 0
\(243\) −9.18614 12.5942i −0.589291 0.807921i
\(244\) 0 0
\(245\) −8.62772 14.9436i −0.551205 0.954715i
\(246\) 0 0
\(247\) 17.1168 29.6472i 1.08912 1.88641i
\(248\) 0 0
\(249\) −7.68614 + 25.4920i −0.487089 + 1.61549i
\(250\) 0 0
\(251\) −27.1168 −1.71160 −0.855800 0.517307i \(-0.826935\pi\)
−0.855800 + 0.517307i \(0.826935\pi\)
\(252\) 0 0
\(253\) 5.37228 0.337752
\(254\) 0 0
\(255\) 2.11684 0.497333i 0.132562 0.0311442i
\(256\) 0 0
\(257\) 9.24456 16.0121i 0.576660 0.998804i −0.419199 0.907894i \(-0.637689\pi\)
0.995859 0.0909101i \(-0.0289776\pi\)
\(258\) 0 0
\(259\) 1.88316 + 3.26172i 0.117014 + 0.202674i
\(260\) 0 0
\(261\) 3.68614 1.83324i 0.228166 0.113475i
\(262\) 0 0
\(263\) −1.94158 3.36291i −0.119723 0.207366i 0.799935 0.600087i \(-0.204867\pi\)
−0.919658 + 0.392721i \(0.871534\pi\)
\(264\) 0 0
\(265\) −18.1168 + 31.3793i −1.11291 + 1.92761i
\(266\) 0 0
\(267\) 7.11684 + 7.57301i 0.435544 + 0.463461i
\(268\) 0 0
\(269\) −1.25544 −0.0765454 −0.0382727 0.999267i \(-0.512186\pi\)
−0.0382727 + 0.999267i \(0.512186\pi\)
\(270\) 0 0
\(271\) −1.48913 −0.0904579 −0.0452290 0.998977i \(-0.514402\pi\)
−0.0452290 + 0.998977i \(0.514402\pi\)
\(272\) 0 0
\(273\) 8.74456 + 9.30506i 0.529245 + 0.563168i
\(274\) 0 0
\(275\) 3.18614 5.51856i 0.192132 0.332782i
\(276\) 0 0
\(277\) −5.94158 10.2911i −0.356995 0.618333i 0.630462 0.776220i \(-0.282865\pi\)
−0.987457 + 0.157887i \(0.949532\pi\)
\(278\) 0 0
\(279\) 1.56930 + 1.04095i 0.0939513 + 0.0623203i
\(280\) 0 0
\(281\) −7.43070 12.8704i −0.443279 0.767781i 0.554652 0.832082i \(-0.312851\pi\)
−0.997931 + 0.0643014i \(0.979518\pi\)
\(282\) 0 0
\(283\) −2.43070 + 4.21010i −0.144490 + 0.250265i −0.929183 0.369621i \(-0.879488\pi\)
0.784692 + 0.619885i \(0.212821\pi\)
\(284\) 0 0
\(285\) −36.2337 + 8.51278i −2.14630 + 0.504253i
\(286\) 0 0
\(287\) −0.350532 −0.0206912
\(288\) 0 0
\(289\) −16.8614 −0.991847
\(290\) 0 0
\(291\) −4.87228 + 16.1595i −0.285618 + 0.947288i
\(292\) 0 0
\(293\) −12.6861 + 21.9730i −0.741132 + 1.28368i 0.210848 + 0.977519i \(0.432378\pi\)
−0.951980 + 0.306160i \(0.900956\pi\)
\(294\) 0 0
\(295\) −11.8030 20.4434i −0.687196 1.19026i
\(296\) 0 0
\(297\) −4.87228 1.80579i −0.282718 0.104783i
\(298\) 0 0
\(299\) 14.4307 + 24.9947i 0.834549 + 1.44548i
\(300\) 0 0
\(301\) 6.68614 11.5807i 0.385383 0.667502i
\(302\) 0 0
\(303\) 5.05842 16.7769i 0.290599 0.963807i
\(304\) 0 0
\(305\) 11.3723 0.651175
\(306\) 0 0
\(307\) −25.6277 −1.46265 −0.731326 0.682029i \(-0.761098\pi\)
−0.731326 + 0.682029i \(0.761098\pi\)
\(308\) 0 0
\(309\) −11.1753 + 2.62553i −0.635739 + 0.149361i
\(310\) 0 0
\(311\) −14.0584 + 24.3499i −0.797180 + 1.38076i 0.124266 + 0.992249i \(0.460342\pi\)
−0.921446 + 0.388507i \(0.872991\pi\)
\(312\) 0 0
\(313\) 11.6168 + 20.1210i 0.656623 + 1.13730i 0.981484 + 0.191543i \(0.0613490\pi\)
−0.324861 + 0.945762i \(0.605318\pi\)
\(314\) 0 0
\(315\) 0.861407 13.8564i 0.0485348 0.780720i
\(316\) 0 0
\(317\) 4.80298 + 8.31901i 0.269762 + 0.467242i 0.968800 0.247842i \(-0.0797215\pi\)
−0.699038 + 0.715085i \(0.746388\pi\)
\(318\) 0 0
\(319\) 0.686141 1.18843i 0.0384165 0.0665393i
\(320\) 0 0
\(321\) −18.8139 20.0198i −1.05009 1.11739i
\(322\) 0 0
\(323\) −2.37228 −0.131997
\(324\) 0 0
\(325\) 34.2337 1.89894
\(326\) 0 0
\(327\) 8.00000 + 8.51278i 0.442401 + 0.470758i
\(328\) 0 0
\(329\) −0.941578 + 1.63086i −0.0519109 + 0.0899123i
\(330\) 0 0
\(331\) −1.56930 2.71810i −0.0862563 0.149400i 0.819670 0.572837i \(-0.194157\pi\)
−0.905926 + 0.423436i \(0.860824\pi\)
\(332\) 0 0
\(333\) 0.510875 8.21782i 0.0279958 0.450334i
\(334\) 0 0
\(335\) −13.0584 22.6179i −0.713458 1.23575i
\(336\) 0 0
\(337\) −12.9891 + 22.4978i −0.707563 + 1.22553i 0.258196 + 0.966093i \(0.416872\pi\)
−0.965759 + 0.259442i \(0.916461\pi\)
\(338\) 0 0
\(339\) −2.31386 + 0.543620i −0.125672 + 0.0295254i
\(340\) 0 0
\(341\) 0.627719 0.0339929
\(342\) 0 0
\(343\) −16.6277 −0.897812
\(344\) 0 0
\(345\) 9.05842 30.0434i 0.487689 1.61748i
\(346\) 0 0
\(347\) −14.3614 + 24.8747i −0.770961 + 1.33534i 0.166076 + 0.986113i \(0.446890\pi\)
−0.937037 + 0.349230i \(0.886443\pi\)
\(348\) 0 0
\(349\) −17.0584 29.5461i −0.913116 1.58156i −0.809636 0.586933i \(-0.800335\pi\)
−0.103481 0.994631i \(-0.532998\pi\)
\(350\) 0 0
\(351\) −4.68614 27.5190i −0.250128 1.46886i
\(352\) 0 0
\(353\) −10.9891 19.0337i −0.584892 1.01306i −0.994889 0.100976i \(-0.967804\pi\)
0.409997 0.912087i \(-0.365530\pi\)
\(354\) 0 0
\(355\) 6.74456 11.6819i 0.357964 0.620012i
\(356\) 0 0
\(357\) 0.255437 0.847190i 0.0135192 0.0448380i
\(358\) 0 0
\(359\) 14.2337 0.751225 0.375613 0.926777i \(-0.377432\pi\)
0.375613 + 0.926777i \(0.377432\pi\)
\(360\) 0 0
\(361\) 21.6060 1.13716
\(362\) 0 0
\(363\) 16.8614 3.96143i 0.884994 0.207921i
\(364\) 0 0
\(365\) 8.62772 14.9436i 0.451595 0.782186i
\(366\) 0 0
\(367\) 11.6861 + 20.2410i 0.610012 + 1.05657i 0.991238 + 0.132089i \(0.0421686\pi\)
−0.381226 + 0.924482i \(0.624498\pi\)
\(368\) 0 0
\(369\) 0.638593 + 0.423595i 0.0332438 + 0.0220515i
\(370\) 0 0
\(371\) 7.37228 + 12.7692i 0.382750 + 0.662942i
\(372\) 0 0
\(373\) −1.94158 + 3.36291i −0.100531 + 0.174125i −0.911904 0.410404i \(-0.865388\pi\)
0.811372 + 0.584529i \(0.198721\pi\)
\(374\) 0 0
\(375\) −5.48913 5.84096i −0.283457 0.301626i
\(376\) 0 0
\(377\) 7.37228 0.379692
\(378\) 0 0
\(379\) 23.1168 1.18743 0.593716 0.804674i \(-0.297660\pi\)
0.593716 + 0.804674i \(0.297660\pi\)
\(380\) 0 0
\(381\) 5.62772 + 5.98844i 0.288317 + 0.306797i
\(382\) 0 0
\(383\) −15.1753 + 26.2843i −0.775420 + 1.34307i 0.159138 + 0.987256i \(0.449128\pi\)
−0.934558 + 0.355810i \(0.884205\pi\)
\(384\) 0 0
\(385\) −2.31386 4.00772i −0.117925 0.204252i
\(386\) 0 0
\(387\) −26.1753 + 13.0178i −1.33056 + 0.661734i
\(388\) 0 0
\(389\) 14.8030 + 25.6395i 0.750541 + 1.29998i 0.947561 + 0.319576i \(0.103540\pi\)
−0.197020 + 0.980400i \(0.563126\pi\)
\(390\) 0 0
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) 0 0
\(393\) 21.2921 5.00239i 1.07404 0.252337i
\(394\) 0 0
\(395\) −2.11684 −0.106510
\(396\) 0 0
\(397\) 16.2337 0.814745 0.407373 0.913262i \(-0.366445\pi\)
0.407373 + 0.913262i \(0.366445\pi\)
\(398\) 0 0
\(399\) −4.37228 + 14.5012i −0.218888 + 0.725969i
\(400\) 0 0
\(401\) −8.61684 + 14.9248i −0.430305 + 0.745310i −0.996899 0.0786871i \(-0.974927\pi\)
0.566595 + 0.823997i \(0.308261\pi\)
\(402\) 0 0
\(403\) 1.68614 + 2.92048i 0.0839926 + 0.145480i
\(404\) 0 0
\(405\) −18.3139 + 24.2024i −0.910023 + 1.20263i
\(406\) 0 0
\(407\) −1.37228 2.37686i −0.0680215 0.117817i
\(408\) 0 0
\(409\) 2.87228 4.97494i 0.142025 0.245995i −0.786234 0.617929i \(-0.787972\pi\)
0.928259 + 0.371934i \(0.121305\pi\)
\(410\) 0 0
\(411\) 3.12772 10.3735i 0.154279 0.511686i
\(412\) 0 0
\(413\) −9.60597 −0.472679
\(414\) 0 0
\(415\) 51.8397 2.54471
\(416\) 0 0
\(417\) −9.68614 + 2.27567i −0.474332 + 0.111440i
\(418\) 0 0
\(419\) 13.8030 23.9075i 0.674320 1.16796i −0.302347 0.953198i \(-0.597770\pi\)
0.976667 0.214759i \(-0.0688964\pi\)
\(420\) 0 0
\(421\) 8.94158 + 15.4873i 0.435786 + 0.754803i 0.997359 0.0726236i \(-0.0231372\pi\)
−0.561574 + 0.827427i \(0.689804\pi\)
\(422\) 0 0
\(423\) 3.68614 1.83324i 0.179226 0.0891352i
\(424\) 0 0
\(425\) −1.18614 2.05446i −0.0575363 0.0996557i
\(426\) 0 0
\(427\) 2.31386 4.00772i 0.111976 0.193947i
\(428\) 0 0
\(429\) −6.37228 6.78073i −0.307657 0.327377i
\(430\) 0 0
\(431\) 12.7446 0.613884 0.306942 0.951728i \(-0.400694\pi\)
0.306942 + 0.951728i \(0.400694\pi\)
\(432\) 0 0
\(433\) 14.8832 0.715239 0.357619 0.933867i \(-0.383589\pi\)
0.357619 + 0.933867i \(0.383589\pi\)
\(434\) 0 0
\(435\) −5.48913 5.84096i −0.263183 0.280053i
\(436\) 0 0
\(437\) −17.1168 + 29.6472i −0.818810 + 1.41822i
\(438\) 0 0
\(439\) −5.05842 8.76144i −0.241425 0.418161i 0.719695 0.694290i \(-0.244282\pi\)
−0.961121 + 0.276129i \(0.910948\pi\)
\(440\) 0 0
\(441\) 12.7921 + 8.48533i 0.609148 + 0.404063i
\(442\) 0 0
\(443\) −13.3614 23.1426i −0.634820 1.09954i −0.986553 0.163440i \(-0.947741\pi\)
0.351734 0.936100i \(-0.385592\pi\)
\(444\) 0 0
\(445\) 10.1168 17.5229i 0.479584 0.830665i
\(446\) 0 0
\(447\) 4.43070 1.04095i 0.209565 0.0492354i
\(448\) 0 0
\(449\) −33.1168 −1.56288 −0.781440 0.623980i \(-0.785515\pi\)
−0.781440 + 0.623980i \(0.785515\pi\)
\(450\) 0 0
\(451\) 0.255437 0.0120281
\(452\) 0 0
\(453\) 2.68614 8.90892i 0.126206 0.418578i
\(454\) 0 0
\(455\) 12.4307 21.5306i 0.582760 1.00937i
\(456\) 0 0
\(457\) −3.87228 6.70699i −0.181138 0.313740i 0.761131 0.648599i \(-0.224645\pi\)
−0.942268 + 0.334859i \(0.891311\pi\)
\(458\) 0 0
\(459\) −1.48913 + 1.23472i −0.0695064 + 0.0576317i
\(460\) 0 0
\(461\) 12.0584 + 20.8858i 0.561617 + 0.972749i 0.997356 + 0.0726756i \(0.0231538\pi\)
−0.435739 + 0.900073i \(0.643513\pi\)
\(462\) 0 0
\(463\) −5.17527 + 8.96382i −0.240515 + 0.416584i −0.960861 0.277031i \(-0.910650\pi\)
0.720346 + 0.693615i \(0.243983\pi\)
\(464\) 0 0
\(465\) 1.05842 3.51039i 0.0490831 0.162790i
\(466\) 0 0
\(467\) −1.62772 −0.0753218 −0.0376609 0.999291i \(-0.511991\pi\)
−0.0376609 + 0.999291i \(0.511991\pi\)
\(468\) 0 0
\(469\) −10.6277 −0.490742
\(470\) 0 0
\(471\) −23.8030 + 5.59230i −1.09678 + 0.257679i
\(472\) 0 0
\(473\) −4.87228 + 8.43904i −0.224028 + 0.388027i
\(474\) 0 0
\(475\) 20.3030 + 35.1658i 0.931565 + 1.61352i
\(476\) 0 0
\(477\) 2.00000 32.1716i 0.0915737 1.47304i
\(478\) 0 0
\(479\) 14.8030 + 25.6395i 0.676366 + 1.17150i 0.976068 + 0.217467i \(0.0697794\pi\)
−0.299702 + 0.954033i \(0.596887\pi\)
\(480\) 0 0
\(481\) 7.37228 12.7692i 0.336147 0.582224i
\(482\) 0 0
\(483\) −8.74456 9.30506i −0.397891 0.423395i
\(484\) 0 0
\(485\) 32.8614 1.49216
\(486\) 0 0
\(487\) 4.74456 0.214997 0.107498 0.994205i \(-0.465716\pi\)
0.107498 + 0.994205i \(0.465716\pi\)
\(488\) 0 0
\(489\) 14.2337 + 15.1460i 0.643670 + 0.684927i
\(490\) 0 0
\(491\) 5.87228 10.1711i 0.265012 0.459015i −0.702555 0.711630i \(-0.747957\pi\)
0.967567 + 0.252615i \(0.0812906\pi\)
\(492\) 0 0
\(493\) −0.255437 0.442430i −0.0115043 0.0199261i
\(494\) 0 0
\(495\) −0.627719 + 10.0974i −0.0282139 + 0.453842i
\(496\) 0 0
\(497\) −2.74456 4.75372i −0.123110 0.213234i
\(498\) 0 0
\(499\) 12.9891 22.4978i 0.581473 1.00714i −0.413832 0.910353i \(-0.635810\pi\)
0.995305 0.0967877i \(-0.0308568\pi\)
\(500\) 0 0
\(501\) −3.17527 + 0.746000i −0.141860 + 0.0333288i
\(502\) 0 0
\(503\) −29.4891 −1.31486 −0.657428 0.753518i \(-0.728355\pi\)
−0.657428 + 0.753518i \(0.728355\pi\)
\(504\) 0 0
\(505\) −34.1168 −1.51818
\(506\) 0 0
\(507\) 7.93070 26.3032i 0.352215 1.16816i
\(508\) 0 0
\(509\) 6.94158 12.0232i 0.307680 0.532917i −0.670174 0.742204i \(-0.733781\pi\)
0.977854 + 0.209286i \(0.0671140\pi\)
\(510\) 0 0
\(511\) −3.51087 6.08101i −0.155312 0.269008i
\(512\) 0 0
\(513\) 25.4891 21.1345i 1.12537 0.933109i
\(514\) 0 0
\(515\) 11.1753 + 19.3561i 0.492441 + 0.852933i
\(516\) 0 0
\(517\) 0.686141 1.18843i 0.0301764 0.0522671i
\(518\) 0 0
\(519\) −5.31386 + 17.6241i −0.233253 + 0.773611i
\(520\) 0 0
\(521\) −5.11684 −0.224173 −0.112087 0.993698i \(-0.535753\pi\)
−0.112087 + 0.993698i \(0.535753\pi\)
\(522\) 0 0
\(523\) −9.48913 −0.414930 −0.207465 0.978242i \(-0.566521\pi\)
−0.207465 + 0.978242i \(0.566521\pi\)
\(524\) 0 0
\(525\) −14.7446 + 3.46410i −0.643505 + 0.151186i
\(526\) 0 0
\(527\) 0.116844 0.202380i 0.00508980 0.00881580i
\(528\) 0 0
\(529\) −2.93070 5.07613i −0.127422 0.220701i
\(530\) 0 0
\(531\) 17.5000 + 11.6082i 0.759435 + 0.503752i
\(532\) 0 0
\(533\) 0.686141 + 1.18843i 0.0297201 + 0.0514766i
\(534\) 0 0
\(535\) −26.7446 + 46.3229i −1.15627 + 2.00272i
\(536\) 0 0
\(537\) 27.2554 + 29.0024i 1.17616 + 1.25155i
\(538\) 0 0
\(539\) 5.11684 0.220398
\(540\) 0 0
\(541\) −32.2337 −1.38583 −0.692917 0.721017i \(-0.743675\pi\)
−0.692917 + 0.721017i \(0.743675\pi\)
\(542\) 0 0
\(543\) −27.8614 29.6472i −1.19565 1.27228i
\(544\) 0 0
\(545\) 11.3723 19.6974i 0.487135 0.843743i
\(546\) 0 0
\(547\) −13.8723 24.0275i −0.593136 1.02734i −0.993807 0.111120i \(-0.964556\pi\)
0.400671 0.916222i \(-0.368777\pi\)
\(548\) 0 0
\(549\) −9.05842 + 4.50506i −0.386604 + 0.192271i
\(550\) 0 0
\(551\) 4.37228 + 7.57301i 0.186265 + 0.322621i
\(552\) 0 0
\(553\) −0.430703 + 0.746000i −0.0183154 + 0.0317231i
\(554\) 0 0
\(555\) −15.6060 + 3.66648i −0.662437 + 0.155633i
\(556\) 0 0
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) −52.3505 −2.21419
\(560\) 0 0
\(561\) −0.186141 + 0.617359i −0.00785886 + 0.0260649i
\(562\) 0 0
\(563\) −0.872281 + 1.51084i −0.0367623 + 0.0636741i −0.883821 0.467825i \(-0.845038\pi\)
0.847059 + 0.531499i \(0.178371\pi\)
\(564\) 0 0
\(565\) 2.31386 + 4.00772i 0.0973448 + 0.168606i
\(566\) 0 0
\(567\) 4.80298 + 11.3784i 0.201706 + 0.477846i
\(568\) 0 0
\(569\) 3.61684 + 6.26456i 0.151626 + 0.262624i 0.931825 0.362907i \(-0.118216\pi\)
−0.780199 + 0.625531i \(0.784882\pi\)
\(570\) 0 0
\(571\) −1.75544 + 3.04051i −0.0734628 + 0.127241i −0.900417 0.435028i \(-0.856738\pi\)
0.826954 + 0.562270i \(0.190072\pi\)
\(572\) 0 0
\(573\) 9.43070 31.2781i 0.393973 1.30666i
\(574\) 0 0
\(575\) −34.2337 −1.42764
\(576\) 0 0
\(577\) −13.8614 −0.577058 −0.288529 0.957471i \(-0.593166\pi\)
−0.288529 + 0.957471i \(0.593166\pi\)
\(578\) 0 0
\(579\) 16.4307 3.86025i 0.682837 0.160426i
\(580\) 0 0
\(581\) 10.5475 18.2689i 0.437586 0.757921i
\(582\) 0 0
\(583\) −5.37228 9.30506i −0.222497 0.385376i
\(584\) 0 0
\(585\) −48.6644 + 24.2024i −2.01202 + 1.00065i
\(586\) 0 0
\(587\) −12.6168 21.8530i −0.520753 0.901970i −0.999709 0.0241315i \(-0.992318\pi\)
0.478956 0.877839i \(-0.341015\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 31.7228 + 33.7562i 1.30490 + 1.38854i
\(592\) 0 0
\(593\) −26.0000 −1.06769 −0.533846 0.845582i \(-0.679254\pi\)
−0.533846 + 0.845582i \(0.679254\pi\)
\(594\) 0 0
\(595\) −1.72281 −0.0706285
\(596\) 0 0
\(597\) −21.6277 23.0140i −0.885164 0.941900i
\(598\) 0 0
\(599\) 5.56930 9.64630i 0.227555 0.394137i −0.729528 0.683951i \(-0.760260\pi\)
0.957083 + 0.289814i \(0.0935934\pi\)
\(600\) 0 0
\(601\) 19.9891 + 34.6222i 0.815373 + 1.41227i 0.909059 + 0.416666i \(0.136802\pi\)
−0.0936860 + 0.995602i \(0.529865\pi\)
\(602\) 0 0
\(603\) 19.3614 + 12.8429i 0.788457 + 0.523003i
\(604\) 0 0
\(605\) −16.8614 29.2048i −0.685514 1.18734i
\(606\) 0 0
\(607\) 3.05842 5.29734i 0.124138 0.215012i −0.797258 0.603639i \(-0.793717\pi\)
0.921395 + 0.388626i \(0.127050\pi\)
\(608\) 0 0
\(609\) −3.17527 + 0.746000i −0.128668 + 0.0302294i
\(610\) 0 0
\(611\) 7.37228 0.298251
\(612\) 0 0
\(613\) −1.25544 −0.0507066 −0.0253533 0.999679i \(-0.508071\pi\)
−0.0253533 + 0.999679i \(0.508071\pi\)
\(614\) 0 0
\(615\) 0.430703 1.42848i 0.0173676 0.0576019i
\(616\) 0 0
\(617\) 3.98913 6.90937i 0.160596 0.278161i −0.774487 0.632590i \(-0.781992\pi\)
0.935083 + 0.354430i \(0.115325\pi\)
\(618\) 0 0
\(619\) −6.61684 11.4607i −0.265953 0.460645i 0.701860 0.712315i \(-0.252353\pi\)
−0.967813 + 0.251671i \(0.919020\pi\)
\(620\) 0 0
\(621\) 4.68614 + 27.5190i 0.188048 + 1.10430i
\(622\) 0 0
\(623\) −4.11684 7.13058i −0.164938 0.285681i
\(624\) 0 0
\(625\) 8.12772 14.0776i 0.325109 0.563105i
\(626\) 0 0
\(627\) 3.18614 10.5672i 0.127242 0.422015i
\(628\) 0 0
\(629\) −1.02175 −0.0407398
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) −25.9198 + 6.08963i −1.03022 + 0.242041i
\(634\) 0 0
\(635\) 8.00000 13.8564i 0.317470 0.549875i
\(636\) 0 0
\(637\) 13.7446 + 23.8063i 0.544579 + 0.943239i
\(638\) 0 0
\(639\) −0.744563 + 11.9769i −0.0294544 + 0.473798i
\(640\) 0 0
\(641\) 15.6168 + 27.0492i 0.616828 + 1.06838i 0.990061 + 0.140640i \(0.0449160\pi\)
−0.373233 + 0.927738i \(0.621751\pi\)
\(642\) 0 0
\(643\) 1.50000 2.59808i 0.0591542 0.102458i −0.834932 0.550353i \(-0.814493\pi\)
0.894086 + 0.447895i \(0.147826\pi\)
\(644\) 0 0
\(645\) 38.9783 + 41.4766i 1.53477 + 1.63314i
\(646\) 0 0
\(647\) 23.7228 0.932640 0.466320 0.884616i \(-0.345580\pi\)
0.466320 + 0.884616i \(0.345580\pi\)
\(648\) 0 0
\(649\) 7.00000 0.274774
\(650\) 0 0
\(651\) −1.02175 1.08724i −0.0400455 0.0426123i
\(652\) 0 0
\(653\) 20.0584 34.7422i 0.784947 1.35957i −0.144084 0.989565i \(-0.546024\pi\)
0.929031 0.370002i \(-0.120643\pi\)
\(654\) 0 0
\(655\) −21.2921 36.8790i −0.831952 1.44098i
\(656\) 0 0
\(657\) −0.952453 + 15.3210i −0.0371587 + 0.597727i
\(658\) 0 0
\(659\) 0.941578 + 1.63086i 0.0366787 + 0.0635293i 0.883782 0.467899i \(-0.154989\pi\)
−0.847103 + 0.531428i \(0.821656\pi\)
\(660\) 0 0
\(661\) −8.54755 + 14.8048i −0.332461 + 0.575839i −0.982994 0.183639i \(-0.941212\pi\)
0.650533 + 0.759478i \(0.274546\pi\)
\(662\) 0 0
\(663\) −3.37228 + 0.792287i −0.130969 + 0.0307699i
\(664\) 0 0
\(665\) 29.4891 1.14354
\(666\) 0 0
\(667\) −7.37228 −0.285456
\(668\) 0 0
\(669\) −12.8030 + 42.4627i −0.494992 + 1.64170i
\(670\) 0 0
\(671\) −1.68614 + 2.92048i −0.0650927 + 0.112744i
\(672\) 0 0
\(673\) −2.68614 4.65253i −0.103543 0.179342i 0.809599 0.586983i \(-0.199685\pi\)
−0.913142 + 0.407642i \(0.866351\pi\)
\(674\) 0 0
\(675\) 31.0475 + 11.5070i 1.19502 + 0.442905i
\(676\) 0 0
\(677\) −9.80298 16.9793i −0.376759 0.652566i 0.613829 0.789439i \(-0.289628\pi\)
−0.990589 + 0.136872i \(0.956295\pi\)
\(678\) 0 0
\(679\) 6.68614 11.5807i 0.256591 0.444428i
\(680\) 0 0
\(681\) 7.50000 24.8747i 0.287401 0.953200i
\(682\) 0 0
\(683\) 9.62772 0.368394 0.184197 0.982889i \(-0.441031\pi\)
0.184197 + 0.982889i \(0.441031\pi\)
\(684\) 0 0
\(685\) −21.0951 −0.806002
\(686\) 0 0
\(687\) 29.6861 6.97449i 1.13260 0.266093i
\(688\) 0 0
\(689\) 28.8614 49.9894i 1.09953 1.90445i
\(690\) 0 0
\(691\) −1.05842 1.83324i −0.0402643 0.0697398i 0.845191 0.534464i \(-0.179487\pi\)
−0.885455 + 0.464725i \(0.846153\pi\)
\(692\) 0 0
\(693\) 3.43070 + 2.27567i 0.130322 + 0.0864456i
\(694\) 0 0
\(695\) 9.68614 + 16.7769i 0.367416 + 0.636384i
\(696\) 0 0
\(697\) 0.0475473 0.0823543i 0.00180098 0.00311939i
\(698\) 0 0
\(699\) −0.441578 0.469882i −0.0167020 0.0177726i
\(700\) 0 0
\(701\) −12.5109 −0.472529 −0.236265 0.971689i \(-0.575923\pi\)
−0.236265 + 0.971689i \(0.575923\pi\)
\(702\) 0 0
\(703\) 17.4891 0.659615
\(704\) 0 0
\(705\) −5.48913 5.84096i −0.206732 0.219983i
\(706\) 0 0
\(707\) −6.94158 + 12.0232i −0.261065 + 0.452178i
\(708\) 0 0
\(709\) −5.80298 10.0511i −0.217936 0.377476i 0.736241 0.676719i \(-0.236599\pi\)
−0.954177 + 0.299244i \(0.903266\pi\)
\(710\) 0 0
\(711\) 1.68614 0.838574i 0.0632352 0.0314490i
\(712\) 0 0
\(713\) −1.68614 2.92048i −0.0631465 0.109373i
\(714\) 0 0
\(715\) −9.05842 + 15.6896i −0.338766 + 0.586760i
\(716\) 0 0
\(717\) 25.0584 5.88725i 0.935824 0.219863i
\(718\) 0 0
\(719\) −22.5109 −0.839514 −0.419757 0.907637i \(-0.637885\pi\)
−0.419757 + 0.907637i \(0.637885\pi\)
\(720\) 0 0
\(721\) 9.09509 0.338719
\(722\) 0 0
\(723\) −2.87228 + 9.52628i −0.106821 + 0.354286i
\(724\) 0 0
\(725\) −4.37228 + 7.57301i −0.162382 + 0.281255i
\(726\) 0 0
\(727\) 14.0584 + 24.3499i 0.521398 + 0.903088i 0.999690 + 0.0248871i \(0.00792263\pi\)
−0.478292 + 0.878201i \(0.658744\pi\)
\(728\) 0 0
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) 0 0
\(731\) 1.81386 + 3.14170i 0.0670880 + 0.116200i
\(732\) 0 0
\(733\) 4.56930 7.91425i 0.168771 0.292320i −0.769217 0.638987i \(-0.779354\pi\)
0.937988 + 0.346668i \(0.112687\pi\)
\(734\) 0 0
\(735\) 8.62772 28.6149i 0.318238 1.05548i
\(736\) 0 0
\(737\) 7.74456 0.285275
\(738\) 0 0
\(739\) −24.8832 −0.915342 −0.457671 0.889122i \(-0.651316\pi\)
−0.457671 + 0.889122i \(0.651316\pi\)
\(740\) 0 0
\(741\) 57.7228 13.5615i 2.12050 0.498192i
\(742\) 0 0
\(743\) 20.6861 35.8294i 0.758901 1.31445i −0.184511 0.982831i \(-0.559070\pi\)
0.943412 0.331624i \(-0.107597\pi\)
\(744\) 0 0
\(745\) −4.43070 7.67420i −0.162328 0.281161i
\(746\) 0 0
\(747\) −41.2921 + 20.5359i −1.51080 + 0.751371i
\(748\) 0 0
\(749\) 10.8832 + 18.8502i 0.397662 + 0.688771i
\(750\) 0 0
\(751\) −21.6861 + 37.5615i −0.791339 + 1.37064i 0.133800 + 0.991008i \(0.457282\pi\)
−0.925138 + 0.379630i \(0.876051\pi\)
\(752\) 0 0
\(753\) −32.1644 34.2260i −1.17214 1.24727i
\(754\) 0 0
\(755\) −18.1168 −0.659339
\(756\) 0 0
\(757\) 31.4891 1.14449 0.572246 0.820082i \(-0.306072\pi\)
0.572246 + 0.820082i \(0.306072\pi\)
\(758\) 0 0
\(759\) 6.37228 + 6.78073i 0.231299 + 0.246125i
\(760\) 0 0
\(761\) −16.1753 + 28.0164i −0.586353 + 1.01559i 0.408352 + 0.912824i \(0.366103\pi\)
−0.994705 + 0.102769i \(0.967230\pi\)
\(762\) 0 0
\(763\) −4.62772 8.01544i −0.167535 0.290179i
\(764\) 0 0
\(765\) 3.13859 + 2.08191i 0.113476 + 0.0752715i
\(766\) 0 0
\(767\) 18.8030 + 32.5677i 0.678936 + 1.17595i
\(768\) 0 0
\(769\) −7.94158 + 13.7552i −0.286381 + 0.496026i −0.972943 0.231045i \(-0.925786\pi\)
0.686562 + 0.727071i \(0.259119\pi\)
\(770\) 0 0
\(771\) 31.1753 7.32435i 1.12275 0.263780i
\(772\) 0 0
\(773\) −16.9783 −0.610665 −0.305333 0.952246i \(-0.598768\pi\)
−0.305333 + 0.952246i \(0.598768\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) −1.88316 + 6.24572i −0.0675578 + 0.224064i
\(778\) 0 0
\(779\) −0.813859 + 1.40965i −0.0291595 + 0.0505058i
\(780\) 0 0
\(781\) 2.00000 + 3.46410i 0.0715656 + 0.123955i
\(782\) 0 0
\(783\) 6.68614 + 2.47805i 0.238943 + 0.0885583i
\(784\) 0 0
\(785\) 23.8030 + 41.2280i 0.849565 + 1.47149i
\(786\) 0 0
\(787\) −15.9198 + 27.5740i −0.567481 + 0.982905i 0.429334 + 0.903146i \(0.358748\pi\)
−0.996814 + 0.0797592i \(0.974585\pi\)
\(788\) 0 0
\(789\) 1.94158 6.43949i 0.0691220 0.229252i
\(790\) 0 0
\(791\) 1.88316 0.0669573
\(792\) 0 0
\(793\) −18.1168 −0.643348
\(794\) 0 0
\(795\) −61.0951 + 14.3537i