Properties

Label 144.2.i
Level $144$
Weight $2$
Character orbit 144.i
Rep. character $\chi_{144}(49,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $10$
Newform subspaces $4$
Sturm bound $48$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 60 14 46
Cusp forms 36 10 26
Eisenstein series 24 4 20

Trace form

\( 10 q + 2 q^{3} - q^{5} + q^{7} - 4 q^{9} + 7 q^{11} - q^{13} + 5 q^{15} - 8 q^{17} + 4 q^{19} - 3 q^{21} - 5 q^{23} - 2 q^{25} - 16 q^{27} + 3 q^{29} + 7 q^{31} - 5 q^{33} - 30 q^{35} - 4 q^{37} - 31 q^{39}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.2.i.a 144.i 9.c $2$ $1.150$ \(\Q(\sqrt{-3}) \) None 36.2.e.a \(0\) \(0\) \(-3\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}-3\zeta_{6}q^{5}+(-1+\zeta_{6})q^{7}+\cdots\)
144.2.i.b 144.i 9.c $2$ $1.150$ \(\Q(\sqrt{-3}) \) None 72.2.i.a \(0\) \(0\) \(1\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-3+3\zeta_{6})q^{7}+\cdots\)
144.2.i.c 144.i 9.c $2$ $1.150$ \(\Q(\sqrt{-3}) \) None 18.2.c.a \(0\) \(3\) \(0\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\zeta_{6})q^{3}+(2-2\zeta_{6})q^{7}+3\zeta_{6}q^{9}+\cdots\)
144.2.i.d 144.i 9.c $4$ $1.150$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 72.2.i.b \(0\) \(-1\) \(1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{3}+(\beta _{1}-\beta _{2}-2\beta _{3})q^{5}+(-1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)