Properties

Label 144.2.c
Level $144$
Weight $2$
Character orbit 144.c
Rep. character $\chi_{144}(143,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 36 2 34
Cusp forms 12 2 10
Eisenstein series 24 0 24

Trace form

\( 2q + O(q^{10}) \) \( 2q + 8q^{13} - 26q^{25} + 4q^{37} + 14q^{49} - 20q^{61} + 32q^{73} + 36q^{85} - 16q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
144.2.c.a \(2\) \(1.150\) \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-1}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta q^{5}+4q^{13}-\beta q^{17}-13q^{25}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)