Properties

Label 144.2.c
Level 144
Weight 2
Character orbit c
Rep. character \(\chi_{144}(143,\cdot)\)
Character field \(\Q\)
Dimension 2
Newform subspaces 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(144, [\chi])\).

Total New Old
Modular forms 36 2 34
Cusp forms 12 2 10
Eisenstein series 24 0 24

Trace form

\( 2q + O(q^{10}) \) \( 2q + 8q^{13} - 26q^{25} + 4q^{37} + 14q^{49} - 20q^{61} + 32q^{73} + 36q^{85} - 16q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
144.2.c.a \(2\) \(1.150\) \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-1}) \) \(0\) \(0\) \(0\) \(0\) \(q+\beta q^{5}+4q^{13}-\beta q^{17}-13q^{25}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(144, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 8 T^{2} + 25 T^{4} \)
$7$ \( ( 1 - 7 T^{2} )^{2} \)
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 16 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 19 T^{2} )^{2} \)
$23$ \( ( 1 + 23 T^{2} )^{2} \)
$29$ \( 1 - 40 T^{2} + 841 T^{4} \)
$31$ \( ( 1 - 31 T^{2} )^{2} \)
$37$ \( ( 1 - 2 T + 37 T^{2} )^{2} \)
$41$ \( 1 + 80 T^{2} + 1681 T^{4} \)
$43$ \( ( 1 - 43 T^{2} )^{2} \)
$47$ \( ( 1 + 47 T^{2} )^{2} \)
$53$ \( 1 + 56 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 + 10 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 67 T^{2} )^{2} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 16 T + 73 T^{2} )^{2} \)
$79$ \( ( 1 - 79 T^{2} )^{2} \)
$83$ \( ( 1 + 83 T^{2} )^{2} \)
$89$ \( 1 - 160 T^{2} + 7921 T^{4} \)
$97$ \( ( 1 + 8 T + 97 T^{2} )^{2} \)
show more
show less