Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(144))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 3 | 33 |
Cusp forms | 13 | 2 | 11 |
Eisenstein series | 23 | 1 | 22 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
Plus space | \(+\) | \(0\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(144))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
144.2.a.a | $1$ | $1.150$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | \(q+4q^{7}+2q^{13}-8q^{19}-5q^{25}+4q^{31}+\cdots\) | |
144.2.a.b | $1$ | $1.150$ | \(\Q\) | None | \(0\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | \(q+2q^{5}+4q^{11}-2q^{13}-2q^{17}+4q^{19}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(144))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(144)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)