Properties

Label 144.2
Level 144
Weight 2
Dimension 236
Nonzero newspaces 8
Newform subspaces 22
Sturm bound 2304
Trace bound 5

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 22 \)
Sturm bound: \(2304\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(144))\).

Total New Old
Modular forms 688 277 411
Cusp forms 465 236 229
Eisenstein series 223 41 182

Trace form

\( 236 q - 6 q^{2} - 6 q^{3} - 4 q^{4} - 5 q^{5} - 8 q^{6} + q^{7} + 2 q^{9} - 16 q^{10} + 9 q^{11} - 8 q^{12} + q^{13} - 24 q^{14} - 3 q^{15} - 28 q^{16} - 22 q^{17} - 28 q^{18} - 10 q^{19} - 56 q^{20}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(144))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
144.2.a \(\chi_{144}(1, \cdot)\) 144.2.a.a 1 1
144.2.a.b 1
144.2.c \(\chi_{144}(143, \cdot)\) 144.2.c.a 2 1
144.2.d \(\chi_{144}(73, \cdot)\) None 0 1
144.2.f \(\chi_{144}(71, \cdot)\) None 0 1
144.2.i \(\chi_{144}(49, \cdot)\) 144.2.i.a 2 2
144.2.i.b 2
144.2.i.c 2
144.2.i.d 4
144.2.k \(\chi_{144}(37, \cdot)\) 144.2.k.a 2 2
144.2.k.b 8
144.2.k.c 8
144.2.l \(\chi_{144}(35, \cdot)\) 144.2.l.a 16 2
144.2.p \(\chi_{144}(23, \cdot)\) None 0 2
144.2.r \(\chi_{144}(25, \cdot)\) None 0 2
144.2.s \(\chi_{144}(47, \cdot)\) 144.2.s.a 2 2
144.2.s.b 2
144.2.s.c 2
144.2.s.d 2
144.2.s.e 4
144.2.u \(\chi_{144}(11, \cdot)\) 144.2.u.a 88 4
144.2.x \(\chi_{144}(13, \cdot)\) 144.2.x.a 4 4
144.2.x.b 4
144.2.x.c 4
144.2.x.d 4
144.2.x.e 72

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(144))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(144)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)