Newspace parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 16 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(205.478647344\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 0 | 0 | −52110.0 | 0 | −2.82246e6 | 0 | 0 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(3\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 144.16.a.f | 1 | |
3.b | odd | 2 | 1 | 16.16.a.d | 1 | ||
4.b | odd | 2 | 1 | 9.16.a.a | 1 | ||
12.b | even | 2 | 1 | 1.16.a.a | ✓ | 1 | |
24.f | even | 2 | 1 | 64.16.a.i | 1 | ||
24.h | odd | 2 | 1 | 64.16.a.c | 1 | ||
60.h | even | 2 | 1 | 25.16.a.a | 1 | ||
60.l | odd | 4 | 2 | 25.16.b.a | 2 | ||
84.h | odd | 2 | 1 | 49.16.a.a | 1 | ||
84.j | odd | 6 | 2 | 49.16.c.b | 2 | ||
84.n | even | 6 | 2 | 49.16.c.c | 2 | ||
132.d | odd | 2 | 1 | 121.16.a.a | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1.16.a.a | ✓ | 1 | 12.b | even | 2 | 1 | |
9.16.a.a | 1 | 4.b | odd | 2 | 1 | ||
16.16.a.d | 1 | 3.b | odd | 2 | 1 | ||
25.16.a.a | 1 | 60.h | even | 2 | 1 | ||
25.16.b.a | 2 | 60.l | odd | 4 | 2 | ||
49.16.a.a | 1 | 84.h | odd | 2 | 1 | ||
49.16.c.b | 2 | 84.j | odd | 6 | 2 | ||
49.16.c.c | 2 | 84.n | even | 6 | 2 | ||
64.16.a.c | 1 | 24.h | odd | 2 | 1 | ||
64.16.a.i | 1 | 24.f | even | 2 | 1 | ||
121.16.a.a | 1 | 132.d | odd | 2 | 1 | ||
144.16.a.f | 1 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 52110 \)
acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(144))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T \)
$5$
\( T + 52110 \)
$7$
\( T + 2822456 \)
$11$
\( T - 20586852 \)
$13$
\( T + 190073338 \)
$17$
\( T + 1646527986 \)
$19$
\( T + 1563257180 \)
$23$
\( T - 9451116072 \)
$29$
\( T - 36902568330 \)
$31$
\( T + 71588483552 \)
$37$
\( T + 1033652081554 \)
$41$
\( T + 1641974018202 \)
$43$
\( T - 492403109308 \)
$47$
\( T + 3410684952624 \)
$53$
\( T + 6797151655902 \)
$59$
\( T - 9858856815540 \)
$61$
\( T - 4931842626902 \)
$67$
\( T - 28837826625364 \)
$71$
\( T - 125050114914552 \)
$73$
\( T + 82171455513478 \)
$79$
\( T - 25413078694480 \)
$83$
\( T + 281736730890468 \)
$89$
\( T + 715618564776810 \)
$97$
\( T - 612786136081826 \)
show more
show less