Properties

Label 144.14.s
Level $144$
Weight $14$
Character orbit 144.s
Rep. character $\chi_{144}(47,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $156$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 36 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).

Total New Old
Modular forms 636 156 480
Cusp forms 612 156 456
Eisenstein series 24 0 24

Trace form

\( 156 q - 981714 q^{9} + 1013026884 q^{21} + 19042968750 q^{25} - 4429413108 q^{29} + 3921262038 q^{33} - 96630780618 q^{41} + 55278640908 q^{45} + 1079620401678 q^{49} - 910436960922 q^{57} + 1414396844712 q^{65}+ \cdots - 13968398974122 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)