Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 48 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(336\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 632 | 208 | 424 |
Cusp forms | 616 | 208 | 408 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)