Properties

Label 144.14.l
Level $144$
Weight $14$
Character orbit 144.l
Rep. character $\chi_{144}(35,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $208$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 48 \)
Character field: \(\Q(i)\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).

Total New Old
Modular forms 632 208 424
Cusp forms 616 208 408
Eisenstein series 16 0 16

Trace form

\( 208 q - 9875000 q^{10} - 70442512 q^{16} + 844017808 q^{19} - 373261432 q^{22} - 13037405496 q^{28} + 82830788328 q^{34} + 120697442952 q^{40} + 134090645728 q^{43} + 238325350456 q^{46} + 2878987737808 q^{49}+ \cdots + 20932805616408 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)