Properties

Label 144.14.i
Level $144$
Weight $14$
Character orbit 144.i
Rep. character $\chi_{144}(49,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $154$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).

Total New Old
Modular forms 636 158 478
Cusp forms 612 154 458
Eisenstein series 24 4 20

Trace form

\( 154 q + 2 q^{3} - q^{5} + q^{7} + 327236 q^{9} + 10629367 q^{11} - q^{13} + 55638485 q^{15} + 55174600 q^{17} + 4 q^{19} + 339269949 q^{21} - 888215333 q^{23} - 17822265626 q^{25} - 4041096064 q^{27}+ \cdots + 5326230176305 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)