Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 0 | 320 |
Cusp forms | 304 | 0 | 304 |
Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)