Properties

Label 144.14.c.b
Level $144$
Weight $14$
Character orbit 144.c
Analytic conductor $154.413$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,14,Mod(143,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.143"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2 x^{7} + 4365087 x^{6} + 1640648910 x^{5} + 5227007496627 x^{4} + \cdots + 54\!\cdots\!04 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{30} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 5 \beta_{4} + 40 \beta_{2}) q^{5} + \beta_{3} q^{7} - \beta_{6} q^{11} + (61 \beta_1 - 10119200) q^{13} + (11282 \beta_{4} + 114823 \beta_{2}) q^{17} + (\beta_{5} - 342 \beta_{3}) q^{19} + (7 \beta_{7} - 50 \beta_{6}) q^{23}+ \cdots + ( - 24046122 \beta_1 - 2969204811200) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 80953600 q^{13} - 449061800 q^{25} - 78701366000 q^{37} - 304960942024 q^{49} + 924803988400 q^{61} + 1799402988800 q^{73} + 15190563112560 q^{85} - 23753638489600 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 2 x^{7} + 4365087 x^{6} + 1640648910 x^{5} + 5227007496627 x^{4} + \cdots + 54\!\cdots\!04 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 18\!\cdots\!16 \nu^{7} + \cdots + 65\!\cdots\!28 ) / 26\!\cdots\!29 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 12\!\cdots\!29 \nu^{7} + \cdots + 91\!\cdots\!52 ) / 35\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 87\!\cdots\!77 \nu^{7} + \cdots - 20\!\cdots\!92 ) / 35\!\cdots\!66 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 19\!\cdots\!51 \nu^{7} + \cdots - 15\!\cdots\!64 ) / 30\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 49\!\cdots\!49 \nu^{7} + \cdots + 11\!\cdots\!72 ) / 61\!\cdots\!77 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 17\!\cdots\!66 \nu^{7} + \cdots + 11\!\cdots\!46 ) / 18\!\cdots\!03 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 50\!\cdots\!26 \nu^{7} + \cdots + 45\!\cdots\!46 ) / 18\!\cdots\!03 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 170\beta_{3} - 1152\beta_{2} - 216\beta _1 + 69984 ) / 279936 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 4 \beta_{7} + 324 \beta_{6} + 1011 \beta_{5} - 69984 \beta_{4} + 498462 \beta_{3} + \cdots - 916458325920 ) / 839808 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 1009 \beta_{7} + 27297 \beta_{6} - 968716 \beta_{5} + 95825592 \beta_{4} - 313716536 \beta_{3} + \cdots - 86572609221024 ) / 139968 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 30218912 \beta_{7} - 1255453344 \beta_{6} - 4679892339 \beta_{5} + 469326420864 \beta_{4} + \cdots + 18\!\cdots\!24 ) / 839808 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 10094900830 \beta_{7} - 421189582590 \beta_{6} + 3717218087125 \beta_{5} - 648980756002800 \beta_{4} + \cdots + 62\!\cdots\!84 ) / 279936 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 43072460330174 \beta_{7} + \cdots - 16\!\cdots\!64 ) / 419904 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 44\!\cdots\!00 \beta_{7} + \cdots - 18\!\cdots\!36 ) / 279936 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
143.1
−193.632 + 260.013i
−193.632 257.184i
194.132 1481.56i
194.132 + 1478.74i
194.132 1478.74i
194.132 + 1481.56i
−193.632 + 257.184i
−193.632 260.013i
0 0 0 46839.9i 0 481611.i 0 0 0
143.2 0 0 0 46839.9i 0 481611.i 0 0 0
143.3 0 0 0 18965.7i 0 195113.i 0 0 0
143.4 0 0 0 18965.7i 0 195113.i 0 0 0
143.5 0 0 0 18965.7i 0 195113.i 0 0 0
143.6 0 0 0 18965.7i 0 195113.i 0 0 0
143.7 0 0 0 46839.9i 0 481611.i 0 0 0
143.8 0 0 0 46839.9i 0 481611.i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 143.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.c.b 8
3.b odd 2 1 inner 144.14.c.b 8
4.b odd 2 1 inner 144.14.c.b 8
12.b even 2 1 inner 144.14.c.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
144.14.c.b 8 1.a even 1 1 trivial
144.14.c.b 8 3.b odd 2 1 inner
144.14.c.b 8 4.b odd 2 1 inner
144.14.c.b 8 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 2553671700T_{5}^{2} + 789168831728062500 \) acting on \(S_{14}^{\mathrm{new}}(144, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + \cdots + 78\!\cdots\!00)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + \cdots + 88\!\cdots\!00)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + \cdots - 132534086177936)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 15\!\cdots\!04)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 87\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 10\!\cdots\!44)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 17\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 21\!\cdots\!64)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 50\!\cdots\!44)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 51\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 39\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 52\!\cdots\!24)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 30\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots + 57\!\cdots\!00)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 45\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 28\!\cdots\!16)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 33\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 41\!\cdots\!64)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 27\!\cdots\!44)^{4} \) Copy content Toggle raw display
show more
show less