Properties

Label 144.14.c
Level $144$
Weight $14$
Character orbit 144.c
Rep. character $\chi_{144}(143,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $3$
Sturm bound $336$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(336\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).

Total New Old
Modular forms 324 26 298
Cusp forms 300 26 274
Eisenstein series 24 0 24

Trace form

\( 26 q - 35040088 q^{13} - 1169671154 q^{25} - 53037629420 q^{37} - 615878916490 q^{49} + 1026149819740 q^{61} + 5909745711776 q^{73} + 1397141871156 q^{85} - 11178561514192 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
144.14.c.a 144.c 12.b $2$ $154.413$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-1}) \) 144.14.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+8321\beta q^{5}+34042324q^{13}+31712719\beta q^{17}+\cdots\)
144.14.c.b 144.c 12.b $8$ $154.413$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 144.14.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(40\beta _{2}-5\beta _{4})q^{5}+\beta _{3}q^{7}-\beta _{6}q^{11}+\cdots\)
144.14.c.c 144.c 12.b $16$ $154.413$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 144.14.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{5}+(\beta _{4}-\beta _{5})q^{7}+\beta _{10}q^{11}+\cdots\)

Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces

\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)