Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{14}(144, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 324 | 26 | 298 |
Cusp forms | 300 | 26 | 274 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{14}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
144.14.c.a | $2$ | $154.413$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+8321\beta q^{5}+34042324q^{13}+31712719\beta q^{17}+\cdots\) |
144.14.c.b | $8$ | $154.413$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(40\beta _{2}-5\beta _{4})q^{5}+\beta _{3}q^{7}-\beta _{6}q^{11}+\cdots\) |
144.14.c.c | $16$ | $154.413$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{7}q^{5}+(\beta _{4}-\beta _{5})q^{7}+\beta _{10}q^{11}+\cdots\) |
Decomposition of \(S_{14}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{14}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{14}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{14}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 2}\)