Properties

Label 144.14.a.r
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,14,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1621}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 405 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 3 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 768\sqrt{1621}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 5602) q^{5} + (13 \beta - 137904) q^{7} + ( - 66 \beta + 2512004) q^{11} + (934 \beta + 164494) q^{13} + (4342 \beta - 22981090) q^{17} + ( - 2758 \beta + 181359748) q^{19} + (1094 \beta - 670061992) q^{23}+ \cdots + ( - 83895476 \beta - 4975871399230) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 11204 q^{5} - 275808 q^{7} + 5024008 q^{11} + 328988 q^{13} - 45962180 q^{17} + 362719496 q^{19} - 1340123984 q^{23} - 466432034 q^{25} + 2009027124 q^{29} + 7923400208 q^{31} - 26403798720 q^{35}+ \cdots - 9951742798460 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
20.6308
−19.6308
0 0 0 −25318.9 0 264068. 0 0 0
1.2 0 0 0 36522.9 0 −539876. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.r 2
3.b odd 2 1 48.14.a.i 2
4.b odd 2 1 72.14.a.e 2
12.b even 2 1 24.14.a.c 2
24.f even 2 1 192.14.a.q 2
24.h odd 2 1 192.14.a.m 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.14.a.c 2 12.b even 2 1
48.14.a.i 2 3.b odd 2 1
72.14.a.e 2 4.b odd 2 1
144.14.a.r 2 1.a even 1 1 trivial
192.14.a.m 2 24.h odd 2 1
192.14.a.q 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 11204T_{5} - 924722300 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 11204 T - 924722300 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 142564181760 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 2145372005392 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 834036616886588 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 17\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 25\!\cdots\!48 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 44\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 44\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 14\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 34\!\cdots\!60 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 59\!\cdots\!88 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 63\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 16\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 19\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 88\!\cdots\!32 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 24\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 10\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 34\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 10\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 43\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 99\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
show more
show less