Properties

Label 144.14.a.q
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,14,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3535}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3535 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 36)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 864\sqrt{3535}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + 431284 q^{7} - 220 \beta q^{11} + 12272402 q^{13} - 2470 \beta q^{17} + 134961112 q^{19} - 3560 \beta q^{23} + 1418160235 q^{25} + 69535 \beta q^{29} + 1682498164 q^{31} + 431284 \beta q^{35} + \cdots - 4895607225586 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 862568 q^{7} + 24544804 q^{13} + 269922224 q^{19} + 2836320470 q^{25} + 3364996328 q^{31} + 56240624140 q^{37} - 120768863056 q^{43} + 178233756498 q^{49} - 1161099878400 q^{55} + 693175563388 q^{61}+ \cdots - 9791214451172 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−59.4559
59.4559
0 0 0 −51369.9 0 431284. 0 0 0
1.2 0 0 0 51369.9 0 431284. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.q 2
3.b odd 2 1 inner 144.14.a.q 2
4.b odd 2 1 36.14.a.e 2
12.b even 2 1 36.14.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.14.a.e 2 4.b odd 2 1
36.14.a.e 2 12.b even 2 1
144.14.a.q 2 1.a even 1 1 trivial
144.14.a.q 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2638863360 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2638863360 \) Copy content Toggle raw display
$7$ \( (T - 431284)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 127720986624000 \) Copy content Toggle raw display
$13$ \( (T - 12272402)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 16\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T - 134961112)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 33\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{2} - 12\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T - 1682498164)^{2} \) Copy content Toggle raw display
$37$ \( (T - 28120312070)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 22\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T + 60384431528)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 20\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} - 62\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{2} - 40\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T - 346587781694)^{2} \) Copy content Toggle raw display
$67$ \( (T - 186807620176)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 11\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T - 1614791112470)^{2} \) Copy content Toggle raw display
$79$ \( (T - 2333526839284)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 93\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{2} - 29\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T + 4895607225586)^{2} \) Copy content Toggle raw display
show more
show less