Properties

Label 144.14.a.p
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,14,Mod(1,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,266600] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{55}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 55 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: no (minimal twist has level 9)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 96\sqrt{55}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 65 \beta q^{5} + 133300 q^{7} + 11300 \beta q^{11} - 30477550 q^{13} + 81114 \beta q^{17} - 81793064 q^{19} + 1527832 \beta q^{23} + 920864875 q^{25} - 1419425 \beta q^{29} + 6555670132 q^{31} + 8664500 \beta q^{35} + \cdots + 5598912135950 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 266600 q^{7} - 60955100 q^{13} - 163586128 q^{19} + 1841729750 q^{25} + 13111340264 q^{31} - 23387213300 q^{37} - 18612120400 q^{43} - 158240240814 q^{49} + 744606720000 q^{55} - 670557219716 q^{61}+ \cdots + 11197824271900 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−7.41620
7.41620
0 0 0 −46277.1 0 133300. 0 0 0
1.2 0 0 0 46277.1 0 133300. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.p 2
3.b odd 2 1 inner 144.14.a.p 2
4.b odd 2 1 9.14.a.b 2
12.b even 2 1 9.14.a.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.14.a.b 2 4.b odd 2 1
9.14.a.b 2 12.b even 2 1
144.14.a.p 2 1.a even 1 1 trivial
144.14.a.p 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2141568000 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2141568000 \) Copy content Toggle raw display
$7$ \( (T - 133300)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 64723507200000 \) Copy content Toggle raw display
$13$ \( (T + 30477550)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 33\!\cdots\!80 \) Copy content Toggle raw display
$19$ \( (T + 81793064)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 11\!\cdots\!20 \) Copy content Toggle raw display
$29$ \( T^{2} - 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T - 6555670132)^{2} \) Copy content Toggle raw display
$37$ \( (T + 11693606650)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 20\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T + 9306060200)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 55\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{2} - 47\!\cdots\!80 \) Copy content Toggle raw display
$59$ \( T^{2} - 39\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T + 335278609858)^{2} \) Copy content Toggle raw display
$67$ \( (T + 649451937200)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 53\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T - 341434947350)^{2} \) Copy content Toggle raw display
$79$ \( (T - 1902233814004)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 63\!\cdots\!80 \) Copy content Toggle raw display
$89$ \( T^{2} - 36\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T - 5598912135950)^{2} \) Copy content Toggle raw display
show more
show less