Properties

Label 144.14.a.o
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,14,Mod(1,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-5068,0,-104880] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{62869}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 15717 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 192\sqrt{62869}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 2534) q^{5} + ( - 5 \beta - 52440) q^{7} + ( - 30 \beta + 2243084) q^{11} + ( - 290 \beta + 7992478) q^{13} + (1030 \beta - 22323442) q^{17} + ( - 3370 \beta + 51942124) q^{19} + ( - 21910 \beta + 25712312) q^{23}+ \cdots + ( - 81518900 \beta - 2124497545438) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5068 q^{5} - 104880 q^{7} + 4486168 q^{11} + 15984956 q^{13} - 44646884 q^{17} + 103884248 q^{19} + 51424624 q^{23} + 2206641694 q^{25} - 7628895612 q^{29} - 11187696736 q^{31} + 23441794080 q^{35}+ \cdots - 4248995090876 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
125.868
−124.868
0 0 0 −50675.5 0 −293147. 0 0 0
1.2 0 0 0 45607.5 0 188267. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.o 2
3.b odd 2 1 48.14.a.f 2
4.b odd 2 1 72.14.a.d 2
12.b even 2 1 24.14.a.d 2
24.f even 2 1 192.14.a.l 2
24.h odd 2 1 192.14.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.14.a.d 2 12.b even 2 1
48.14.a.f 2 3.b odd 2 1
72.14.a.d 2 4.b odd 2 1
144.14.a.o 2 1.a even 1 1 trivial
192.14.a.l 2 24.f even 2 1
192.14.a.p 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 5068T_{5} - 2311181660 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots - 2311181660 \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 55190116800 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 2945583296656 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 131030692245116 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 19\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 23\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 11\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 22\!\cdots\!24 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 60\!\cdots\!24 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 13\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 63\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 55\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 25\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 84\!\cdots\!44 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 43\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 45\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 17\!\cdots\!64 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 25\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 96\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 26\!\cdots\!24 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
show more
show less