Properties

Label 144.14.a.i
Level $144$
Weight $14$
Character orbit 144.a
Self dual yes
Analytic conductor $154.413$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,14,Mod(1,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.412537691\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 22490 q^{5} - 181272 q^{7} - 9261428 q^{11} + 299038 q^{13} - 13249394 q^{17} - 87090068 q^{19} - 992273096 q^{23} - 714903025 q^{25} + 1975365762 q^{29} + 7521761680 q^{31} - 4076807280 q^{35} - 7061279370 q^{37}+ \cdots + 11827133198882 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 22490.0 0 −181272. 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.14.a.i 1
3.b odd 2 1 48.14.a.b 1
4.b odd 2 1 72.14.a.b 1
12.b even 2 1 24.14.a.a 1
24.f even 2 1 192.14.a.c 1
24.h odd 2 1 192.14.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.14.a.a 1 12.b even 2 1
48.14.a.b 1 3.b odd 2 1
72.14.a.b 1 4.b odd 2 1
144.14.a.i 1 1.a even 1 1 trivial
192.14.a.c 1 24.f even 2 1
192.14.a.h 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 22490 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 22490 \) Copy content Toggle raw display
$7$ \( T + 181272 \) Copy content Toggle raw display
$11$ \( T + 9261428 \) Copy content Toggle raw display
$13$ \( T - 299038 \) Copy content Toggle raw display
$17$ \( T + 13249394 \) Copy content Toggle raw display
$19$ \( T + 87090068 \) Copy content Toggle raw display
$23$ \( T + 992273096 \) Copy content Toggle raw display
$29$ \( T - 1975365762 \) Copy content Toggle raw display
$31$ \( T - 7521761680 \) Copy content Toggle raw display
$37$ \( T + 7061279370 \) Copy content Toggle raw display
$41$ \( T - 35578163478 \) Copy content Toggle raw display
$43$ \( T - 3892318868 \) Copy content Toggle raw display
$47$ \( T - 31686836880 \) Copy content Toggle raw display
$53$ \( T - 78937081610 \) Copy content Toggle raw display
$59$ \( T - 287098824604 \) Copy content Toggle raw display
$61$ \( T - 620132700142 \) Copy content Toggle raw display
$67$ \( T + 970682538788 \) Copy content Toggle raw display
$71$ \( T - 1086445967336 \) Copy content Toggle raw display
$73$ \( T + 2089728265814 \) Copy content Toggle raw display
$79$ \( T + 3777056177632 \) Copy content Toggle raw display
$83$ \( T + 3237672550444 \) Copy content Toggle raw display
$89$ \( T - 6361576141254 \) Copy content Toggle raw display
$97$ \( T - 11827133198882 \) Copy content Toggle raw display
show more
show less