Properties

Label 144.10.a.e
Level $144$
Weight $10$
Character orbit 144.a
Self dual yes
Analytic conductor $74.165$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [144,10,Mod(1,144)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(144, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("144.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 144.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,-830] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.1651604076\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 830 q^{5} - 672 q^{7} - 73468 q^{11} - 78242 q^{13} + 161726 q^{17} + 653572 q^{19} - 1066696 q^{23} - 1264225 q^{25} - 3824838 q^{29} + 1579480 q^{31} + 557760 q^{35} + 16015590 q^{37} - 26268282 q^{41}+ \cdots + 1282496642 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −830.000 0 −672.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.10.a.e 1
3.b odd 2 1 48.10.a.f 1
4.b odd 2 1 72.10.a.b 1
12.b even 2 1 24.10.a.a 1
24.f even 2 1 192.10.a.j 1
24.h odd 2 1 192.10.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.10.a.a 1 12.b even 2 1
48.10.a.f 1 3.b odd 2 1
72.10.a.b 1 4.b odd 2 1
144.10.a.e 1 1.a even 1 1 trivial
192.10.a.c 1 24.h odd 2 1
192.10.a.j 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 830 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(144))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 830 \) Copy content Toggle raw display
$7$ \( T + 672 \) Copy content Toggle raw display
$11$ \( T + 73468 \) Copy content Toggle raw display
$13$ \( T + 78242 \) Copy content Toggle raw display
$17$ \( T - 161726 \) Copy content Toggle raw display
$19$ \( T - 653572 \) Copy content Toggle raw display
$23$ \( T + 1066696 \) Copy content Toggle raw display
$29$ \( T + 3824838 \) Copy content Toggle raw display
$31$ \( T - 1579480 \) Copy content Toggle raw display
$37$ \( T - 16015590 \) Copy content Toggle raw display
$41$ \( T + 26268282 \) Copy content Toggle raw display
$43$ \( T - 44495228 \) Copy content Toggle raw display
$47$ \( T - 14324160 \) Copy content Toggle raw display
$53$ \( T - 24386050 \) Copy content Toggle raw display
$59$ \( T - 11942084 \) Copy content Toggle raw display
$61$ \( T + 189740258 \) Copy content Toggle raw display
$67$ \( T - 106709572 \) Copy content Toggle raw display
$71$ \( T - 302754376 \) Copy content Toggle raw display
$73$ \( T - 81769546 \) Copy content Toggle raw display
$79$ \( T + 315315352 \) Copy content Toggle raw display
$83$ \( T - 752833276 \) Copy content Toggle raw display
$89$ \( T - 433284294 \) Copy content Toggle raw display
$97$ \( T - 1282496642 \) Copy content Toggle raw display
show more
show less