gp: [N,k,chi] = [143,4,Mod(14,143)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("143.14");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [68]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{68} - 4 T_{2}^{67} + 84 T_{2}^{66} - 298 T_{2}^{65} + 4505 T_{2}^{64} - 14468 T_{2}^{63} + \cdots + 27\!\cdots\!00 \)
T2^68 - 4*T2^67 + 84*T2^66 - 298*T2^65 + 4505*T2^64 - 14468*T2^63 + 195412*T2^62 - 572111*T2^61 + 7310250*T2^60 - 19938338*T2^59 + 227463970*T2^58 - 558511333*T2^57 + 6114531823*T2^56 - 13014795592*T2^55 + 144410814276*T2^54 - 265821031082*T2^53 + 3048505199185*T2^52 - 4800163752478*T2^51 + 57244580417714*T2^50 - 72618744880461*T2^49 + 968518280492293*T2^48 - 934464469605630*T2^47 + 14716380791546584*T2^46 - 10632009916088778*T2^45 + 202524069089664673*T2^44 - 102336549720782286*T2^43 + 2503355670577236114*T2^42 - 732659601113861315*T2^41 + 27888305808392353087*T2^40 - 4916989116320872636*T2^39 + 273731790415838142170*T2^38 - 47946377561721350018*T2^37 + 2412516996697235647413*T2^36 - 442659710209869113896*T2^35 + 18959769026464872084820*T2^34 - 3943736257530275525737*T2^33 + 135507619843931769113779*T2^32 - 41869575622531807771422*T2^31 + 851373891904981028070578*T2^30 - 367650708803830454492154*T2^29 + 4861799097332173395128770*T2^28 - 2481197077293082092712258*T2^27 + 24678350336504599764778292*T2^26 - 15890830914930910533417103*T2^25 + 114362361599890061784072674*T2^24 - 87999825489756866747558318*T2^23 + 448775345051664688060131466*T2^22 - 372790085687742250969417157*T2^21 + 1586214232488818955476537511*T2^20 - 1457224695706318791281082222*T2^19 + 4872806596494442868204689968*T2^18 - 4558222617662643610425585128*T2^17 + 11565763322081290348665289072*T2^16 - 9767488156549587414043981856*T2^15 + 18869426664962065422479176128*T2^14 - 11505396975394850299038058496*T2^13 + 20278976164199022545839384064*T2^12 - 5591905101465817887727794176*T2^11 + 13849238589614409455137859584*T2^10 + 1833512792078962609242249216*T2^9 + 6431149278264038527527387136*T2^8 + 2254301184728992562093752320*T2^7 + 2258775603570227863509893120*T2^6 + 660669006843813887371018240*T2^5 + 391816513201105634699837440*T2^4 + 28105871105407331991552000*T2^3 + 28479956144713403203584000*T2^2 + 1413421205920843982438400*T2 + 27238541292988687974400
acting on \(S_{4}^{\mathrm{new}}(143, [\chi])\).