Newspace parameters
| Level: | \( N \) | \(=\) | \( 143 = 11 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 143.m (of order \(10\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(3.89646778035\) |
| Analytic rank: | \(0\) |
| Dimension: | \(96\) |
| Relative dimension: | \(24\) over \(\Q(\zeta_{10})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 40.1 | −2.25017 | + | 3.09710i | −0.174658 | + | 0.537542i | −3.29266 | − | 10.1338i | 5.96502 | − | 4.33384i | −1.27181 | − | 1.75049i | −8.49604 | + | 2.76053i | 24.2309 | + | 7.87310i | 7.02271 | + | 5.10230i | 28.2261i | ||
| 40.2 | −2.05258 | + | 2.82514i | −0.606873 | + | 1.86776i | −2.53225 | − | 7.79346i | −6.73745 | + | 4.89505i | −4.03103 | − | 5.54824i | −1.29391 | + | 0.420416i | 13.9307 | + | 4.52634i | 4.16091 | + | 3.02308i | − | 29.0818i | |
| 40.3 | −1.82290 | + | 2.50901i | −0.459035 | + | 1.41276i | −1.73608 | − | 5.34312i | 3.51750 | − | 2.55561i | −2.70786 | − | 3.72705i | 13.1031 | − | 4.25746i | 4.77256 | + | 1.55070i | 5.49596 | + | 3.99305i | 13.4841i | ||
| 40.4 | −1.75062 | + | 2.40953i | −1.79671 | + | 5.52970i | −1.50507 | − | 4.63213i | 0.237936 | − | 0.172871i | −10.1786 | − | 14.0097i | −0.322468 | + | 0.104776i | 2.46577 | + | 0.801179i | −20.0683 | − | 14.5805i | 0.875944i | ||
| 40.5 | −1.48599 | + | 2.04529i | 1.52814 | − | 4.70314i | −0.738985 | − | 2.27436i | 5.65599 | − | 4.10932i | 7.34850 | + | 10.1143i | −2.92829 | + | 0.951459i | −3.86768 | − | 1.25669i | −12.5032 | − | 9.08409i | 17.6746i | ||
| 40.6 | −1.24282 | + | 1.71060i | −0.191245 | + | 0.588591i | −0.145468 | − | 0.447704i | 0.856348 | − | 0.622173i | −0.769159 | − | 1.05866i | −7.33280 | + | 2.38257i | −7.09708 | − | 2.30598i | 6.97129 | + | 5.06494i | 2.23812i | ||
| 40.7 | −1.01215 | + | 1.39310i | 0.524851 | − | 1.61533i | 0.319782 | + | 0.984187i | −1.02892 | + | 0.747553i | 1.71908 | + | 2.36611i | 9.44691 | − | 3.06949i | −8.24548 | − | 2.67912i | 4.94735 | + | 3.59446i | − | 2.19002i | |
| 40.8 | −0.692275 | + | 0.952835i | −0.999026 | + | 3.07469i | 0.807418 | + | 2.48498i | −2.63678 | + | 1.91573i | −2.23807 | − | 3.08044i | −3.29627 | + | 1.07102i | −7.40723 | − | 2.40675i | −1.17449 | − | 0.853320i | − | 3.83863i | |
| 40.9 | −0.459224 | + | 0.632068i | 1.24726 | − | 3.83867i | 1.04745 | + | 3.22370i | −7.15021 | + | 5.19493i | 1.85353 | + | 2.55116i | −6.46840 | + | 2.10171i | −5.49077 | − | 1.78406i | −5.89855 | − | 4.28555i | − | 6.90505i | |
| 40.10 | −0.354398 | + | 0.487787i | 0.286945 | − | 0.883126i | 1.12373 | + | 3.45848i | 4.79996 | − | 3.48738i | 0.329085 | + | 0.452946i | −2.58976 | + | 0.841466i | −4.37896 | − | 1.42281i | 6.58358 | + | 4.78325i | 3.57728i | ||
| 40.11 | −0.0858052 | + | 0.118101i | −1.33575 | + | 4.11101i | 1.22948 | + | 3.78396i | −4.65764 | + | 3.38397i | −0.370899 | − | 0.510498i | 10.6872 | − | 3.47247i | −1.10773 | − | 0.359922i | −7.83500 | − | 5.69246i | − | 0.840433i | |
| 40.12 | −0.0784398 | + | 0.107963i | −1.18685 | + | 3.65275i | 1.23056 | + | 3.78729i | 7.67079 | − | 5.57316i | −0.301266 | − | 0.414657i | 5.40142 | − | 1.75503i | −1.01309 | − | 0.329172i | −4.65283 | − | 3.38048i | 1.26532i | ||
| 40.13 | 0.154453 | − | 0.212586i | 1.74576 | − | 5.37289i | 1.21473 | + | 3.73856i | 1.15845 | − | 0.841664i | −0.872566 | − | 1.20098i | 8.40798 | − | 2.73192i | 1.98203 | + | 0.644000i | −18.5391 | − | 13.4694i | − | 0.376269i | |
| 40.14 | 0.574893 | − | 0.791272i | 0.797782 | − | 2.45532i | 0.940458 | + | 2.89443i | 2.79666 | − | 2.03189i | −1.48419 | − | 2.04281i | 1.75809 | − | 0.571238i | 6.55173 | + | 2.12879i | 1.88902 | + | 1.37245i | − | 3.38104i | |
| 40.15 | 0.692275 | − | 0.952835i | −0.103531 | + | 0.318637i | 0.807418 | + | 2.48498i | −3.71025 | + | 2.69566i | 0.231936 | + | 0.319233i | −7.78245 | + | 2.52867i | 7.40723 | + | 2.40675i | 7.19034 | + | 5.22409i | 5.40139i | ||
| 40.16 | 0.747289 | − | 1.02856i | −1.47493 | + | 4.53937i | 0.736583 | + | 2.26697i | 1.86103 | − | 1.35211i | 3.56680 | + | 4.90927i | −11.8373 | + | 3.84617i | 7.71870 | + | 2.50796i | −11.1493 | − | 8.10047i | − | 2.92459i | |
| 40.17 | 0.803724 | − | 1.10623i | 0.117878 | − | 0.362791i | 0.658293 | + | 2.02602i | −5.23359 | + | 3.80243i | −0.306589 | − | 0.421984i | 5.79097 | − | 1.88160i | 7.97214 | + | 2.59031i | 7.16343 | + | 5.20454i | 8.84567i | ||
| 40.18 | 1.51740 | − | 2.08852i | 0.867180 | − | 2.66890i | −0.823358 | − | 2.53403i | 6.07267 | − | 4.41205i | −4.25821 | − | 5.86093i | −8.32542 | + | 2.70509i | 3.27907 | + | 1.06544i | 0.910102 | + | 0.661228i | − | 19.3778i | |
| 40.19 | 1.54611 | − | 2.12804i | −0.707131 | + | 2.17633i | −0.902026 | − | 2.77615i | 1.31307 | − | 0.954003i | 3.53800 | + | 4.86965i | 7.07964 | − | 2.30031i | 2.70425 | + | 0.878665i | 3.04479 | + | 2.21217i | − | 4.26927i | |
| 40.20 | 1.54746 | − | 2.12989i | −1.05303 | + | 3.24091i | −0.905745 | − | 2.78760i | 2.91232 | − | 2.11593i | 5.27325 | + | 7.25801i | 1.61725 | − | 0.525477i | 2.67647 | + | 0.869637i | −2.11344 | − | 1.53550i | − | 9.47723i | |
| See all 96 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.d | odd | 10 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 143.3.m.a | ✓ | 96 |
| 11.d | odd | 10 | 1 | inner | 143.3.m.a | ✓ | 96 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 143.3.m.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
| 143.3.m.a | ✓ | 96 | 11.d | odd | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(143, [\chi])\).