Newspace parameters
| Level: | \( N \) | \(=\) | \( 143 = 11 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 143.u (of order \(30\), degree \(8\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.14186074890\) |
| Analytic rank: | \(0\) |
| Dimension: | \(96\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{30})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4.1 | −1.07570 | − | 2.41606i | 1.16844 | + | 1.29769i | −3.34195 | + | 3.71162i | 1.83560 | + | 2.52649i | 1.87840 | − | 4.21895i | −0.0557342 | − | 0.0501833i | 7.53189 | + | 2.44726i | −0.00514866 | + | 0.0489863i | 4.12960 | − | 7.15267i |
| 4.2 | −1.02752 | − | 2.30785i | −1.33190 | − | 1.47923i | −2.93213 | + | 3.25646i | −1.45488 | − | 2.00246i | −2.04528 | + | 4.59377i | 1.50000 | + | 1.35060i | 5.72302 | + | 1.85952i | −0.100564 | + | 0.956801i | −3.12648 | + | 5.41522i |
| 4.3 | −0.695123 | − | 1.56127i | −0.703955 | − | 0.781821i | −0.616111 | + | 0.684260i | 0.176715 | + | 0.243227i | −0.731299 | + | 1.64253i | −2.55781 | − | 2.30306i | −1.75417 | − | 0.569964i | 0.197894 | − | 1.88283i | 0.256905 | − | 0.444972i |
| 4.4 | −0.499456 | − | 1.12180i | −0.0731622 | − | 0.0812548i | 0.329292 | − | 0.365715i | 1.83355 | + | 2.52366i | −0.0546100 | + | 0.122656i | 3.66907 | + | 3.30365i | −2.91044 | − | 0.945659i | 0.312336 | − | 2.97168i | 1.91526 | − | 3.31732i |
| 4.5 | −0.489312 | − | 1.09901i | 2.13927 | + | 2.37590i | 0.369857 | − | 0.410768i | −0.216607 | − | 0.298134i | 1.56437 | − | 3.51364i | −0.0839050 | − | 0.0755484i | −2.92070 | − | 0.948991i | −0.754835 | + | 7.18178i | −0.221665 | + | 0.383935i |
| 4.6 | −0.240249 | − | 0.539609i | 0.362656 | + | 0.402770i | 1.10480 | − | 1.22701i | −1.61125 | − | 2.21769i | 0.130211 | − | 0.292458i | 1.04390 | + | 0.939933i | −2.05107 | − | 0.666432i | 0.282881 | − | 2.69143i | −0.809586 | + | 1.40224i |
| 4.7 | −0.188590 | − | 0.423581i | −2.16419 | − | 2.40357i | 1.19441 | − | 1.32652i | 0.608868 | + | 0.838035i | −0.609963 | + | 1.37000i | −1.29580 | − | 1.16674i | −1.66909 | − | 0.542321i | −0.779873 | + | 7.41999i | 0.240149 | − | 0.415951i |
| 4.8 | 0.230908 | + | 0.518628i | 1.26389 | + | 1.40369i | 1.12260 | − | 1.24678i | 1.06863 | + | 1.47085i | −0.436150 | + | 0.979610i | −3.33388 | − | 3.00184i | 1.98568 | + | 0.645186i | −0.0593458 | + | 0.564638i | −0.516066 | + | 0.893853i |
| 4.9 | 0.413311 | + | 0.928311i | −1.08942 | − | 1.20993i | 0.647325 | − | 0.718928i | −1.53276 | − | 2.10966i | 0.672919 | − | 1.51140i | 0.00489562 | + | 0.00440803i | 2.86779 | + | 0.931802i | 0.0365048 | − | 0.347320i | 1.32491 | − | 2.29482i |
| 4.10 | 0.635812 | + | 1.42806i | −1.18771 | − | 1.31908i | −0.296831 | + | 0.329664i | 1.02844 | + | 1.41553i | 1.12857 | − | 2.53480i | 1.67014 | + | 1.50380i | 2.31388 | + | 0.751826i | −0.0157443 | + | 0.149797i | −1.36756 | + | 2.36868i |
| 4.11 | 0.859506 | + | 1.93048i | 1.76928 | + | 1.96498i | −1.64975 | + | 1.83224i | −2.31074 | − | 3.18046i | −2.27266 | + | 5.10447i | −0.770220 | − | 0.693509i | −0.935573 | − | 0.303986i | −0.417223 | + | 3.96962i | 4.15372 | − | 7.19446i |
| 4.12 | 0.936529 | + | 2.10348i | 0.260352 | + | 0.289150i | −2.20927 | + | 2.45364i | 0.574418 | + | 0.790618i | −0.364394 | + | 0.818442i | −0.586172 | − | 0.527791i | −2.85054 | − | 0.926195i | 0.297761 | − | 2.83300i | −1.12509 | + | 1.94871i |
| 36.1 | −1.07570 | + | 2.41606i | 1.16844 | − | 1.29769i | −3.34195 | − | 3.71162i | 1.83560 | − | 2.52649i | 1.87840 | + | 4.21895i | −0.0557342 | + | 0.0501833i | 7.53189 | − | 2.44726i | −0.00514866 | − | 0.0489863i | 4.12960 | + | 7.15267i |
| 36.2 | −1.02752 | + | 2.30785i | −1.33190 | + | 1.47923i | −2.93213 | − | 3.25646i | −1.45488 | + | 2.00246i | −2.04528 | − | 4.59377i | 1.50000 | − | 1.35060i | 5.72302 | − | 1.85952i | −0.100564 | − | 0.956801i | −3.12648 | − | 5.41522i |
| 36.3 | −0.695123 | + | 1.56127i | −0.703955 | + | 0.781821i | −0.616111 | − | 0.684260i | 0.176715 | − | 0.243227i | −0.731299 | − | 1.64253i | −2.55781 | + | 2.30306i | −1.75417 | + | 0.569964i | 0.197894 | + | 1.88283i | 0.256905 | + | 0.444972i |
| 36.4 | −0.499456 | + | 1.12180i | −0.0731622 | + | 0.0812548i | 0.329292 | + | 0.365715i | 1.83355 | − | 2.52366i | −0.0546100 | − | 0.122656i | 3.66907 | − | 3.30365i | −2.91044 | + | 0.945659i | 0.312336 | + | 2.97168i | 1.91526 | + | 3.31732i |
| 36.5 | −0.489312 | + | 1.09901i | 2.13927 | − | 2.37590i | 0.369857 | + | 0.410768i | −0.216607 | + | 0.298134i | 1.56437 | + | 3.51364i | −0.0839050 | + | 0.0755484i | −2.92070 | + | 0.948991i | −0.754835 | − | 7.18178i | −0.221665 | − | 0.383935i |
| 36.6 | −0.240249 | + | 0.539609i | 0.362656 | − | 0.402770i | 1.10480 | + | 1.22701i | −1.61125 | + | 2.21769i | 0.130211 | + | 0.292458i | 1.04390 | − | 0.939933i | −2.05107 | + | 0.666432i | 0.282881 | + | 2.69143i | −0.809586 | − | 1.40224i |
| 36.7 | −0.188590 | + | 0.423581i | −2.16419 | + | 2.40357i | 1.19441 | + | 1.32652i | 0.608868 | − | 0.838035i | −0.609963 | − | 1.37000i | −1.29580 | + | 1.16674i | −1.66909 | + | 0.542321i | −0.779873 | − | 7.41999i | 0.240149 | + | 0.415951i |
| 36.8 | 0.230908 | − | 0.518628i | 1.26389 | − | 1.40369i | 1.12260 | + | 1.24678i | 1.06863 | − | 1.47085i | −0.436150 | − | 0.979610i | −3.33388 | + | 3.00184i | 1.98568 | − | 0.645186i | −0.0593458 | − | 0.564638i | −0.516066 | − | 0.893853i |
| See all 96 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
| 13.e | even | 6 | 1 | inner |
| 143.u | even | 30 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 143.2.u.a | ✓ | 96 |
| 11.c | even | 5 | 1 | inner | 143.2.u.a | ✓ | 96 |
| 13.e | even | 6 | 1 | inner | 143.2.u.a | ✓ | 96 |
| 143.u | even | 30 | 1 | inner | 143.2.u.a | ✓ | 96 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 143.2.u.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
| 143.2.u.a | ✓ | 96 | 11.c | even | 5 | 1 | inner |
| 143.2.u.a | ✓ | 96 | 13.e | even | 6 | 1 | inner |
| 143.2.u.a | ✓ | 96 | 143.u | even | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(143, [\chi])\).