Properties

Label 143.2.e.b.133.3
Level $143$
Weight $2$
Character 143.133
Analytic conductor $1.142$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [143,2,Mod(100,143)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("143.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14186074890\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.3
Root \(1.14257 + 1.97899i\) of defining polynomial
Character \(\chi\) \(=\) 143.133
Dual form 143.2.e.b.100.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14257 + 1.97899i) q^{2} +(-0.610938 - 1.05818i) q^{3} +(-1.61094 + 2.79023i) q^{4} +2.50702 q^{5} +(1.39608 - 2.41808i) q^{6} +(-2.25351 + 3.90319i) q^{7} -2.79216 q^{8} +(0.753509 - 1.30512i) q^{9} +O(q^{10})\) \(q+(1.14257 + 1.97899i) q^{2} +(-0.610938 - 1.05818i) q^{3} +(-1.61094 + 2.79023i) q^{4} +2.50702 q^{5} +(1.39608 - 2.41808i) q^{6} +(-2.25351 + 3.90319i) q^{7} -2.79216 q^{8} +(0.753509 - 1.30512i) q^{9} +(2.86445 + 4.96137i) q^{10} +(-0.500000 - 0.866025i) q^{11} +3.93673 q^{12} +(-2.50000 - 2.59808i) q^{13} -10.2992 q^{14} +(-1.53163 - 2.65287i) q^{15} +(0.0316332 + 0.0547902i) q^{16} +(1.61094 - 2.79023i) q^{17} +3.44375 q^{18} +(1.17420 - 2.03378i) q^{19} +(-4.03865 + 6.99515i) q^{20} +5.50702 q^{21} +(1.14257 - 1.97899i) q^{22} +(-2.89608 - 5.01616i) q^{23} +(1.70584 + 2.95460i) q^{24} +1.28514 q^{25} +(2.28514 - 7.91597i) q^{26} -5.50702 q^{27} +(-7.26053 - 12.5756i) q^{28} +(0.309757 + 0.536515i) q^{29} +(3.50000 - 6.06218i) q^{30} +6.01404 q^{31} +(-2.86445 + 4.96137i) q^{32} +(-0.610938 + 1.05818i) q^{33} +7.36245 q^{34} +(-5.64959 + 9.78538i) q^{35} +(2.42771 + 4.20492i) q^{36} +(-2.53163 - 4.38492i) q^{37} +5.36645 q^{38} +(-1.22188 + 4.23270i) q^{39} -7.00000 q^{40} +(4.18122 + 7.24209i) q^{41} +(6.29216 + 10.8983i) q^{42} +(-5.54567 + 9.60538i) q^{43} +3.22188 q^{44} +(1.88906 - 3.27195i) q^{45} +(6.61796 - 11.4626i) q^{46} +6.74293 q^{47} +(0.0386518 - 0.0669469i) q^{48} +(-6.65661 - 11.5296i) q^{49} +(1.46837 + 2.54329i) q^{50} -3.93673 q^{51} +(11.2766 - 2.79023i) q^{52} -4.06327 q^{53} +(-6.29216 - 10.8983i) q^{54} +(-1.25351 - 2.17114i) q^{55} +(6.29216 - 10.8983i) q^{56} -2.86946 q^{57} +(-0.707839 + 1.22601i) q^{58} +(-5.53163 + 9.58107i) q^{59} +9.86946 q^{60} +(0.0722863 - 0.125204i) q^{61} +(6.87147 + 11.9017i) q^{62} +(3.39608 + 5.88218i) q^{63} -12.9648 q^{64} +(-6.26755 - 6.51343i) q^{65} -2.79216 q^{66} +(-4.36445 - 7.55944i) q^{67} +(5.19024 + 8.98976i) q^{68} +(-3.53865 + 6.12912i) q^{69} -25.8202 q^{70} +(0.857429 - 1.48511i) q^{71} +(-2.10392 + 3.64410i) q^{72} -2.00000 q^{73} +(5.78514 - 10.0202i) q^{74} +(-0.785142 - 1.35991i) q^{75} +(3.78314 + 6.55259i) q^{76} +4.50702 q^{77} +(-9.77256 + 2.41808i) q^{78} +1.87347 q^{79} +(0.0793049 + 0.137360i) q^{80} +(1.10392 + 1.91204i) q^{81} +(-9.55469 + 16.5492i) q^{82} -5.38049 q^{83} +(-8.87147 + 15.3658i) q^{84} +(4.03865 - 6.99515i) q^{85} -25.3453 q^{86} +(0.378485 - 0.655555i) q^{87} +(1.39608 + 2.41808i) q^{88} +(4.25351 + 7.36729i) q^{89} +8.63355 q^{90} +(15.7746 - 3.90319i) q^{91} +18.6616 q^{92} +(-3.67420 - 6.36391i) q^{93} +(7.70428 + 13.3442i) q^{94} +(2.94375 - 5.09873i) q^{95} +7.00000 q^{96} +(-0.0562477 + 0.0974238i) q^{97} +(15.2113 - 26.3467i) q^{98} -1.50702 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9} + 6 q^{10} - 3 q^{11} + 30 q^{12} - 15 q^{13} - 16 q^{14} - 6 q^{15} - 3 q^{16} + 7 q^{17} + 10 q^{18} - 2 q^{19} - 4 q^{20} + 16 q^{21} + q^{22} - 3 q^{23} - 2 q^{24} - 4 q^{25} + 2 q^{26} - 16 q^{27} - 18 q^{28} + 4 q^{29} + 21 q^{30} + 2 q^{31} - 6 q^{32} - q^{33} - 8 q^{34} - 11 q^{35} - 3 q^{36} - 12 q^{37} + 62 q^{38} - 2 q^{39} - 42 q^{40} - q^{41} + 9 q^{42} + 4 q^{43} + 14 q^{44} + 14 q^{45} + 20 q^{46} - 16 q^{47} - 20 q^{48} + 12 q^{50} - 30 q^{51} + 49 q^{52} - 18 q^{53} - 9 q^{54} + q^{55} + 9 q^{56} + 52 q^{57} - 33 q^{58} - 30 q^{59} - 10 q^{60} + 18 q^{61} + 13 q^{62} + 6 q^{63} - 16 q^{64} + 5 q^{65} + 12 q^{66} - 15 q^{67} + 29 q^{68} - q^{69} - 58 q^{70} + 11 q^{71} - 27 q^{72} - 12 q^{73} + 23 q^{74} + 7 q^{75} - 30 q^{76} + 10 q^{77} + 42 q^{78} + 24 q^{79} + q^{80} + 21 q^{81} - 44 q^{82} - 28 q^{83} - 25 q^{84} + 4 q^{85} - 86 q^{86} - 43 q^{87} - 6 q^{88} + 17 q^{89} + 22 q^{90} + 35 q^{91} + 14 q^{92} - 13 q^{93} + 10 q^{94} + 7 q^{95} + 42 q^{96} - 11 q^{97} + 38 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/143\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(79\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14257 + 1.97899i 0.807920 + 1.39936i 0.914302 + 0.405033i \(0.132740\pi\)
−0.106382 + 0.994325i \(0.533927\pi\)
\(3\) −0.610938 1.05818i −0.352725 0.610938i 0.634001 0.773333i \(-0.281412\pi\)
−0.986726 + 0.162394i \(0.948078\pi\)
\(4\) −1.61094 + 2.79023i −0.805469 + 1.39511i
\(5\) 2.50702 1.12117 0.560586 0.828096i \(-0.310576\pi\)
0.560586 + 0.828096i \(0.310576\pi\)
\(6\) 1.39608 2.41808i 0.569948 0.987178i
\(7\) −2.25351 + 3.90319i −0.851746 + 1.47527i 0.0278844 + 0.999611i \(0.491123\pi\)
−0.879631 + 0.475657i \(0.842210\pi\)
\(8\) −2.79216 −0.987178
\(9\) 0.753509 1.30512i 0.251170 0.435039i
\(10\) 2.86445 + 4.96137i 0.905818 + 1.56892i
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) 3.93673 1.13644
\(13\) −2.50000 2.59808i −0.693375 0.720577i
\(14\) −10.2992 −2.75257
\(15\) −1.53163 2.65287i −0.395466 0.684967i
\(16\) 0.0316332 + 0.0547902i 0.00790829 + 0.0136976i
\(17\) 1.61094 2.79023i 0.390710 0.676729i −0.601833 0.798622i \(-0.705563\pi\)
0.992543 + 0.121892i \(0.0388962\pi\)
\(18\) 3.44375 0.811700
\(19\) 1.17420 2.03378i 0.269381 0.466582i −0.699321 0.714808i \(-0.746514\pi\)
0.968702 + 0.248226i \(0.0798476\pi\)
\(20\) −4.03865 + 6.99515i −0.903070 + 1.56416i
\(21\) 5.50702 1.20173
\(22\) 1.14257 1.97899i 0.243597 0.421922i
\(23\) −2.89608 5.01616i −0.603875 1.04594i −0.992228 0.124431i \(-0.960289\pi\)
0.388354 0.921510i \(-0.373044\pi\)
\(24\) 1.70584 + 2.95460i 0.348203 + 0.603105i
\(25\) 1.28514 0.257028
\(26\) 2.28514 7.91597i 0.448153 1.55245i
\(27\) −5.50702 −1.05983
\(28\) −7.26053 12.5756i −1.37211 2.37657i
\(29\) 0.309757 + 0.536515i 0.0575204 + 0.0996283i 0.893352 0.449358i \(-0.148347\pi\)
−0.835831 + 0.548986i \(0.815014\pi\)
\(30\) 3.50000 6.06218i 0.639010 1.10680i
\(31\) 6.01404 1.08015 0.540076 0.841616i \(-0.318395\pi\)
0.540076 + 0.841616i \(0.318395\pi\)
\(32\) −2.86445 + 4.96137i −0.506368 + 0.877054i
\(33\) −0.610938 + 1.05818i −0.106351 + 0.184205i
\(34\) 7.36245 1.26265
\(35\) −5.64959 + 9.78538i −0.954955 + 1.65403i
\(36\) 2.42771 + 4.20492i 0.404619 + 0.700821i
\(37\) −2.53163 4.38492i −0.416198 0.720876i 0.579355 0.815075i \(-0.303304\pi\)
−0.995553 + 0.0941990i \(0.969971\pi\)
\(38\) 5.36645 0.870553
\(39\) −1.22188 + 4.23270i −0.195657 + 0.677775i
\(40\) −7.00000 −1.10680
\(41\) 4.18122 + 7.24209i 0.652997 + 1.13102i 0.982392 + 0.186832i \(0.0598221\pi\)
−0.329395 + 0.944192i \(0.606845\pi\)
\(42\) 6.29216 + 10.8983i 0.970902 + 1.68165i
\(43\) −5.54567 + 9.60538i −0.845707 + 1.46481i 0.0392992 + 0.999227i \(0.487487\pi\)
−0.885006 + 0.465580i \(0.845846\pi\)
\(44\) 3.22188 0.485716
\(45\) 1.88906 3.27195i 0.281605 0.487754i
\(46\) 6.61796 11.4626i 0.975764 1.69007i
\(47\) 6.74293 0.983558 0.491779 0.870720i \(-0.336347\pi\)
0.491779 + 0.870720i \(0.336347\pi\)
\(48\) 0.0386518 0.0669469i 0.00557891 0.00966295i
\(49\) −6.65661 11.5296i −0.950944 1.64708i
\(50\) 1.46837 + 2.54329i 0.207658 + 0.359675i
\(51\) −3.93673 −0.551253
\(52\) 11.2766 2.79023i 1.56378 0.386935i
\(53\) −4.06327 −0.558133 −0.279066 0.960272i \(-0.590025\pi\)
−0.279066 + 0.960272i \(0.590025\pi\)
\(54\) −6.29216 10.8983i −0.856255 1.48308i
\(55\) −1.25351 2.17114i −0.169023 0.292757i
\(56\) 6.29216 10.8983i 0.840825 1.45635i
\(57\) −2.86946 −0.380070
\(58\) −0.707839 + 1.22601i −0.0929438 + 0.160983i
\(59\) −5.53163 + 9.58107i −0.720157 + 1.24735i 0.240779 + 0.970580i \(0.422597\pi\)
−0.960936 + 0.276769i \(0.910736\pi\)
\(60\) 9.86946 1.27414
\(61\) 0.0722863 0.125204i 0.00925531 0.0160307i −0.861361 0.507994i \(-0.830387\pi\)
0.870616 + 0.491963i \(0.163721\pi\)
\(62\) 6.87147 + 11.9017i 0.872677 + 1.51152i
\(63\) 3.39608 + 5.88218i 0.427866 + 0.741086i
\(64\) −12.9648 −1.62060
\(65\) −6.26755 6.51343i −0.777393 0.807891i
\(66\) −2.79216 −0.343691
\(67\) −4.36445 7.55944i −0.533202 0.923533i −0.999248 0.0387726i \(-0.987655\pi\)
0.466046 0.884761i \(-0.345678\pi\)
\(68\) 5.19024 + 8.98976i 0.629409 + 1.09017i
\(69\) −3.53865 + 6.12912i −0.426004 + 0.737860i
\(70\) −25.8202 −3.08611
\(71\) 0.857429 1.48511i 0.101758 0.176250i −0.810651 0.585530i \(-0.800887\pi\)
0.912409 + 0.409280i \(0.134220\pi\)
\(72\) −2.10392 + 3.64410i −0.247949 + 0.429461i
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 5.78514 10.0202i 0.672509 1.16482i
\(75\) −0.785142 1.35991i −0.0906604 0.157028i
\(76\) 3.78314 + 6.55259i 0.433956 + 0.751634i
\(77\) 4.50702 0.513622
\(78\) −9.77256 + 2.41808i −1.10652 + 0.273794i
\(79\) 1.87347 0.210782 0.105391 0.994431i \(-0.466391\pi\)
0.105391 + 0.994431i \(0.466391\pi\)
\(80\) 0.0793049 + 0.137360i 0.00886656 + 0.0153573i
\(81\) 1.10392 + 1.91204i 0.122658 + 0.212449i
\(82\) −9.55469 + 16.5492i −1.05514 + 1.82755i
\(83\) −5.38049 −0.590585 −0.295293 0.955407i \(-0.595417\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(84\) −8.87147 + 15.3658i −0.967956 + 1.67655i
\(85\) 4.03865 6.99515i 0.438053 0.758731i
\(86\) −25.3453 −2.73305
\(87\) 0.378485 0.655555i 0.0405778 0.0702828i
\(88\) 1.39608 + 2.41808i 0.148823 + 0.257768i
\(89\) 4.25351 + 7.36729i 0.450871 + 0.780932i 0.998440 0.0558287i \(-0.0177801\pi\)
−0.547569 + 0.836760i \(0.684447\pi\)
\(90\) 8.63355 0.910056
\(91\) 15.7746 3.90319i 1.65362 0.409166i
\(92\) 18.6616 1.94561
\(93\) −3.67420 6.36391i −0.380997 0.659907i
\(94\) 7.70428 + 13.3442i 0.794636 + 1.37635i
\(95\) 2.94375 5.09873i 0.302023 0.523119i
\(96\) 7.00000 0.714435
\(97\) −0.0562477 + 0.0974238i −0.00571109 + 0.00989189i −0.868867 0.495046i \(-0.835151\pi\)
0.863156 + 0.504938i \(0.168485\pi\)
\(98\) 15.2113 26.3467i 1.53657 2.66142i
\(99\) −1.50702 −0.151461
\(100\) −2.07028 + 3.58584i −0.207028 + 0.358584i
\(101\) 6.37848 + 11.0479i 0.634683 + 1.09930i 0.986582 + 0.163265i \(0.0522026\pi\)
−0.351899 + 0.936038i \(0.614464\pi\)
\(102\) −4.49800 7.79076i −0.445368 0.771400i
\(103\) 15.6304 1.54011 0.770056 0.637976i \(-0.220228\pi\)
0.770056 + 0.637976i \(0.220228\pi\)
\(104\) 6.98040 + 7.25425i 0.684485 + 0.711337i
\(105\) 13.8062 1.34735
\(106\) −4.64257 8.04117i −0.450926 0.781027i
\(107\) 2.80976 + 4.86664i 0.271629 + 0.470476i 0.969279 0.245963i \(-0.0791042\pi\)
−0.697650 + 0.716439i \(0.745771\pi\)
\(108\) 8.87147 15.3658i 0.853657 1.47858i
\(109\) 9.90466 0.948694 0.474347 0.880338i \(-0.342684\pi\)
0.474347 + 0.880338i \(0.342684\pi\)
\(110\) 2.86445 4.96137i 0.273114 0.473048i
\(111\) −3.09334 + 5.35783i −0.293607 + 0.508542i
\(112\) −0.285142 −0.0269434
\(113\) −4.12498 + 7.14467i −0.388045 + 0.672114i −0.992187 0.124763i \(-0.960183\pi\)
0.604141 + 0.796877i \(0.293516\pi\)
\(114\) −3.27857 5.67865i −0.307066 0.531854i
\(115\) −7.26053 12.5756i −0.677048 1.17268i
\(116\) −1.99600 −0.185324
\(117\) −5.27457 + 1.30512i −0.487634 + 0.120658i
\(118\) −25.2811 −2.32732
\(119\) 7.26053 + 12.5756i 0.665572 + 1.15280i
\(120\) 4.27657 + 7.40723i 0.390395 + 0.676185i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0.330369 0.0299102
\(123\) 5.10894 8.84894i 0.460657 0.797882i
\(124\) −9.68824 + 16.7805i −0.870030 + 1.50694i
\(125\) −9.31322 −0.832999
\(126\) −7.76053 + 13.4416i −0.691363 + 1.19748i
\(127\) 3.03865 + 5.26310i 0.269637 + 0.467025i 0.968768 0.247969i \(-0.0797630\pi\)
−0.699131 + 0.714993i \(0.746430\pi\)
\(128\) −9.08432 15.7345i −0.802948 1.39075i
\(129\) 13.5522 1.19321
\(130\) 5.72889 19.8455i 0.502457 1.74056i
\(131\) −11.9508 −1.04414 −0.522072 0.852902i \(-0.674841\pi\)
−0.522072 + 0.852902i \(0.674841\pi\)
\(132\) −1.96837 3.40931i −0.171324 0.296742i
\(133\) 5.29216 + 9.16629i 0.458889 + 0.794818i
\(134\) 9.97338 17.2744i 0.861569 1.49228i
\(135\) −13.8062 −1.18825
\(136\) −4.49800 + 7.79076i −0.385700 + 0.668052i
\(137\) 1.13555 1.96683i 0.0970168 0.168038i −0.813432 0.581660i \(-0.802403\pi\)
0.910449 + 0.413622i \(0.135737\pi\)
\(138\) −16.1726 −1.37671
\(139\) 5.07730 8.79415i 0.430651 0.745910i −0.566278 0.824214i \(-0.691617\pi\)
0.996930 + 0.0783043i \(0.0249506\pi\)
\(140\) −18.2023 31.5273i −1.53837 2.66454i
\(141\) −4.11951 7.13521i −0.346926 0.600893i
\(142\) 3.91869 0.328849
\(143\) −1.00000 + 3.46410i −0.0836242 + 0.289683i
\(144\) 0.0953435 0.00794529
\(145\) 0.776567 + 1.34505i 0.0644903 + 0.111701i
\(146\) −2.28514 3.95798i −0.189120 0.327565i
\(147\) −8.13355 + 14.0877i −0.670844 + 1.16194i
\(148\) 16.3132 1.34094
\(149\) 5.48240 9.49580i 0.449136 0.777926i −0.549194 0.835695i \(-0.685065\pi\)
0.998330 + 0.0577685i \(0.0183985\pi\)
\(150\) 1.79416 3.10758i 0.146493 0.253733i
\(151\) −10.8835 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(152\) −3.27857 + 5.67865i −0.265927 + 0.460599i
\(153\) −2.42771 4.20492i −0.196269 0.339948i
\(154\) 5.14959 + 8.91935i 0.414966 + 0.718742i
\(155\) 15.0773 1.21104
\(156\) −9.84183 10.2279i −0.787977 0.818890i
\(157\) 13.9820 1.11588 0.557941 0.829881i \(-0.311592\pi\)
0.557941 + 0.829881i \(0.311592\pi\)
\(158\) 2.14057 + 3.70758i 0.170295 + 0.294959i
\(159\) 2.48240 + 4.29965i 0.196867 + 0.340984i
\(160\) −7.18122 + 12.4382i −0.567726 + 0.983329i
\(161\) 26.1054 2.05739
\(162\) −2.52261 + 4.36929i −0.198195 + 0.343284i
\(163\) −0.697262 + 1.20769i −0.0546137 + 0.0945938i −0.892040 0.451957i \(-0.850726\pi\)
0.837426 + 0.546551i \(0.184059\pi\)
\(164\) −26.9428 −2.10388
\(165\) −1.53163 + 2.65287i −0.119237 + 0.206525i
\(166\) −6.14759 10.6479i −0.477145 0.826440i
\(167\) −11.9171 20.6411i −0.922176 1.59726i −0.796042 0.605242i \(-0.793076\pi\)
−0.126134 0.992013i \(-0.540257\pi\)
\(168\) −15.3765 −1.18632
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) 18.4578 1.41565
\(171\) −1.76955 3.06495i −0.135321 0.234382i
\(172\) −17.8675 30.9474i −1.36238 2.35971i
\(173\) 3.69882 6.40654i 0.281216 0.487080i −0.690469 0.723362i \(-0.742596\pi\)
0.971685 + 0.236282i \(0.0759289\pi\)
\(174\) 1.72978 0.131135
\(175\) −2.89608 + 5.01616i −0.218923 + 0.379186i
\(176\) 0.0316332 0.0547902i 0.00238444 0.00412997i
\(177\) 13.5179 1.01607
\(178\) −9.71987 + 16.8353i −0.728535 + 1.26186i
\(179\) −9.26053 16.0397i −0.692164 1.19886i −0.971127 0.238562i \(-0.923324\pi\)
0.278963 0.960302i \(-0.410009\pi\)
\(180\) 6.08632 + 10.5418i 0.453648 + 0.785741i
\(181\) −18.0561 −1.34210 −0.671051 0.741411i \(-0.734157\pi\)
−0.671051 + 0.741411i \(0.734157\pi\)
\(182\) 25.7479 + 26.7581i 1.90856 + 1.98344i
\(183\) −0.176650 −0.0130583
\(184\) 8.08632 + 14.0059i 0.596132 + 1.03253i
\(185\) −6.34685 10.9931i −0.466630 0.808227i
\(186\) 8.39608 14.5424i 0.615630 1.06630i
\(187\) −3.22188 −0.235607
\(188\) −10.8624 + 18.8143i −0.792225 + 1.37217i
\(189\) 12.4101 21.4950i 0.902703 1.56353i
\(190\) 13.4538 0.976040
\(191\) 1.68122 2.91196i 0.121649 0.210702i −0.798769 0.601638i \(-0.794515\pi\)
0.920418 + 0.390935i \(0.127848\pi\)
\(192\) 7.92070 + 13.7190i 0.571627 + 0.990087i
\(193\) −7.79918 13.5086i −0.561397 0.972369i −0.997375 0.0724110i \(-0.976931\pi\)
0.435978 0.899958i \(-0.356403\pi\)
\(194\) −0.257068 −0.0184564
\(195\) −3.06327 + 10.6115i −0.219365 + 0.759903i
\(196\) 42.8935 3.06382
\(197\) 10.5140 + 18.2108i 0.749094 + 1.29747i 0.948257 + 0.317503i \(0.102844\pi\)
−0.199163 + 0.979966i \(0.563822\pi\)
\(198\) −1.72188 2.98238i −0.122368 0.211948i
\(199\) 11.3062 19.5829i 0.801475 1.38820i −0.117170 0.993112i \(-0.537382\pi\)
0.918645 0.395084i \(-0.129284\pi\)
\(200\) −3.58832 −0.253733
\(201\) −5.33281 + 9.23671i −0.376148 + 0.651507i
\(202\) −14.5757 + 25.2459i −1.02555 + 1.77630i
\(203\) −2.79216 −0.195971
\(204\) 6.34183 10.9844i 0.444017 0.769060i
\(205\) 10.4824 + 18.1561i 0.732123 + 1.26807i
\(206\) 17.8589 + 30.9325i 1.24429 + 2.15517i
\(207\) −8.72889 −0.606700
\(208\) 0.0632663 0.219161i 0.00438673 0.0151961i
\(209\) −2.34841 −0.162443
\(210\) 15.7746 + 27.3223i 1.08855 + 1.88542i
\(211\) −10.1882 17.6466i −0.701387 1.21484i −0.967979 0.251029i \(-0.919231\pi\)
0.266592 0.963809i \(-0.414102\pi\)
\(212\) 6.54567 11.3374i 0.449558 0.778658i
\(213\) −2.09534 −0.143571
\(214\) −6.42070 + 11.1210i −0.438910 + 0.760214i
\(215\) −13.9031 + 24.0809i −0.948183 + 1.64230i
\(216\) 15.3765 1.04624
\(217\) −13.5527 + 23.4739i −0.920016 + 1.59352i
\(218\) 11.3168 + 19.6012i 0.766469 + 1.32756i
\(219\) 1.22188 + 2.11635i 0.0825667 + 0.143010i
\(220\) 8.07730 0.544572
\(221\) −11.2766 + 2.79023i −0.758544 + 0.187691i
\(222\) −14.1375 −0.948844
\(223\) 8.88706 + 15.3928i 0.595122 + 1.03078i 0.993530 + 0.113573i \(0.0362294\pi\)
−0.398408 + 0.917208i \(0.630437\pi\)
\(224\) −12.9101 22.3610i −0.862594 1.49406i
\(225\) 0.968367 1.67726i 0.0645578 0.111817i
\(226\) −18.8523 −1.25404
\(227\) −2.91012 + 5.04047i −0.193151 + 0.334548i −0.946293 0.323311i \(-0.895204\pi\)
0.753142 + 0.657858i \(0.228537\pi\)
\(228\) 4.62253 8.00646i 0.306135 0.530241i
\(229\) 23.6656 1.56387 0.781934 0.623361i \(-0.214233\pi\)
0.781934 + 0.623361i \(0.214233\pi\)
\(230\) 16.5913 28.7370i 1.09400 1.89486i
\(231\) −2.75351 4.76922i −0.181168 0.313792i
\(232\) −0.864891 1.49804i −0.0567829 0.0983509i
\(233\) −22.8875 −1.49941 −0.749705 0.661772i \(-0.769805\pi\)
−0.749705 + 0.661772i \(0.769805\pi\)
\(234\) −8.60938 8.94713i −0.562813 0.584892i
\(235\) 16.9047 1.10274
\(236\) −17.8222 30.8690i −1.16013 2.00940i
\(237\) −1.14457 1.98246i −0.0743480 0.128774i
\(238\) −16.5913 + 28.7370i −1.07546 + 1.86275i
\(239\) 16.2007 1.04794 0.523969 0.851737i \(-0.324451\pi\)
0.523969 + 0.851737i \(0.324451\pi\)
\(240\) 0.0969008 0.167837i 0.00625492 0.0108338i
\(241\) −0.0969008 + 0.167837i −0.00624193 + 0.0108113i −0.869129 0.494585i \(-0.835320\pi\)
0.862888 + 0.505396i \(0.168654\pi\)
\(242\) −2.28514 −0.146895
\(243\) −6.91168 + 11.9714i −0.443384 + 0.767964i
\(244\) 0.232897 + 0.403390i 0.0149097 + 0.0258244i
\(245\) −16.6882 28.9049i −1.06617 1.84667i
\(246\) 23.3493 1.48870
\(247\) −8.21943 + 2.03378i −0.522990 + 0.129406i
\(248\) −16.7922 −1.06630
\(249\) 3.28714 + 5.69350i 0.208314 + 0.360811i
\(250\) −10.6410 18.4308i −0.672997 1.16566i
\(251\) −4.07028 + 7.04994i −0.256914 + 0.444988i −0.965414 0.260723i \(-0.916039\pi\)
0.708500 + 0.705711i \(0.249372\pi\)
\(252\) −21.8835 −1.37853
\(253\) −2.89608 + 5.01616i −0.182075 + 0.315363i
\(254\) −6.94375 + 12.0269i −0.435690 + 0.754637i
\(255\) −9.86946 −0.618050
\(256\) 7.79416 13.4999i 0.487135 0.843743i
\(257\) 8.94877 + 15.4997i 0.558209 + 0.966846i 0.997646 + 0.0685729i \(0.0218446\pi\)
−0.439437 + 0.898273i \(0.644822\pi\)
\(258\) 15.4844 + 26.8198i 0.964017 + 1.66973i
\(259\) 22.8202 1.41798
\(260\) 28.2706 6.99515i 1.75327 0.433821i
\(261\) 0.933619 0.0577896
\(262\) −13.6546 23.6505i −0.843584 1.46113i
\(263\) 7.78359 + 13.4816i 0.479956 + 0.831309i 0.999736 0.0229917i \(-0.00731913\pi\)
−0.519779 + 0.854301i \(0.673986\pi\)
\(264\) 1.70584 2.95460i 0.104987 0.181843i
\(265\) −10.1867 −0.625763
\(266\) −12.0933 + 20.9463i −0.741490 + 1.28430i
\(267\) 5.19726 9.00192i 0.318067 0.550909i
\(268\) 28.1234 1.71791
\(269\) 0.746491 1.29296i 0.0455143 0.0788331i −0.842371 0.538898i \(-0.818841\pi\)
0.887885 + 0.460065i \(0.152174\pi\)
\(270\) −15.7746 27.3223i −0.960009 1.66279i
\(271\) −11.6356 20.1534i −0.706809 1.22423i −0.966035 0.258413i \(-0.916800\pi\)
0.259225 0.965817i \(-0.416533\pi\)
\(272\) 0.203836 0.0123594
\(273\) −13.7675 14.3077i −0.833250 0.865939i
\(274\) 5.18980 0.313527
\(275\) −0.642571 1.11297i −0.0387485 0.0671144i
\(276\) −11.4011 19.7473i −0.686265 1.18865i
\(277\) 7.03008 12.1764i 0.422396 0.731612i −0.573777 0.819012i \(-0.694522\pi\)
0.996173 + 0.0873997i \(0.0278557\pi\)
\(278\) 23.2047 1.39173
\(279\) 4.53163 7.84902i 0.271302 0.469908i
\(280\) 15.7746 27.3223i 0.942711 1.63282i
\(281\) 11.6797 0.696750 0.348375 0.937355i \(-0.386734\pi\)
0.348375 + 0.937355i \(0.386734\pi\)
\(282\) 9.41368 16.3050i 0.560576 0.970947i
\(283\) 1.73591 + 3.00669i 0.103189 + 0.178729i 0.912997 0.407966i \(-0.133762\pi\)
−0.809808 + 0.586695i \(0.800429\pi\)
\(284\) 2.76253 + 4.78484i 0.163926 + 0.283928i
\(285\) −7.19380 −0.426124
\(286\) −7.99800 + 1.97899i −0.472932 + 0.117020i
\(287\) −37.6897 −2.22475
\(288\) 4.31678 + 7.47687i 0.254368 + 0.440579i
\(289\) 3.30976 + 5.73267i 0.194692 + 0.337216i
\(290\) −1.77457 + 3.07364i −0.104206 + 0.180490i
\(291\) 0.137455 0.00805778
\(292\) 3.22188 5.58045i 0.188546 0.326571i
\(293\) −3.18980 + 5.52489i −0.186350 + 0.322768i −0.944031 0.329858i \(-0.892999\pi\)
0.757681 + 0.652626i \(0.226333\pi\)
\(294\) −37.1726 −2.16795
\(295\) −13.8679 + 24.0199i −0.807421 + 1.39849i
\(296\) 7.06873 + 12.2434i 0.410861 + 0.711633i
\(297\) 2.75351 + 4.76922i 0.159775 + 0.276738i
\(298\) 25.0561 1.45146
\(299\) −5.79216 + 20.0646i −0.334969 + 1.16037i
\(300\) 5.05926 0.292097
\(301\) −24.9944 43.2916i −1.44066 2.49529i
\(302\) −12.4352 21.5384i −0.715564 1.23939i
\(303\) 7.79372 13.4991i 0.447737 0.775504i
\(304\) 0.148575 0.00852137
\(305\) 0.181223 0.313888i 0.0103768 0.0179731i
\(306\) 5.54767 9.60885i 0.317139 0.549301i
\(307\) 5.06327 0.288976 0.144488 0.989507i \(-0.453847\pi\)
0.144488 + 0.989507i \(0.453847\pi\)
\(308\) −7.26053 + 12.5756i −0.413707 + 0.716562i
\(309\) −9.54923 16.5397i −0.543237 0.940913i
\(310\) 17.2269 + 29.8379i 0.978422 + 1.69468i
\(311\) 2.91958 0.165554 0.0827771 0.996568i \(-0.473621\pi\)
0.0827771 + 0.996568i \(0.473621\pi\)
\(312\) 3.41168 11.8184i 0.193148 0.669085i
\(313\) 15.7882 0.892399 0.446200 0.894933i \(-0.352777\pi\)
0.446200 + 0.894933i \(0.352777\pi\)
\(314\) 15.9754 + 27.6702i 0.901543 + 1.56152i
\(315\) 8.51404 + 14.7467i 0.479712 + 0.830885i
\(316\) −3.01804 + 5.22740i −0.169778 + 0.294064i
\(317\) −20.4397 −1.14801 −0.574005 0.818852i \(-0.694611\pi\)
−0.574005 + 0.818852i \(0.694611\pi\)
\(318\) −5.67265 + 9.82531i −0.318106 + 0.550976i
\(319\) 0.309757 0.536515i 0.0173431 0.0300391i
\(320\) −32.5030 −1.81697
\(321\) 3.43318 5.94643i 0.191621 0.331898i
\(322\) 29.8273 + 51.6623i 1.66221 + 2.87903i
\(323\) −3.78314 6.55259i −0.210500 0.364596i
\(324\) −7.11338 −0.395188
\(325\) −3.21286 3.33890i −0.178217 0.185209i
\(326\) −3.18668 −0.176494
\(327\) −6.05113 10.4809i −0.334628 0.579593i
\(328\) −11.6746 20.2211i −0.644625 1.11652i
\(329\) −15.1953 + 26.3190i −0.837742 + 1.45101i
\(330\) −7.00000 −0.385337
\(331\) 14.1406 24.4922i 0.777236 1.34621i −0.156293 0.987711i \(-0.549954\pi\)
0.933529 0.358502i \(-0.116712\pi\)
\(332\) 8.66763 15.0128i 0.475698 0.823933i
\(333\) −7.63044 −0.418145
\(334\) 27.2324 47.1678i 1.49009 2.58091i
\(335\) −10.9418 18.9517i −0.597812 1.03544i
\(336\) 0.174204 + 0.301731i 0.00950363 + 0.0164608i
\(337\) −31.9256 −1.73910 −0.869550 0.493846i \(-0.835591\pi\)
−0.869550 + 0.493846i \(0.835591\pi\)
\(338\) −26.2791 + 13.8529i −1.42940 + 0.753501i
\(339\) 10.0804 0.547493
\(340\) 13.0120 + 22.5375i 0.705677 + 1.22227i
\(341\) −3.00702 5.20831i −0.162839 0.282046i
\(342\) 4.04367 7.00384i 0.218657 0.378724i
\(343\) 28.4538 1.53636
\(344\) 15.4844 26.8198i 0.834863 1.44603i
\(345\) −8.87147 + 15.3658i −0.477624 + 0.827268i
\(346\) 16.9047 0.908800
\(347\) 0.959347 1.66164i 0.0515004 0.0892014i −0.839126 0.543937i \(-0.816933\pi\)
0.890626 + 0.454736i \(0.150266\pi\)
\(348\) 1.21943 + 2.11212i 0.0653684 + 0.113221i
\(349\) 0.0948995 + 0.164371i 0.00507985 + 0.00879856i 0.868554 0.495594i \(-0.165050\pi\)
−0.863474 + 0.504393i \(0.831716\pi\)
\(350\) −13.2359 −0.707489
\(351\) 13.7675 + 14.3077i 0.734857 + 0.763686i
\(352\) 5.72889 0.305351
\(353\) 5.47494 + 9.48288i 0.291402 + 0.504723i 0.974141 0.225939i \(-0.0725450\pi\)
−0.682740 + 0.730662i \(0.739212\pi\)
\(354\) 15.4452 + 26.7519i 0.820904 + 1.42185i
\(355\) 2.14959 3.72320i 0.114088 0.197607i
\(356\) −27.4086 −1.45265
\(357\) 8.87147 15.3658i 0.469528 0.813246i
\(358\) 21.1616 36.6530i 1.11843 1.93717i
\(359\) 3.79216 0.200143 0.100071 0.994980i \(-0.468093\pi\)
0.100071 + 0.994980i \(0.468093\pi\)
\(360\) −5.27457 + 9.13582i −0.277994 + 0.481500i
\(361\) 6.74249 + 11.6783i 0.354868 + 0.614649i
\(362\) −20.6304 35.7330i −1.08431 1.87808i
\(363\) 1.22188 0.0641319
\(364\) −14.5211 + 50.3024i −0.761110 + 2.63656i
\(365\) −5.01404 −0.262447
\(366\) −0.201835 0.349588i −0.0105501 0.0182733i
\(367\) 12.5035 + 21.6566i 0.652675 + 1.13047i 0.982471 + 0.186415i \(0.0596867\pi\)
−0.329796 + 0.944052i \(0.606980\pi\)
\(368\) 0.183224 0.317354i 0.00955123 0.0165432i
\(369\) 12.6024 0.656053
\(370\) 14.5035 25.1207i 0.753999 1.30596i
\(371\) 9.15661 15.8597i 0.475387 0.823395i
\(372\) 23.6757 1.22753
\(373\) 4.33983 7.51681i 0.224708 0.389206i −0.731524 0.681816i \(-0.761191\pi\)
0.956232 + 0.292610i \(0.0945238\pi\)
\(374\) −3.68122 6.37607i −0.190352 0.329698i
\(375\) 5.68980 + 9.85502i 0.293820 + 0.508911i
\(376\) −18.8274 −0.970947
\(377\) 0.619514 2.14606i 0.0319066 0.110528i
\(378\) 56.7178 2.91725
\(379\) −7.35743 12.7434i −0.377926 0.654587i 0.612835 0.790211i \(-0.290029\pi\)
−0.990760 + 0.135625i \(0.956696\pi\)
\(380\) 9.48441 + 16.4275i 0.486540 + 0.842712i
\(381\) 3.71286 6.43086i 0.190215 0.329463i
\(382\) 7.68367 0.393131
\(383\) 2.69526 4.66833i 0.137721 0.238540i −0.788912 0.614506i \(-0.789355\pi\)
0.926634 + 0.375965i \(0.122689\pi\)
\(384\) −11.0999 + 19.2256i −0.566440 + 0.981103i
\(385\) 11.2992 0.575860
\(386\) 17.8222 30.8690i 0.907128 1.57119i
\(387\) 8.35743 + 14.4755i 0.424832 + 0.735831i
\(388\) −0.181223 0.313888i −0.00920021 0.0159352i
\(389\) −21.5531 −1.09279 −0.546394 0.837529i \(-0.684000\pi\)
−0.546394 + 0.837529i \(0.684000\pi\)
\(390\) −24.5000 + 6.06218i −1.24061 + 0.306970i
\(391\) −18.6616 −0.943759
\(392\) 18.5863 + 32.1925i 0.938751 + 1.62596i
\(393\) 7.30118 + 12.6460i 0.368296 + 0.637907i
\(394\) −24.0261 + 41.6144i −1.21042 + 2.09650i
\(395\) 4.69682 0.236323
\(396\) 2.42771 4.20492i 0.121997 0.211305i
\(397\) 8.76555 15.1824i 0.439930 0.761981i −0.557753 0.830007i \(-0.688337\pi\)
0.997684 + 0.0680254i \(0.0216699\pi\)
\(398\) 51.6725 2.59011
\(399\) 6.46637 11.2001i 0.323723 0.560705i
\(400\) 0.0406531 + 0.0704133i 0.00203266 + 0.00352066i
\(401\) 18.2183 + 31.5551i 0.909779 + 1.57578i 0.814370 + 0.580346i \(0.197083\pi\)
0.0954093 + 0.995438i \(0.469584\pi\)
\(402\) −24.3725 −1.21559
\(403\) −15.0351 15.6249i −0.748951 0.778333i
\(404\) −41.1014 −2.04487
\(405\) 2.76755 + 4.79353i 0.137520 + 0.238192i
\(406\) −3.19024 5.52566i −0.158329 0.274234i
\(407\) −2.53163 + 4.38492i −0.125488 + 0.217352i
\(408\) 10.9920 0.544185
\(409\) −14.4332 + 24.9990i −0.713675 + 1.23612i 0.249794 + 0.968299i \(0.419637\pi\)
−0.963469 + 0.267822i \(0.913696\pi\)
\(410\) −23.9538 + 41.4892i −1.18299 + 2.04900i
\(411\) −2.77501 −0.136881
\(412\) −25.1797 + 43.6125i −1.24051 + 2.14863i
\(413\) −24.9312 43.1821i −1.22678 2.12485i
\(414\) −9.97338 17.2744i −0.490165 0.848991i
\(415\) −13.4890 −0.662148
\(416\) 20.0511 4.96137i 0.983088 0.243251i
\(417\) −12.4077 −0.607606
\(418\) −2.68322 4.64748i −0.131241 0.227316i
\(419\) 2.10236 + 3.64140i 0.102707 + 0.177894i 0.912799 0.408409i \(-0.133916\pi\)
−0.810092 + 0.586303i \(0.800583\pi\)
\(420\) −22.2409 + 38.5224i −1.08525 + 1.87970i
\(421\) 13.5843 0.662059 0.331030 0.943620i \(-0.392604\pi\)
0.331030 + 0.943620i \(0.392604\pi\)
\(422\) 23.2816 40.3249i 1.13333 1.96298i
\(423\) 5.08086 8.80031i 0.247040 0.427886i
\(424\) 11.3453 0.550976
\(425\) 2.07028 3.58584i 0.100424 0.173939i
\(426\) −2.39408 4.14667i −0.115994 0.200907i
\(427\) 0.325796 + 0.564295i 0.0157664 + 0.0273081i
\(428\) −18.1054 −0.875156
\(429\) 4.27657 1.05818i 0.206475 0.0510892i
\(430\) −63.5411 −3.06423
\(431\) 15.0191 + 26.0138i 0.723442 + 1.25304i 0.959612 + 0.281327i \(0.0907746\pi\)
−0.236170 + 0.971712i \(0.575892\pi\)
\(432\) −0.174204 0.301731i −0.00838141 0.0145170i
\(433\) −2.12853 + 3.68673i −0.102291 + 0.177173i −0.912628 0.408791i \(-0.865951\pi\)
0.810337 + 0.585964i \(0.199284\pi\)
\(434\) −61.9397 −2.97320
\(435\) 0.948868 1.64349i 0.0454947 0.0787992i
\(436\) −15.9558 + 27.6362i −0.764144 + 1.32354i
\(437\) −13.6024 −0.650689
\(438\) −2.79216 + 4.83616i −0.133415 + 0.231081i
\(439\) 2.50156 + 4.33282i 0.119393 + 0.206794i 0.919527 0.393026i \(-0.128572\pi\)
−0.800134 + 0.599821i \(0.795239\pi\)
\(440\) 3.50000 + 6.06218i 0.166856 + 0.289003i
\(441\) −20.0633 −0.955394
\(442\) −18.4061 19.1282i −0.875490 0.909836i
\(443\) 28.3101 1.34505 0.672527 0.740073i \(-0.265209\pi\)
0.672527 + 0.740073i \(0.265209\pi\)
\(444\) −9.96637 17.2623i −0.472983 0.819230i
\(445\) 10.6636 + 18.4699i 0.505504 + 0.875559i
\(446\) −20.3082 + 35.1748i −0.961621 + 1.66558i
\(447\) −13.3976 −0.633687
\(448\) 29.2163 50.6041i 1.38034 2.39082i
\(449\) 2.86289 4.95867i 0.135108 0.234014i −0.790531 0.612423i \(-0.790195\pi\)
0.925639 + 0.378408i \(0.123528\pi\)
\(450\) 4.42571 0.208630
\(451\) 4.18122 7.24209i 0.196886 0.341017i
\(452\) −13.2902 23.0192i −0.625117 1.08273i
\(453\) 6.64915 + 11.5167i 0.312404 + 0.541100i
\(454\) −13.3001 −0.624203
\(455\) 39.5471 9.78538i 1.85400 0.458746i
\(456\) 8.01201 0.375197
\(457\) 6.24493 + 10.8165i 0.292126 + 0.505976i 0.974312 0.225202i \(-0.0723041\pi\)
−0.682186 + 0.731178i \(0.738971\pi\)
\(458\) 27.0397 + 46.8341i 1.26348 + 2.18841i
\(459\) −8.87147 + 15.3658i −0.414085 + 0.717216i
\(460\) 46.7850 2.18136
\(461\) 6.58632 11.4078i 0.306756 0.531316i −0.670895 0.741552i \(-0.734090\pi\)
0.977651 + 0.210236i \(0.0674232\pi\)
\(462\) 6.29216 10.8983i 0.292738 0.507037i
\(463\) −10.4086 −0.483727 −0.241863 0.970310i \(-0.577759\pi\)
−0.241863 + 0.970310i \(0.577759\pi\)
\(464\) −0.0195972 + 0.0339433i −0.000909776 + 0.00157578i
\(465\) −9.21130 15.9544i −0.427164 0.739869i
\(466\) −26.1506 45.2942i −1.21140 2.09821i
\(467\) 23.3553 1.08076 0.540378 0.841422i \(-0.318281\pi\)
0.540378 + 0.841422i \(0.318281\pi\)
\(468\) 4.85543 16.8197i 0.224442 0.777491i
\(469\) 39.3413 1.81661
\(470\) 19.3148 + 33.4542i 0.890924 + 1.54313i
\(471\) −8.54211 14.7954i −0.393600 0.681735i
\(472\) 15.4452 26.7519i 0.710923 1.23136i
\(473\) 11.0913 0.509980
\(474\) 2.61551 4.53020i 0.120134 0.208079i
\(475\) 1.50902 2.61370i 0.0692386 0.119925i
\(476\) −46.7850 −2.14439
\(477\) −3.06171 + 5.30304i −0.140186 + 0.242809i
\(478\) 18.5105 + 32.0611i 0.846650 + 1.46644i
\(479\) −4.11094 7.12035i −0.187834 0.325337i 0.756694 0.653769i \(-0.226813\pi\)
−0.944528 + 0.328432i \(0.893480\pi\)
\(480\) 17.5491 0.801005
\(481\) −5.06327 + 17.5397i −0.230865 + 0.799740i
\(482\) −0.442864 −0.0201719
\(483\) −15.9488 27.6241i −0.725694 1.25694i
\(484\) −1.61094 2.79023i −0.0732245 0.126828i
\(485\) −0.141014 + 0.244243i −0.00640311 + 0.0110905i
\(486\) −31.5883 −1.43288
\(487\) −1.86946 + 3.23801i −0.0847135 + 0.146728i −0.905269 0.424839i \(-0.860331\pi\)
0.820556 + 0.571567i \(0.193664\pi\)
\(488\) −0.201835 + 0.349588i −0.00913664 + 0.0158251i
\(489\) 1.70393 0.0770546
\(490\) 38.1350 66.0518i 1.72276 2.98392i
\(491\) 4.08832 + 7.08119i 0.184504 + 0.319569i 0.943409 0.331631i \(-0.107599\pi\)
−0.758906 + 0.651201i \(0.774266\pi\)
\(492\) 16.4604 + 28.5102i 0.742090 + 1.28534i
\(493\) 1.99600 0.0898952
\(494\) −13.4161 13.9424i −0.603620 0.627300i
\(495\) −3.77812 −0.169814
\(496\) 0.190243 + 0.329511i 0.00854216 + 0.0147955i
\(497\) 3.86445 + 6.69342i 0.173344 + 0.300241i
\(498\) −7.51159 + 13.0105i −0.336602 + 0.583013i
\(499\) −0.918694 −0.0411264 −0.0205632 0.999789i \(-0.506546\pi\)
−0.0205632 + 0.999789i \(0.506546\pi\)
\(500\) 15.0030 25.9860i 0.670955 1.16213i
\(501\) −14.5613 + 25.2209i −0.650549 + 1.12678i
\(502\) −18.6024 −0.830264
\(503\) 9.05425 15.6824i 0.403709 0.699244i −0.590461 0.807066i \(-0.701054\pi\)
0.994170 + 0.107822i \(0.0343875\pi\)
\(504\) −9.48240 16.4240i −0.422380 0.731583i
\(505\) 15.9910 + 27.6972i 0.711589 + 1.23251i
\(506\) −13.2359 −0.588408
\(507\) 14.0516 7.40723i 0.624052 0.328967i
\(508\) −19.5803 −0.868736
\(509\) −10.2043 17.6743i −0.452297 0.783401i 0.546232 0.837634i \(-0.316062\pi\)
−0.998528 + 0.0542333i \(0.982729\pi\)
\(510\) −11.2766 19.5316i −0.499335 0.864873i
\(511\) 4.50702 7.80639i 0.199379 0.345334i
\(512\) −0.715746 −0.0316318
\(513\) −6.46637 + 11.2001i −0.285497 + 0.494495i
\(514\) −20.4492 + 35.4191i −0.901976 + 1.56227i
\(515\) 39.1858 1.72673
\(516\) −21.8318 + 37.8138i −0.961093 + 1.66466i
\(517\) −3.37147 5.83955i −0.148277 0.256823i
\(518\) 26.0737 + 45.1611i 1.14561 + 1.98426i
\(519\) −9.03900 −0.396768
\(520\) 17.5000 + 18.1865i 0.767426 + 0.797532i
\(521\) −12.0069 −0.526033 −0.263016 0.964791i \(-0.584717\pi\)
−0.263016 + 0.964791i \(0.584717\pi\)
\(522\) 1.06673 + 1.84762i 0.0466893 + 0.0808683i
\(523\) −8.92070 15.4511i −0.390075 0.675629i 0.602384 0.798206i \(-0.294218\pi\)
−0.992459 + 0.122577i \(0.960884\pi\)
\(524\) 19.2520 33.3454i 0.841025 1.45670i
\(525\) 7.07730 0.308879
\(526\) −17.7866 + 30.8073i −0.775533 + 1.34326i
\(527\) 9.68824 16.7805i 0.422026 0.730971i
\(528\) −0.0773036 −0.00336421
\(529\) −5.27457 + 9.13582i −0.229329 + 0.397209i
\(530\) −11.6390 20.1594i −0.505566 0.875667i
\(531\) 8.33627 + 14.4389i 0.361763 + 0.626593i
\(532\) −34.1014 −1.47848
\(533\) 8.36245 28.9684i 0.362218 1.25476i
\(534\) 23.7530 1.02789
\(535\) 7.04411 + 12.2008i 0.304544 + 0.527485i
\(536\) 12.1862 + 21.1072i 0.526365 + 0.911692i
\(537\) −11.3152 + 19.5985i −0.488288 + 0.845739i
\(538\) 3.41168 0.147088
\(539\) −6.65661 + 11.5296i −0.286720 + 0.496614i
\(540\) 22.2409 38.5224i 0.957097 1.65774i
\(541\) −19.1234 −0.822180 −0.411090 0.911595i \(-0.634852\pi\)
−0.411090 + 0.911595i \(0.634852\pi\)
\(542\) 26.5889 46.0533i 1.14209 1.97816i
\(543\) 11.0312 + 19.1066i 0.473394 + 0.819942i
\(544\) 9.22889 + 15.9849i 0.395686 + 0.685348i
\(545\) 24.8312 1.06365
\(546\) 12.5843 43.5934i 0.538559 1.86562i
\(547\) −44.1225 −1.88654 −0.943272 0.332022i \(-0.892269\pi\)
−0.943272 + 0.332022i \(0.892269\pi\)
\(548\) 3.65861 + 6.33690i 0.156288 + 0.270699i
\(549\) −0.108937 0.188684i −0.00464931 0.00805284i
\(550\) 1.46837 2.54329i 0.0626114 0.108446i
\(551\) 1.45487 0.0619796
\(552\) 9.88049 17.1135i 0.420541 0.728399i
\(553\) −4.22188 + 7.31250i −0.179532 + 0.310959i
\(554\) 32.1295 1.36505
\(555\) −7.75507 + 13.4322i −0.329184 + 0.570164i
\(556\) 16.3584 + 28.3337i 0.693753 + 1.20161i
\(557\) 10.6726 + 18.4856i 0.452215 + 0.783259i 0.998523 0.0543253i \(-0.0173008\pi\)
−0.546309 + 0.837584i \(0.683967\pi\)
\(558\) 20.7109 0.876760
\(559\) 38.8197 9.60538i 1.64190 0.406264i
\(560\) −0.714858 −0.0302082
\(561\) 1.96837 + 3.40931i 0.0831045 + 0.143941i
\(562\) 13.3449 + 23.1140i 0.562919 + 0.975003i
\(563\) 9.95935 17.2501i 0.419736 0.727005i −0.576176 0.817325i \(-0.695456\pi\)
0.995913 + 0.0903206i \(0.0287892\pi\)
\(564\) 26.5451 1.11775
\(565\) −10.3414 + 17.9118i −0.435066 + 0.753556i
\(566\) −3.96681 + 6.87072i −0.166737 + 0.288798i
\(567\) −9.95077 −0.417893
\(568\) −2.39408 + 4.14667i −0.100453 + 0.173990i
\(569\) −23.2109 40.2024i −0.973050 1.68537i −0.686227 0.727388i \(-0.740734\pi\)
−0.286823 0.957984i \(-0.592599\pi\)
\(570\) −8.21943 14.2365i −0.344274 0.596300i
\(571\) −5.67878 −0.237649 −0.118825 0.992915i \(-0.537913\pi\)
−0.118825 + 0.992915i \(0.537913\pi\)
\(572\) −8.05469 8.37068i −0.336784 0.349996i
\(573\) −4.10849 −0.171635
\(574\) −43.0632 74.5876i −1.79742 3.11323i
\(575\) −3.72188 6.44648i −0.155213 0.268837i
\(576\) −9.76910 + 16.9206i −0.407046 + 0.705024i
\(577\) −6.37648 −0.265456 −0.132728 0.991152i \(-0.542374\pi\)
−0.132728 + 0.991152i \(0.542374\pi\)
\(578\) −7.56327 + 13.1000i −0.314590 + 0.544887i
\(579\) −9.52963 + 16.5058i −0.396038 + 0.685958i
\(580\) −5.00400 −0.207780
\(581\) 12.1250 21.0011i 0.503029 0.871271i
\(582\) 0.157053 + 0.272023i 0.00651004 + 0.0112757i
\(583\) 2.03163 + 3.51889i 0.0841416 + 0.145738i
\(584\) 5.58432 0.231081
\(585\) −13.2234 + 3.27195i −0.546722 + 0.135279i
\(586\) −14.5783 −0.602224
\(587\) 0.436734 + 0.756445i 0.0180259 + 0.0312218i 0.874898 0.484308i \(-0.160929\pi\)
−0.856872 + 0.515530i \(0.827595\pi\)
\(588\) −26.2053 45.3889i −1.08069 1.87181i
\(589\) 7.06171 12.2312i 0.290973 0.503979i
\(590\) −63.3803 −2.60933
\(591\) 12.8469 22.2514i 0.528449 0.915300i
\(592\) 0.160167 0.277418i 0.00658283 0.0114018i
\(593\) 18.7850 0.771409 0.385705 0.922622i \(-0.373958\pi\)
0.385705 + 0.922622i \(0.373958\pi\)
\(594\) −6.29216 + 10.8983i −0.258170 + 0.447164i
\(595\) 18.2023 + 31.5273i 0.746221 + 1.29249i
\(596\) 17.6636 + 30.5943i 0.723530 + 1.25319i
\(597\) −27.6295 −1.13080
\(598\) −46.3257 + 11.4626i −1.89440 + 0.468742i
\(599\) 11.7601 0.480504 0.240252 0.970711i \(-0.422770\pi\)
0.240252 + 0.970711i \(0.422770\pi\)
\(600\) 2.19224 + 3.79708i 0.0894980 + 0.155015i
\(601\) −14.2585 24.6965i −0.581617 1.00739i −0.995288 0.0969642i \(-0.969087\pi\)
0.413670 0.910427i \(-0.364247\pi\)
\(602\) 57.1159 98.9276i 2.32787 4.03199i
\(603\) −13.1546 −0.535697
\(604\) 17.5326 30.3674i 0.713393 1.23563i
\(605\) −1.25351 + 2.17114i −0.0509624 + 0.0882695i
\(606\) 35.6195 1.44694
\(607\) −7.73591 + 13.3990i −0.313991 + 0.543848i −0.979223 0.202789i \(-0.935000\pi\)
0.665231 + 0.746637i \(0.268333\pi\)
\(608\) 6.72689 + 11.6513i 0.272812 + 0.472523i
\(609\) 1.70584 + 2.95460i 0.0691240 + 0.119726i
\(610\) 0.828241 0.0335345
\(611\) −16.8573 17.5187i −0.681975 0.708729i
\(612\) 15.6436 0.632354
\(613\) 9.79416 + 16.9640i 0.395582 + 0.685169i 0.993175 0.116631i \(-0.0372094\pi\)
−0.597593 + 0.801800i \(0.703876\pi\)
\(614\) 5.78514 + 10.0202i 0.233469 + 0.404381i
\(615\) 12.8082 22.1845i 0.516476 0.894563i
\(616\) −12.5843 −0.507037
\(617\) 14.6551 25.3833i 0.589990 1.02189i −0.404243 0.914652i \(-0.632465\pi\)
0.994233 0.107241i \(-0.0342017\pi\)
\(618\) 21.8213 37.7957i 0.877783 1.52037i
\(619\) −3.74293 −0.150441 −0.0752206 0.997167i \(-0.523966\pi\)
−0.0752206 + 0.997167i \(0.523966\pi\)
\(620\) −24.2886 + 42.0691i −0.975454 + 1.68954i
\(621\) 15.9488 + 27.6241i 0.640002 + 1.10852i
\(622\) 3.33583 + 5.77783i 0.133755 + 0.231670i
\(623\) −38.3413 −1.53611
\(624\) −0.270563 + 0.0669469i −0.0108312 + 0.00268002i
\(625\) −29.7741 −1.19096
\(626\) 18.0391 + 31.2446i 0.720987 + 1.24879i
\(627\) 1.43473 + 2.48503i 0.0572977 + 0.0992425i
\(628\) −22.5241 + 39.0128i −0.898808 + 1.55678i
\(629\) −16.3132 −0.650451
\(630\) −19.4558 + 33.6984i −0.775137 + 1.34258i
\(631\) 11.2590 19.5011i 0.448213 0.776327i −0.550057 0.835127i \(-0.685394\pi\)
0.998270 + 0.0588001i \(0.0187274\pi\)
\(632\) −5.23102 −0.208079
\(633\) −12.4488 + 21.5619i −0.494794 + 0.857009i
\(634\) −23.3539 40.4501i −0.927501 1.60648i
\(635\) 7.61796 + 13.1947i 0.302309 + 0.523615i
\(636\) −15.9960 −0.634283
\(637\) −13.3132 + 46.1183i −0.527489 + 1.82728i
\(638\) 1.41568 0.0560472
\(639\) −1.29216 2.23809i −0.0511171 0.0885374i
\(640\) −22.7746 39.4467i −0.900244 1.55927i
\(641\) −13.2906 + 23.0200i −0.524947 + 0.909235i 0.474631 + 0.880185i \(0.342582\pi\)
−0.999578 + 0.0290503i \(0.990752\pi\)
\(642\) 15.6906 0.619258
\(643\) −0.642571 + 1.11297i −0.0253405 + 0.0438911i −0.878418 0.477894i \(-0.841400\pi\)
0.853077 + 0.521785i \(0.174734\pi\)
\(644\) −42.0541 + 72.8399i −1.65717 + 2.87029i
\(645\) 33.9757 1.33779
\(646\) 8.64502 14.9736i 0.340134 0.589129i
\(647\) 6.88706 + 11.9287i 0.270758 + 0.468967i 0.969056 0.246840i \(-0.0793923\pi\)
−0.698298 + 0.715807i \(0.746059\pi\)
\(648\) −3.08232 5.33874i −0.121085 0.209725i
\(649\) 11.0633 0.434271
\(650\) 2.93673 10.1731i 0.115188 0.399024i
\(651\) 33.1194 1.29805
\(652\) −2.24649 3.89104i −0.0879794 0.152385i
\(653\) −7.76910 13.4565i −0.304029 0.526593i 0.673016 0.739628i \(-0.264998\pi\)
−0.977045 + 0.213035i \(0.931665\pi\)
\(654\) 13.8277 23.9503i 0.540706 0.936530i
\(655\) −29.9608 −1.17067
\(656\) −0.264531 + 0.458180i −0.0103282 + 0.0178889i
\(657\) −1.50702 + 2.61023i −0.0587944 + 0.101835i
\(658\) −69.4467 −2.70731
\(659\) −10.1867 + 17.6439i −0.396817 + 0.687307i −0.993331 0.115295i \(-0.963219\pi\)
0.596514 + 0.802602i \(0.296552\pi\)
\(660\) −4.93473 8.54721i −0.192084 0.332700i
\(661\) −0.494539 0.856566i −0.0192353 0.0333166i 0.856248 0.516566i \(-0.172790\pi\)
−0.875483 + 0.483249i \(0.839457\pi\)
\(662\) 64.6264 2.51178
\(663\) 9.84183 + 10.2279i 0.382225 + 0.397220i
\(664\) 15.0232 0.583013
\(665\) 13.2675 + 22.9801i 0.514493 + 0.891129i
\(666\) −8.71832 15.1006i −0.337828 0.585135i
\(667\) 1.79416 3.10758i 0.0694702 0.120326i
\(668\) 76.7911 2.97114
\(669\) 10.8589 18.8081i 0.419829 0.727165i
\(670\) 25.0035 43.3073i 0.965968 1.67311i
\(671\) −0.144573 −0.00558116
\(672\) −15.7746 + 27.3223i −0.608517 + 1.05398i
\(673\) −15.1496 26.2399i −0.583974 1.01147i −0.995003 0.0998499i \(-0.968164\pi\)
0.411029 0.911622i \(-0.365170\pi\)
\(674\) −36.4773 63.1805i −1.40505 2.43362i
\(675\) −7.07730 −0.272406
\(676\) −35.4406 22.3218i −1.36310 0.858531i
\(677\) 20.6788 0.794750 0.397375 0.917656i \(-0.369921\pi\)
0.397375 + 0.917656i \(0.369921\pi\)
\(678\) 11.5176 + 19.9491i 0.442331 + 0.766139i
\(679\) −0.253509 0.439091i −0.00972879 0.0168508i
\(680\) −11.2766 + 19.5316i −0.432437 + 0.749002i
\(681\) 7.11161 0.272517
\(682\) 6.87147 11.9017i 0.263122 0.455741i
\(683\) 0.219875 0.380834i 0.00841328 0.0145722i −0.861788 0.507268i \(-0.830655\pi\)
0.870201 + 0.492696i \(0.163989\pi\)
\(684\) 11.4025 0.435987
\(685\) 2.84685 4.93089i 0.108773 0.188400i
\(686\) 32.5105 + 56.3098i 1.24126 + 2.14992i
\(687\) −14.4582 25.0424i −0.551616 0.955427i
\(688\) −0.701708 −0.0267524
\(689\) 10.1582 + 10.5567i 0.386995 + 0.402177i
\(690\) −40.5451 −1.54353
\(691\) −10.0211 17.3570i −0.381219 0.660291i 0.610018 0.792388i \(-0.291162\pi\)
−0.991237 + 0.132097i \(0.957829\pi\)
\(692\) 11.9171 + 20.6411i 0.453022 + 0.784656i
\(693\) 3.39608 5.88218i 0.129006 0.223446i
\(694\) 4.38449 0.166433
\(695\) 12.7289 22.0471i 0.482835 0.836294i
\(696\) −1.05679 + 1.83041i −0.0400575 + 0.0693817i
\(697\) 26.9428 1.02053
\(698\) −0.216859 + 0.375611i −0.00820823 + 0.0142171i
\(699\) 13.9828 + 24.2190i 0.528880 + 0.916047i
\(700\) −9.33081 16.1614i −0.352672 0.610845i
\(701\) −36.9898 −1.39708 −0.698542 0.715569i \(-0.746168\pi\)
−0.698542 + 0.715569i \(0.746168\pi\)
\(702\) −12.5843 + 43.5934i −0.474965 + 1.64533i
\(703\) −11.8906 −0.448463
\(704\) 6.48240 + 11.2279i 0.244315 + 0.423166i
\(705\) −10.3277 17.8881i −0.388964 0.673705i
\(706\) −12.5110 + 21.6697i −0.470858 + 0.815551i
\(707\) −57.4959 −2.16236
\(708\) −21.7766 + 37.7181i −0.818413 + 1.41753i
\(709\) −16.9011 + 29.2736i −0.634734 + 1.09939i 0.351837 + 0.936061i \(0.385557\pi\)
−0.986571 + 0.163330i \(0.947776\pi\)
\(710\) 9.82424 0.368697
\(711\) 1.41168 2.44509i 0.0529420 0.0916982i
\(712\) −11.8765 20.5707i −0.445090 0.770919i
\(713\) −17.4171 30.1674i −0.652277 1.12978i
\(714\) 40.5451 1.51736
\(715\) −2.50702 + 8.68457i −0.0937572 + 0.324784i
\(716\) 59.6725 2.23007
\(717\) −9.89764 17.1432i −0.369634 0.640225i
\(718\) 4.33281 + 7.50465i 0.161699 + 0.280071i
\(719\) −6.11049 + 10.5837i −0.227883 + 0.394705i −0.957180 0.289492i \(-0.906514\pi\)
0.729298 + 0.684197i \(0.239847\pi\)
\(720\) 0.239028 0.00890805
\(721\) −35.2233 + 61.0086i −1.31179 + 2.27208i
\(722\) −15.4075 + 26.6867i −0.573409 + 0.993174i
\(723\) 0.236802 0.00880674
\(724\) 29.0873 50.3807i 1.08102 1.87239i
\(725\) 0.398082 + 0.689498i 0.0147844 + 0.0256073i
\(726\) 1.39608 + 2.41808i 0.0518134 + 0.0897435i
\(727\) 35.2771 1.30836 0.654178 0.756340i \(-0.273015\pi\)
0.654178 + 0.756340i \(0.273015\pi\)
\(728\) −44.0451 + 10.8983i −1.63242 + 0.403919i
\(729\) 23.5139 0.870887
\(730\) −5.72889 9.92274i −0.212036 0.367257i
\(731\) 17.8675 + 30.9474i 0.660852 + 1.14463i
\(732\) 0.284572 0.492893i 0.0105181 0.0182178i
\(733\) 17.0953 0.631431 0.315715 0.948854i \(-0.397755\pi\)
0.315715 + 0.948854i \(0.397755\pi\)
\(734\) −28.5722 + 49.4885i −1.05462 + 1.82665i
\(735\) −20.3910 + 35.3182i −0.752132 + 1.30273i
\(736\) 33.1827 1.22313
\(737\) −4.36445 + 7.55944i −0.160766 + 0.278456i
\(738\) 14.3991 + 24.9400i 0.530038 + 0.918053i
\(739\) 21.6140 + 37.4365i 0.795082 + 1.37712i 0.922787 + 0.385310i \(0.125906\pi\)
−0.127705 + 0.991812i \(0.540761\pi\)
\(740\) 40.8975 1.50342
\(741\) 7.17366 + 7.45509i 0.263531 + 0.273870i
\(742\) 41.8483 1.53630
\(743\) −0.729339 1.26325i −0.0267568 0.0463442i 0.852337 0.522993i \(-0.175185\pi\)
−0.879094 + 0.476649i \(0.841851\pi\)
\(744\) 10.2590 + 17.7691i 0.376112 + 0.651445i
\(745\) 13.7445 23.8062i 0.503559 0.872190i
\(746\) 19.8343 0.726184
\(747\) −4.05425 + 7.02216i −0.148337 + 0.256927i
\(748\) 5.19024 8.98976i 0.189774 0.328698i
\(749\) −25.3273 −0.925438
\(750\) −13.0020 + 22.5201i −0.474766 + 0.822319i
\(751\) −7.67967 13.3016i −0.280235 0.485381i 0.691208 0.722656i \(-0.257079\pi\)
−0.971442 + 0.237275i \(0.923746\pi\)
\(752\) 0.213300 + 0.369447i 0.00777826 + 0.0134723i
\(753\) 9.94677 0.362480
\(754\) 4.95487 1.22601i 0.180446 0.0446488i
\(755\) −27.2851 −0.993008
\(756\) 39.9839 + 69.2541i 1.45420 + 2.51875i
\(757\) −17.1898 29.7736i −0.624774 1.08214i −0.988585 0.150667i \(-0.951858\pi\)
0.363811 0.931473i \(-0.381476\pi\)
\(758\) 16.8128 29.1206i 0.610667 1.05771i
\(759\) 7.07730 0.256890
\(760\) −8.21943 + 14.2365i −0.298150 + 0.516411i
\(761\) 1.94331 3.36591i 0.0704449 0.122014i −0.828651 0.559765i \(-0.810891\pi\)
0.899096 + 0.437751i \(0.144225\pi\)
\(762\) 16.9688 0.614715
\(763\) −22.3202 + 38.6598i −0.808047 + 1.39958i
\(764\) 5.41669 + 9.38199i 0.195969 + 0.339428i
\(765\) −6.08632 10.5418i −0.220051 0.381140i
\(766\) 12.3181 0.445071
\(767\) 38.7214 9.58107i 1.39815 0.345952i
\(768\) −19.0470 −0.687300
\(769\) −19.7129 34.1437i −0.710864 1.23125i −0.964533 0.263961i \(-0.914971\pi\)
0.253670 0.967291i \(-0.418362\pi\)
\(770\) 12.9101