Properties

Label 143.2.e.b.100.3
Level $143$
Weight $2$
Character 143.100
Analytic conductor $1.142$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [143,2,Mod(100,143)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("143.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14186074890\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.3
Root \(1.14257 - 1.97899i\) of defining polynomial
Character \(\chi\) \(=\) 143.100
Dual form 143.2.e.b.133.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14257 - 1.97899i) q^{2} +(-0.610938 + 1.05818i) q^{3} +(-1.61094 - 2.79023i) q^{4} +2.50702 q^{5} +(1.39608 + 2.41808i) q^{6} +(-2.25351 - 3.90319i) q^{7} -2.79216 q^{8} +(0.753509 + 1.30512i) q^{9} +O(q^{10})\) \(q+(1.14257 - 1.97899i) q^{2} +(-0.610938 + 1.05818i) q^{3} +(-1.61094 - 2.79023i) q^{4} +2.50702 q^{5} +(1.39608 + 2.41808i) q^{6} +(-2.25351 - 3.90319i) q^{7} -2.79216 q^{8} +(0.753509 + 1.30512i) q^{9} +(2.86445 - 4.96137i) q^{10} +(-0.500000 + 0.866025i) q^{11} +3.93673 q^{12} +(-2.50000 + 2.59808i) q^{13} -10.2992 q^{14} +(-1.53163 + 2.65287i) q^{15} +(0.0316332 - 0.0547902i) q^{16} +(1.61094 + 2.79023i) q^{17} +3.44375 q^{18} +(1.17420 + 2.03378i) q^{19} +(-4.03865 - 6.99515i) q^{20} +5.50702 q^{21} +(1.14257 + 1.97899i) q^{22} +(-2.89608 + 5.01616i) q^{23} +(1.70584 - 2.95460i) q^{24} +1.28514 q^{25} +(2.28514 + 7.91597i) q^{26} -5.50702 q^{27} +(-7.26053 + 12.5756i) q^{28} +(0.309757 - 0.536515i) q^{29} +(3.50000 + 6.06218i) q^{30} +6.01404 q^{31} +(-2.86445 - 4.96137i) q^{32} +(-0.610938 - 1.05818i) q^{33} +7.36245 q^{34} +(-5.64959 - 9.78538i) q^{35} +(2.42771 - 4.20492i) q^{36} +(-2.53163 + 4.38492i) q^{37} +5.36645 q^{38} +(-1.22188 - 4.23270i) q^{39} -7.00000 q^{40} +(4.18122 - 7.24209i) q^{41} +(6.29216 - 10.8983i) q^{42} +(-5.54567 - 9.60538i) q^{43} +3.22188 q^{44} +(1.88906 + 3.27195i) q^{45} +(6.61796 + 11.4626i) q^{46} +6.74293 q^{47} +(0.0386518 + 0.0669469i) q^{48} +(-6.65661 + 11.5296i) q^{49} +(1.46837 - 2.54329i) q^{50} -3.93673 q^{51} +(11.2766 + 2.79023i) q^{52} -4.06327 q^{53} +(-6.29216 + 10.8983i) q^{54} +(-1.25351 + 2.17114i) q^{55} +(6.29216 + 10.8983i) q^{56} -2.86946 q^{57} +(-0.707839 - 1.22601i) q^{58} +(-5.53163 - 9.58107i) q^{59} +9.86946 q^{60} +(0.0722863 + 0.125204i) q^{61} +(6.87147 - 11.9017i) q^{62} +(3.39608 - 5.88218i) q^{63} -12.9648 q^{64} +(-6.26755 + 6.51343i) q^{65} -2.79216 q^{66} +(-4.36445 + 7.55944i) q^{67} +(5.19024 - 8.98976i) q^{68} +(-3.53865 - 6.12912i) q^{69} -25.8202 q^{70} +(0.857429 + 1.48511i) q^{71} +(-2.10392 - 3.64410i) q^{72} -2.00000 q^{73} +(5.78514 + 10.0202i) q^{74} +(-0.785142 + 1.35991i) q^{75} +(3.78314 - 6.55259i) q^{76} +4.50702 q^{77} +(-9.77256 - 2.41808i) q^{78} +1.87347 q^{79} +(0.0793049 - 0.137360i) q^{80} +(1.10392 - 1.91204i) q^{81} +(-9.55469 - 16.5492i) q^{82} -5.38049 q^{83} +(-8.87147 - 15.3658i) q^{84} +(4.03865 + 6.99515i) q^{85} -25.3453 q^{86} +(0.378485 + 0.655555i) q^{87} +(1.39608 - 2.41808i) q^{88} +(4.25351 - 7.36729i) q^{89} +8.63355 q^{90} +(15.7746 + 3.90319i) q^{91} +18.6616 q^{92} +(-3.67420 + 6.36391i) q^{93} +(7.70428 - 13.3442i) q^{94} +(2.94375 + 5.09873i) q^{95} +7.00000 q^{96} +(-0.0562477 - 0.0974238i) q^{97} +(15.2113 + 26.3467i) q^{98} -1.50702 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9} + 6 q^{10} - 3 q^{11} + 30 q^{12} - 15 q^{13} - 16 q^{14} - 6 q^{15} - 3 q^{16} + 7 q^{17} + 10 q^{18} - 2 q^{19} - 4 q^{20} + 16 q^{21} + q^{22} - 3 q^{23} - 2 q^{24} - 4 q^{25} + 2 q^{26} - 16 q^{27} - 18 q^{28} + 4 q^{29} + 21 q^{30} + 2 q^{31} - 6 q^{32} - q^{33} - 8 q^{34} - 11 q^{35} - 3 q^{36} - 12 q^{37} + 62 q^{38} - 2 q^{39} - 42 q^{40} - q^{41} + 9 q^{42} + 4 q^{43} + 14 q^{44} + 14 q^{45} + 20 q^{46} - 16 q^{47} - 20 q^{48} + 12 q^{50} - 30 q^{51} + 49 q^{52} - 18 q^{53} - 9 q^{54} + q^{55} + 9 q^{56} + 52 q^{57} - 33 q^{58} - 30 q^{59} - 10 q^{60} + 18 q^{61} + 13 q^{62} + 6 q^{63} - 16 q^{64} + 5 q^{65} + 12 q^{66} - 15 q^{67} + 29 q^{68} - q^{69} - 58 q^{70} + 11 q^{71} - 27 q^{72} - 12 q^{73} + 23 q^{74} + 7 q^{75} - 30 q^{76} + 10 q^{77} + 42 q^{78} + 24 q^{79} + q^{80} + 21 q^{81} - 44 q^{82} - 28 q^{83} - 25 q^{84} + 4 q^{85} - 86 q^{86} - 43 q^{87} - 6 q^{88} + 17 q^{89} + 22 q^{90} + 35 q^{91} + 14 q^{92} - 13 q^{93} + 10 q^{94} + 7 q^{95} + 42 q^{96} - 11 q^{97} + 38 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/143\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(79\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14257 1.97899i 0.807920 1.39936i −0.106382 0.994325i \(-0.533927\pi\)
0.914302 0.405033i \(-0.132740\pi\)
\(3\) −0.610938 + 1.05818i −0.352725 + 0.610938i −0.986726 0.162394i \(-0.948078\pi\)
0.634001 + 0.773333i \(0.281412\pi\)
\(4\) −1.61094 2.79023i −0.805469 1.39511i
\(5\) 2.50702 1.12117 0.560586 0.828096i \(-0.310576\pi\)
0.560586 + 0.828096i \(0.310576\pi\)
\(6\) 1.39608 + 2.41808i 0.569948 + 0.987178i
\(7\) −2.25351 3.90319i −0.851746 1.47527i −0.879631 0.475657i \(-0.842210\pi\)
0.0278844 0.999611i \(-0.491123\pi\)
\(8\) −2.79216 −0.987178
\(9\) 0.753509 + 1.30512i 0.251170 + 0.435039i
\(10\) 2.86445 4.96137i 0.905818 1.56892i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 3.93673 1.13644
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) −10.2992 −2.75257
\(15\) −1.53163 + 2.65287i −0.395466 + 0.684967i
\(16\) 0.0316332 0.0547902i 0.00790829 0.0136976i
\(17\) 1.61094 + 2.79023i 0.390710 + 0.676729i 0.992543 0.121892i \(-0.0388962\pi\)
−0.601833 + 0.798622i \(0.705563\pi\)
\(18\) 3.44375 0.811700
\(19\) 1.17420 + 2.03378i 0.269381 + 0.466582i 0.968702 0.248226i \(-0.0798476\pi\)
−0.699321 + 0.714808i \(0.746514\pi\)
\(20\) −4.03865 6.99515i −0.903070 1.56416i
\(21\) 5.50702 1.20173
\(22\) 1.14257 + 1.97899i 0.243597 + 0.421922i
\(23\) −2.89608 + 5.01616i −0.603875 + 1.04594i 0.388354 + 0.921510i \(0.373044\pi\)
−0.992228 + 0.124431i \(0.960289\pi\)
\(24\) 1.70584 2.95460i 0.348203 0.603105i
\(25\) 1.28514 0.257028
\(26\) 2.28514 + 7.91597i 0.448153 + 1.55245i
\(27\) −5.50702 −1.05983
\(28\) −7.26053 + 12.5756i −1.37211 + 2.37657i
\(29\) 0.309757 0.536515i 0.0575204 0.0996283i −0.835831 0.548986i \(-0.815014\pi\)
0.893352 + 0.449358i \(0.148347\pi\)
\(30\) 3.50000 + 6.06218i 0.639010 + 1.10680i
\(31\) 6.01404 1.08015 0.540076 0.841616i \(-0.318395\pi\)
0.540076 + 0.841616i \(0.318395\pi\)
\(32\) −2.86445 4.96137i −0.506368 0.877054i
\(33\) −0.610938 1.05818i −0.106351 0.184205i
\(34\) 7.36245 1.26265
\(35\) −5.64959 9.78538i −0.954955 1.65403i
\(36\) 2.42771 4.20492i 0.404619 0.700821i
\(37\) −2.53163 + 4.38492i −0.416198 + 0.720876i −0.995553 0.0941990i \(-0.969971\pi\)
0.579355 + 0.815075i \(0.303304\pi\)
\(38\) 5.36645 0.870553
\(39\) −1.22188 4.23270i −0.195657 0.677775i
\(40\) −7.00000 −1.10680
\(41\) 4.18122 7.24209i 0.652997 1.13102i −0.329395 0.944192i \(-0.606845\pi\)
0.982392 0.186832i \(-0.0598221\pi\)
\(42\) 6.29216 10.8983i 0.970902 1.68165i
\(43\) −5.54567 9.60538i −0.845707 1.46481i −0.885006 0.465580i \(-0.845846\pi\)
0.0392992 0.999227i \(-0.487487\pi\)
\(44\) 3.22188 0.485716
\(45\) 1.88906 + 3.27195i 0.281605 + 0.487754i
\(46\) 6.61796 + 11.4626i 0.975764 + 1.69007i
\(47\) 6.74293 0.983558 0.491779 0.870720i \(-0.336347\pi\)
0.491779 + 0.870720i \(0.336347\pi\)
\(48\) 0.0386518 + 0.0669469i 0.00557891 + 0.00966295i
\(49\) −6.65661 + 11.5296i −0.950944 + 1.64708i
\(50\) 1.46837 2.54329i 0.207658 0.359675i
\(51\) −3.93673 −0.551253
\(52\) 11.2766 + 2.79023i 1.56378 + 0.386935i
\(53\) −4.06327 −0.558133 −0.279066 0.960272i \(-0.590025\pi\)
−0.279066 + 0.960272i \(0.590025\pi\)
\(54\) −6.29216 + 10.8983i −0.856255 + 1.48308i
\(55\) −1.25351 + 2.17114i −0.169023 + 0.292757i
\(56\) 6.29216 + 10.8983i 0.840825 + 1.45635i
\(57\) −2.86946 −0.380070
\(58\) −0.707839 1.22601i −0.0929438 0.160983i
\(59\) −5.53163 9.58107i −0.720157 1.24735i −0.960936 0.276769i \(-0.910736\pi\)
0.240779 0.970580i \(-0.422597\pi\)
\(60\) 9.86946 1.27414
\(61\) 0.0722863 + 0.125204i 0.00925531 + 0.0160307i 0.870616 0.491963i \(-0.163721\pi\)
−0.861361 + 0.507994i \(0.830387\pi\)
\(62\) 6.87147 11.9017i 0.872677 1.51152i
\(63\) 3.39608 5.88218i 0.427866 0.741086i
\(64\) −12.9648 −1.62060
\(65\) −6.26755 + 6.51343i −0.777393 + 0.807891i
\(66\) −2.79216 −0.343691
\(67\) −4.36445 + 7.55944i −0.533202 + 0.923533i 0.466046 + 0.884761i \(0.345678\pi\)
−0.999248 + 0.0387726i \(0.987655\pi\)
\(68\) 5.19024 8.98976i 0.629409 1.09017i
\(69\) −3.53865 6.12912i −0.426004 0.737860i
\(70\) −25.8202 −3.08611
\(71\) 0.857429 + 1.48511i 0.101758 + 0.176250i 0.912409 0.409280i \(-0.134220\pi\)
−0.810651 + 0.585530i \(0.800887\pi\)
\(72\) −2.10392 3.64410i −0.247949 0.429461i
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 5.78514 + 10.0202i 0.672509 + 1.16482i
\(75\) −0.785142 + 1.35991i −0.0906604 + 0.157028i
\(76\) 3.78314 6.55259i 0.433956 0.751634i
\(77\) 4.50702 0.513622
\(78\) −9.77256 2.41808i −1.10652 0.273794i
\(79\) 1.87347 0.210782 0.105391 0.994431i \(-0.466391\pi\)
0.105391 + 0.994431i \(0.466391\pi\)
\(80\) 0.0793049 0.137360i 0.00886656 0.0153573i
\(81\) 1.10392 1.91204i 0.122658 0.212449i
\(82\) −9.55469 16.5492i −1.05514 1.82755i
\(83\) −5.38049 −0.590585 −0.295293 0.955407i \(-0.595417\pi\)
−0.295293 + 0.955407i \(0.595417\pi\)
\(84\) −8.87147 15.3658i −0.967956 1.67655i
\(85\) 4.03865 + 6.99515i 0.438053 + 0.758731i
\(86\) −25.3453 −2.73305
\(87\) 0.378485 + 0.655555i 0.0405778 + 0.0702828i
\(88\) 1.39608 2.41808i 0.148823 0.257768i
\(89\) 4.25351 7.36729i 0.450871 0.780932i −0.547569 0.836760i \(-0.684447\pi\)
0.998440 + 0.0558287i \(0.0177801\pi\)
\(90\) 8.63355 0.910056
\(91\) 15.7746 + 3.90319i 1.65362 + 0.409166i
\(92\) 18.6616 1.94561
\(93\) −3.67420 + 6.36391i −0.380997 + 0.659907i
\(94\) 7.70428 13.3442i 0.794636 1.37635i
\(95\) 2.94375 + 5.09873i 0.302023 + 0.523119i
\(96\) 7.00000 0.714435
\(97\) −0.0562477 0.0974238i −0.00571109 0.00989189i 0.863156 0.504938i \(-0.168485\pi\)
−0.868867 + 0.495046i \(0.835151\pi\)
\(98\) 15.2113 + 26.3467i 1.53657 + 2.66142i
\(99\) −1.50702 −0.151461
\(100\) −2.07028 3.58584i −0.207028 0.358584i
\(101\) 6.37848 11.0479i 0.634683 1.09930i −0.351899 0.936038i \(-0.614464\pi\)
0.986582 0.163265i \(-0.0522026\pi\)
\(102\) −4.49800 + 7.79076i −0.445368 + 0.771400i
\(103\) 15.6304 1.54011 0.770056 0.637976i \(-0.220228\pi\)
0.770056 + 0.637976i \(0.220228\pi\)
\(104\) 6.98040 7.25425i 0.684485 0.711337i
\(105\) 13.8062 1.34735
\(106\) −4.64257 + 8.04117i −0.450926 + 0.781027i
\(107\) 2.80976 4.86664i 0.271629 0.470476i −0.697650 0.716439i \(-0.745771\pi\)
0.969279 + 0.245963i \(0.0791042\pi\)
\(108\) 8.87147 + 15.3658i 0.853657 + 1.47858i
\(109\) 9.90466 0.948694 0.474347 0.880338i \(-0.342684\pi\)
0.474347 + 0.880338i \(0.342684\pi\)
\(110\) 2.86445 + 4.96137i 0.273114 + 0.473048i
\(111\) −3.09334 5.35783i −0.293607 0.508542i
\(112\) −0.285142 −0.0269434
\(113\) −4.12498 7.14467i −0.388045 0.672114i 0.604141 0.796877i \(-0.293516\pi\)
−0.992187 + 0.124763i \(0.960183\pi\)
\(114\) −3.27857 + 5.67865i −0.307066 + 0.531854i
\(115\) −7.26053 + 12.5756i −0.677048 + 1.17268i
\(116\) −1.99600 −0.185324
\(117\) −5.27457 1.30512i −0.487634 0.120658i
\(118\) −25.2811 −2.32732
\(119\) 7.26053 12.5756i 0.665572 1.15280i
\(120\) 4.27657 7.40723i 0.390395 0.676185i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0.330369 0.0299102
\(123\) 5.10894 + 8.84894i 0.460657 + 0.797882i
\(124\) −9.68824 16.7805i −0.870030 1.50694i
\(125\) −9.31322 −0.832999
\(126\) −7.76053 13.4416i −0.691363 1.19748i
\(127\) 3.03865 5.26310i 0.269637 0.467025i −0.699131 0.714993i \(-0.746430\pi\)
0.968768 + 0.247969i \(0.0797630\pi\)
\(128\) −9.08432 + 15.7345i −0.802948 + 1.39075i
\(129\) 13.5522 1.19321
\(130\) 5.72889 + 19.8455i 0.502457 + 1.74056i
\(131\) −11.9508 −1.04414 −0.522072 0.852902i \(-0.674841\pi\)
−0.522072 + 0.852902i \(0.674841\pi\)
\(132\) −1.96837 + 3.40931i −0.171324 + 0.296742i
\(133\) 5.29216 9.16629i 0.458889 0.794818i
\(134\) 9.97338 + 17.2744i 0.861569 + 1.49228i
\(135\) −13.8062 −1.18825
\(136\) −4.49800 7.79076i −0.385700 0.668052i
\(137\) 1.13555 + 1.96683i 0.0970168 + 0.168038i 0.910449 0.413622i \(-0.135737\pi\)
−0.813432 + 0.581660i \(0.802403\pi\)
\(138\) −16.1726 −1.37671
\(139\) 5.07730 + 8.79415i 0.430651 + 0.745910i 0.996930 0.0783043i \(-0.0249506\pi\)
−0.566278 + 0.824214i \(0.691617\pi\)
\(140\) −18.2023 + 31.5273i −1.53837 + 2.66454i
\(141\) −4.11951 + 7.13521i −0.346926 + 0.600893i
\(142\) 3.91869 0.328849
\(143\) −1.00000 3.46410i −0.0836242 0.289683i
\(144\) 0.0953435 0.00794529
\(145\) 0.776567 1.34505i 0.0644903 0.111701i
\(146\) −2.28514 + 3.95798i −0.189120 + 0.327565i
\(147\) −8.13355 14.0877i −0.670844 1.16194i
\(148\) 16.3132 1.34094
\(149\) 5.48240 + 9.49580i 0.449136 + 0.777926i 0.998330 0.0577685i \(-0.0183985\pi\)
−0.549194 + 0.835695i \(0.685065\pi\)
\(150\) 1.79416 + 3.10758i 0.146493 + 0.253733i
\(151\) −10.8835 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(152\) −3.27857 5.67865i −0.265927 0.460599i
\(153\) −2.42771 + 4.20492i −0.196269 + 0.339948i
\(154\) 5.14959 8.91935i 0.414966 0.718742i
\(155\) 15.0773 1.21104
\(156\) −9.84183 + 10.2279i −0.787977 + 0.818890i
\(157\) 13.9820 1.11588 0.557941 0.829881i \(-0.311592\pi\)
0.557941 + 0.829881i \(0.311592\pi\)
\(158\) 2.14057 3.70758i 0.170295 0.294959i
\(159\) 2.48240 4.29965i 0.196867 0.340984i
\(160\) −7.18122 12.4382i −0.567726 0.983329i
\(161\) 26.1054 2.05739
\(162\) −2.52261 4.36929i −0.198195 0.343284i
\(163\) −0.697262 1.20769i −0.0546137 0.0945938i 0.837426 0.546551i \(-0.184059\pi\)
−0.892040 + 0.451957i \(0.850726\pi\)
\(164\) −26.9428 −2.10388
\(165\) −1.53163 2.65287i −0.119237 0.206525i
\(166\) −6.14759 + 10.6479i −0.477145 + 0.826440i
\(167\) −11.9171 + 20.6411i −0.922176 + 1.59726i −0.126134 + 0.992013i \(0.540257\pi\)
−0.796042 + 0.605242i \(0.793076\pi\)
\(168\) −15.3765 −1.18632
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 18.4578 1.41565
\(171\) −1.76955 + 3.06495i −0.135321 + 0.234382i
\(172\) −17.8675 + 30.9474i −1.36238 + 2.35971i
\(173\) 3.69882 + 6.40654i 0.281216 + 0.487080i 0.971685 0.236282i \(-0.0759289\pi\)
−0.690469 + 0.723362i \(0.742596\pi\)
\(174\) 1.72978 0.131135
\(175\) −2.89608 5.01616i −0.218923 0.379186i
\(176\) 0.0316332 + 0.0547902i 0.00238444 + 0.00412997i
\(177\) 13.5179 1.01607
\(178\) −9.71987 16.8353i −0.728535 1.26186i
\(179\) −9.26053 + 16.0397i −0.692164 + 1.19886i 0.278963 + 0.960302i \(0.410009\pi\)
−0.971127 + 0.238562i \(0.923324\pi\)
\(180\) 6.08632 10.5418i 0.453648 0.785741i
\(181\) −18.0561 −1.34210 −0.671051 0.741411i \(-0.734157\pi\)
−0.671051 + 0.741411i \(0.734157\pi\)
\(182\) 25.7479 26.7581i 1.90856 1.98344i
\(183\) −0.176650 −0.0130583
\(184\) 8.08632 14.0059i 0.596132 1.03253i
\(185\) −6.34685 + 10.9931i −0.466630 + 0.808227i
\(186\) 8.39608 + 14.5424i 0.615630 + 1.06630i
\(187\) −3.22188 −0.235607
\(188\) −10.8624 18.8143i −0.792225 1.37217i
\(189\) 12.4101 + 21.4950i 0.902703 + 1.56353i
\(190\) 13.4538 0.976040
\(191\) 1.68122 + 2.91196i 0.121649 + 0.210702i 0.920418 0.390935i \(-0.127848\pi\)
−0.798769 + 0.601638i \(0.794515\pi\)
\(192\) 7.92070 13.7190i 0.571627 0.990087i
\(193\) −7.79918 + 13.5086i −0.561397 + 0.972369i 0.435978 + 0.899958i \(0.356403\pi\)
−0.997375 + 0.0724110i \(0.976931\pi\)
\(194\) −0.257068 −0.0184564
\(195\) −3.06327 10.6115i −0.219365 0.759903i
\(196\) 42.8935 3.06382
\(197\) 10.5140 18.2108i 0.749094 1.29747i −0.199163 0.979966i \(-0.563822\pi\)
0.948257 0.317503i \(-0.102844\pi\)
\(198\) −1.72188 + 2.98238i −0.122368 + 0.211948i
\(199\) 11.3062 + 19.5829i 0.801475 + 1.38820i 0.918645 + 0.395084i \(0.129284\pi\)
−0.117170 + 0.993112i \(0.537382\pi\)
\(200\) −3.58832 −0.253733
\(201\) −5.33281 9.23671i −0.376148 0.651507i
\(202\) −14.5757 25.2459i −1.02555 1.77630i
\(203\) −2.79216 −0.195971
\(204\) 6.34183 + 10.9844i 0.444017 + 0.769060i
\(205\) 10.4824 18.1561i 0.732123 1.26807i
\(206\) 17.8589 30.9325i 1.24429 2.15517i
\(207\) −8.72889 −0.606700
\(208\) 0.0632663 + 0.219161i 0.00438673 + 0.0151961i
\(209\) −2.34841 −0.162443
\(210\) 15.7746 27.3223i 1.08855 1.88542i
\(211\) −10.1882 + 17.6466i −0.701387 + 1.21484i 0.266592 + 0.963809i \(0.414102\pi\)
−0.967979 + 0.251029i \(0.919231\pi\)
\(212\) 6.54567 + 11.3374i 0.449558 + 0.778658i
\(213\) −2.09534 −0.143571
\(214\) −6.42070 11.1210i −0.438910 0.760214i
\(215\) −13.9031 24.0809i −0.948183 1.64230i
\(216\) 15.3765 1.04624
\(217\) −13.5527 23.4739i −0.920016 1.59352i
\(218\) 11.3168 19.6012i 0.766469 1.32756i
\(219\) 1.22188 2.11635i 0.0825667 0.143010i
\(220\) 8.07730 0.544572
\(221\) −11.2766 2.79023i −0.758544 0.187691i
\(222\) −14.1375 −0.948844
\(223\) 8.88706 15.3928i 0.595122 1.03078i −0.398408 0.917208i \(-0.630437\pi\)
0.993530 0.113573i \(-0.0362294\pi\)
\(224\) −12.9101 + 22.3610i −0.862594 + 1.49406i
\(225\) 0.968367 + 1.67726i 0.0645578 + 0.111817i
\(226\) −18.8523 −1.25404
\(227\) −2.91012 5.04047i −0.193151 0.334548i 0.753142 0.657858i \(-0.228537\pi\)
−0.946293 + 0.323311i \(0.895204\pi\)
\(228\) 4.62253 + 8.00646i 0.306135 + 0.530241i
\(229\) 23.6656 1.56387 0.781934 0.623361i \(-0.214233\pi\)
0.781934 + 0.623361i \(0.214233\pi\)
\(230\) 16.5913 + 28.7370i 1.09400 + 1.89486i
\(231\) −2.75351 + 4.76922i −0.181168 + 0.313792i
\(232\) −0.864891 + 1.49804i −0.0567829 + 0.0983509i
\(233\) −22.8875 −1.49941 −0.749705 0.661772i \(-0.769805\pi\)
−0.749705 + 0.661772i \(0.769805\pi\)
\(234\) −8.60938 + 8.94713i −0.562813 + 0.584892i
\(235\) 16.9047 1.10274
\(236\) −17.8222 + 30.8690i −1.16013 + 2.00940i
\(237\) −1.14457 + 1.98246i −0.0743480 + 0.128774i
\(238\) −16.5913 28.7370i −1.07546 1.86275i
\(239\) 16.2007 1.04794 0.523969 0.851737i \(-0.324451\pi\)
0.523969 + 0.851737i \(0.324451\pi\)
\(240\) 0.0969008 + 0.167837i 0.00625492 + 0.0108338i
\(241\) −0.0969008 0.167837i −0.00624193 0.0108113i 0.862888 0.505396i \(-0.168654\pi\)
−0.869129 + 0.494585i \(0.835320\pi\)
\(242\) −2.28514 −0.146895
\(243\) −6.91168 11.9714i −0.443384 0.767964i
\(244\) 0.232897 0.403390i 0.0149097 0.0258244i
\(245\) −16.6882 + 28.9049i −1.06617 + 1.84667i
\(246\) 23.3493 1.48870
\(247\) −8.21943 2.03378i −0.522990 0.129406i
\(248\) −16.7922 −1.06630
\(249\) 3.28714 5.69350i 0.208314 0.360811i
\(250\) −10.6410 + 18.4308i −0.672997 + 1.16566i
\(251\) −4.07028 7.04994i −0.256914 0.444988i 0.708500 0.705711i \(-0.249372\pi\)
−0.965414 + 0.260723i \(0.916039\pi\)
\(252\) −21.8835 −1.37853
\(253\) −2.89608 5.01616i −0.182075 0.315363i
\(254\) −6.94375 12.0269i −0.435690 0.754637i
\(255\) −9.86946 −0.618050
\(256\) 7.79416 + 13.4999i 0.487135 + 0.843743i
\(257\) 8.94877 15.4997i 0.558209 0.966846i −0.439437 0.898273i \(-0.644822\pi\)
0.997646 0.0685729i \(-0.0218446\pi\)
\(258\) 15.4844 26.8198i 0.964017 1.66973i
\(259\) 22.8202 1.41798
\(260\) 28.2706 + 6.99515i 1.75327 + 0.433821i
\(261\) 0.933619 0.0577896
\(262\) −13.6546 + 23.6505i −0.843584 + 1.46113i
\(263\) 7.78359 13.4816i 0.479956 0.831309i −0.519779 0.854301i \(-0.673986\pi\)
0.999736 + 0.0229917i \(0.00731913\pi\)
\(264\) 1.70584 + 2.95460i 0.104987 + 0.181843i
\(265\) −10.1867 −0.625763
\(266\) −12.0933 20.9463i −0.741490 1.28430i
\(267\) 5.19726 + 9.00192i 0.318067 + 0.550909i
\(268\) 28.1234 1.71791
\(269\) 0.746491 + 1.29296i 0.0455143 + 0.0788331i 0.887885 0.460065i \(-0.152174\pi\)
−0.842371 + 0.538898i \(0.818841\pi\)
\(270\) −15.7746 + 27.3223i −0.960009 + 1.66279i
\(271\) −11.6356 + 20.1534i −0.706809 + 1.22423i 0.259225 + 0.965817i \(0.416533\pi\)
−0.966035 + 0.258413i \(0.916800\pi\)
\(272\) 0.203836 0.0123594
\(273\) −13.7675 + 14.3077i −0.833250 + 0.865939i
\(274\) 5.18980 0.313527
\(275\) −0.642571 + 1.11297i −0.0387485 + 0.0671144i
\(276\) −11.4011 + 19.7473i −0.686265 + 1.18865i
\(277\) 7.03008 + 12.1764i 0.422396 + 0.731612i 0.996173 0.0873997i \(-0.0278557\pi\)
−0.573777 + 0.819012i \(0.694522\pi\)
\(278\) 23.2047 1.39173
\(279\) 4.53163 + 7.84902i 0.271302 + 0.469908i
\(280\) 15.7746 + 27.3223i 0.942711 + 1.63282i
\(281\) 11.6797 0.696750 0.348375 0.937355i \(-0.386734\pi\)
0.348375 + 0.937355i \(0.386734\pi\)
\(282\) 9.41368 + 16.3050i 0.560576 + 0.970947i
\(283\) 1.73591 3.00669i 0.103189 0.178729i −0.809808 0.586695i \(-0.800429\pi\)
0.912997 + 0.407966i \(0.133762\pi\)
\(284\) 2.76253 4.78484i 0.163926 0.283928i
\(285\) −7.19380 −0.426124
\(286\) −7.99800 1.97899i −0.472932 0.117020i
\(287\) −37.6897 −2.22475
\(288\) 4.31678 7.47687i 0.254368 0.440579i
\(289\) 3.30976 5.73267i 0.194692 0.337216i
\(290\) −1.77457 3.07364i −0.104206 0.180490i
\(291\) 0.137455 0.00805778
\(292\) 3.22188 + 5.58045i 0.188546 + 0.326571i
\(293\) −3.18980 5.52489i −0.186350 0.322768i 0.757681 0.652626i \(-0.226333\pi\)
−0.944031 + 0.329858i \(0.892999\pi\)
\(294\) −37.1726 −2.16795
\(295\) −13.8679 24.0199i −0.807421 1.39849i
\(296\) 7.06873 12.2434i 0.410861 0.711633i
\(297\) 2.75351 4.76922i 0.159775 0.276738i
\(298\) 25.0561 1.45146
\(299\) −5.79216 20.0646i −0.334969 1.16037i
\(300\) 5.05926 0.292097
\(301\) −24.9944 + 43.2916i −1.44066 + 2.49529i
\(302\) −12.4352 + 21.5384i −0.715564 + 1.23939i
\(303\) 7.79372 + 13.4991i 0.447737 + 0.775504i
\(304\) 0.148575 0.00852137
\(305\) 0.181223 + 0.313888i 0.0103768 + 0.0179731i
\(306\) 5.54767 + 9.60885i 0.317139 + 0.549301i
\(307\) 5.06327 0.288976 0.144488 0.989507i \(-0.453847\pi\)
0.144488 + 0.989507i \(0.453847\pi\)
\(308\) −7.26053 12.5756i −0.413707 0.716562i
\(309\) −9.54923 + 16.5397i −0.543237 + 0.940913i
\(310\) 17.2269 29.8379i 0.978422 1.69468i
\(311\) 2.91958 0.165554 0.0827771 0.996568i \(-0.473621\pi\)
0.0827771 + 0.996568i \(0.473621\pi\)
\(312\) 3.41168 + 11.8184i 0.193148 + 0.669085i
\(313\) 15.7882 0.892399 0.446200 0.894933i \(-0.352777\pi\)
0.446200 + 0.894933i \(0.352777\pi\)
\(314\) 15.9754 27.6702i 0.901543 1.56152i
\(315\) 8.51404 14.7467i 0.479712 0.830885i
\(316\) −3.01804 5.22740i −0.169778 0.294064i
\(317\) −20.4397 −1.14801 −0.574005 0.818852i \(-0.694611\pi\)
−0.574005 + 0.818852i \(0.694611\pi\)
\(318\) −5.67265 9.82531i −0.318106 0.550976i
\(319\) 0.309757 + 0.536515i 0.0173431 + 0.0300391i
\(320\) −32.5030 −1.81697
\(321\) 3.43318 + 5.94643i 0.191621 + 0.331898i
\(322\) 29.8273 51.6623i 1.66221 2.87903i
\(323\) −3.78314 + 6.55259i −0.210500 + 0.364596i
\(324\) −7.11338 −0.395188
\(325\) −3.21286 + 3.33890i −0.178217 + 0.185209i
\(326\) −3.18668 −0.176494
\(327\) −6.05113 + 10.4809i −0.334628 + 0.579593i
\(328\) −11.6746 + 20.2211i −0.644625 + 1.11652i
\(329\) −15.1953 26.3190i −0.837742 1.45101i
\(330\) −7.00000 −0.385337
\(331\) 14.1406 + 24.4922i 0.777236 + 1.34621i 0.933529 + 0.358502i \(0.116712\pi\)
−0.156293 + 0.987711i \(0.549954\pi\)
\(332\) 8.66763 + 15.0128i 0.475698 + 0.823933i
\(333\) −7.63044 −0.418145
\(334\) 27.2324 + 47.1678i 1.49009 + 2.58091i
\(335\) −10.9418 + 18.9517i −0.597812 + 1.03544i
\(336\) 0.174204 0.301731i 0.00950363 0.0164608i
\(337\) −31.9256 −1.73910 −0.869550 0.493846i \(-0.835591\pi\)
−0.869550 + 0.493846i \(0.835591\pi\)
\(338\) −26.2791 13.8529i −1.42940 0.753501i
\(339\) 10.0804 0.547493
\(340\) 13.0120 22.5375i 0.705677 1.22227i
\(341\) −3.00702 + 5.20831i −0.162839 + 0.282046i
\(342\) 4.04367 + 7.00384i 0.218657 + 0.378724i
\(343\) 28.4538 1.53636
\(344\) 15.4844 + 26.8198i 0.834863 + 1.44603i
\(345\) −8.87147 15.3658i −0.477624 0.827268i
\(346\) 16.9047 0.908800
\(347\) 0.959347 + 1.66164i 0.0515004 + 0.0892014i 0.890626 0.454736i \(-0.150266\pi\)
−0.839126 + 0.543937i \(0.816933\pi\)
\(348\) 1.21943 2.11212i 0.0653684 0.113221i
\(349\) 0.0948995 0.164371i 0.00507985 0.00879856i −0.863474 0.504393i \(-0.831716\pi\)
0.868554 + 0.495594i \(0.165050\pi\)
\(350\) −13.2359 −0.707489
\(351\) 13.7675 14.3077i 0.734857 0.763686i
\(352\) 5.72889 0.305351
\(353\) 5.47494 9.48288i 0.291402 0.504723i −0.682740 0.730662i \(-0.739212\pi\)
0.974141 + 0.225939i \(0.0725450\pi\)
\(354\) 15.4452 26.7519i 0.820904 1.42185i
\(355\) 2.14959 + 3.72320i 0.114088 + 0.197607i
\(356\) −27.4086 −1.45265
\(357\) 8.87147 + 15.3658i 0.469528 + 0.813246i
\(358\) 21.1616 + 36.6530i 1.11843 + 1.93717i
\(359\) 3.79216 0.200143 0.100071 0.994980i \(-0.468093\pi\)
0.100071 + 0.994980i \(0.468093\pi\)
\(360\) −5.27457 9.13582i −0.277994 0.481500i
\(361\) 6.74249 11.6783i 0.354868 0.614649i
\(362\) −20.6304 + 35.7330i −1.08431 + 1.87808i
\(363\) 1.22188 0.0641319
\(364\) −14.5211 50.3024i −0.761110 2.63656i
\(365\) −5.01404 −0.262447
\(366\) −0.201835 + 0.349588i −0.0105501 + 0.0182733i
\(367\) 12.5035 21.6566i 0.652675 1.13047i −0.329796 0.944052i \(-0.606980\pi\)
0.982471 0.186415i \(-0.0596867\pi\)
\(368\) 0.183224 + 0.317354i 0.00955123 + 0.0165432i
\(369\) 12.6024 0.656053
\(370\) 14.5035 + 25.1207i 0.753999 + 1.30596i
\(371\) 9.15661 + 15.8597i 0.475387 + 0.823395i
\(372\) 23.6757 1.22753
\(373\) 4.33983 + 7.51681i 0.224708 + 0.389206i 0.956232 0.292610i \(-0.0945238\pi\)
−0.731524 + 0.681816i \(0.761191\pi\)
\(374\) −3.68122 + 6.37607i −0.190352 + 0.329698i
\(375\) 5.68980 9.85502i 0.293820 0.508911i
\(376\) −18.8274 −0.970947
\(377\) 0.619514 + 2.14606i 0.0319066 + 0.110528i
\(378\) 56.7178 2.91725
\(379\) −7.35743 + 12.7434i −0.377926 + 0.654587i −0.990760 0.135625i \(-0.956696\pi\)
0.612835 + 0.790211i \(0.290029\pi\)
\(380\) 9.48441 16.4275i 0.486540 0.842712i
\(381\) 3.71286 + 6.43086i 0.190215 + 0.329463i
\(382\) 7.68367 0.393131
\(383\) 2.69526 + 4.66833i 0.137721 + 0.238540i 0.926634 0.375965i \(-0.122689\pi\)
−0.788912 + 0.614506i \(0.789355\pi\)
\(384\) −11.0999 19.2256i −0.566440 0.981103i
\(385\) 11.2992 0.575860
\(386\) 17.8222 + 30.8690i 0.907128 + 1.57119i
\(387\) 8.35743 14.4755i 0.424832 0.735831i
\(388\) −0.181223 + 0.313888i −0.00920021 + 0.0159352i
\(389\) −21.5531 −1.09279 −0.546394 0.837529i \(-0.684000\pi\)
−0.546394 + 0.837529i \(0.684000\pi\)
\(390\) −24.5000 6.06218i −1.24061 0.306970i
\(391\) −18.6616 −0.943759
\(392\) 18.5863 32.1925i 0.938751 1.62596i
\(393\) 7.30118 12.6460i 0.368296 0.637907i
\(394\) −24.0261 41.6144i −1.21042 2.09650i
\(395\) 4.69682 0.236323
\(396\) 2.42771 + 4.20492i 0.121997 + 0.211305i
\(397\) 8.76555 + 15.1824i 0.439930 + 0.761981i 0.997684 0.0680254i \(-0.0216699\pi\)
−0.557753 + 0.830007i \(0.688337\pi\)
\(398\) 51.6725 2.59011
\(399\) 6.46637 + 11.2001i 0.323723 + 0.560705i
\(400\) 0.0406531 0.0704133i 0.00203266 0.00352066i
\(401\) 18.2183 31.5551i 0.909779 1.57578i 0.0954093 0.995438i \(-0.469584\pi\)
0.814370 0.580346i \(-0.197083\pi\)
\(402\) −24.3725 −1.21559
\(403\) −15.0351 + 15.6249i −0.748951 + 0.778333i
\(404\) −41.1014 −2.04487
\(405\) 2.76755 4.79353i 0.137520 0.238192i
\(406\) −3.19024 + 5.52566i −0.158329 + 0.274234i
\(407\) −2.53163 4.38492i −0.125488 0.217352i
\(408\) 10.9920 0.544185
\(409\) −14.4332 24.9990i −0.713675 1.23612i −0.963469 0.267822i \(-0.913696\pi\)
0.249794 0.968299i \(-0.419637\pi\)
\(410\) −23.9538 41.4892i −1.18299 2.04900i
\(411\) −2.77501 −0.136881
\(412\) −25.1797 43.6125i −1.24051 2.14863i
\(413\) −24.9312 + 43.1821i −1.22678 + 2.12485i
\(414\) −9.97338 + 17.2744i −0.490165 + 0.848991i
\(415\) −13.4890 −0.662148
\(416\) 20.0511 + 4.96137i 0.983088 + 0.243251i
\(417\) −12.4077 −0.607606
\(418\) −2.68322 + 4.64748i −0.131241 + 0.227316i
\(419\) 2.10236 3.64140i 0.102707 0.177894i −0.810092 0.586303i \(-0.800583\pi\)
0.912799 + 0.408409i \(0.133916\pi\)
\(420\) −22.2409 38.5224i −1.08525 1.87970i
\(421\) 13.5843 0.662059 0.331030 0.943620i \(-0.392604\pi\)
0.331030 + 0.943620i \(0.392604\pi\)
\(422\) 23.2816 + 40.3249i 1.13333 + 1.96298i
\(423\) 5.08086 + 8.80031i 0.247040 + 0.427886i
\(424\) 11.3453 0.550976
\(425\) 2.07028 + 3.58584i 0.100424 + 0.173939i
\(426\) −2.39408 + 4.14667i −0.115994 + 0.200907i
\(427\) 0.325796 0.564295i 0.0157664 0.0273081i
\(428\) −18.1054 −0.875156
\(429\) 4.27657 + 1.05818i 0.206475 + 0.0510892i
\(430\) −63.5411 −3.06423
\(431\) 15.0191 26.0138i 0.723442 1.25304i −0.236170 0.971712i \(-0.575892\pi\)
0.959612 0.281327i \(-0.0907746\pi\)
\(432\) −0.174204 + 0.301731i −0.00838141 + 0.0145170i
\(433\) −2.12853 3.68673i −0.102291 0.177173i 0.810337 0.585964i \(-0.199284\pi\)
−0.912628 + 0.408791i \(0.865951\pi\)
\(434\) −61.9397 −2.97320
\(435\) 0.948868 + 1.64349i 0.0454947 + 0.0787992i
\(436\) −15.9558 27.6362i −0.764144 1.32354i
\(437\) −13.6024 −0.650689
\(438\) −2.79216 4.83616i −0.133415 0.231081i
\(439\) 2.50156 4.33282i 0.119393 0.206794i −0.800134 0.599821i \(-0.795239\pi\)
0.919527 + 0.393026i \(0.128572\pi\)
\(440\) 3.50000 6.06218i 0.166856 0.289003i
\(441\) −20.0633 −0.955394
\(442\) −18.4061 + 19.1282i −0.875490 + 0.909836i
\(443\) 28.3101 1.34505 0.672527 0.740073i \(-0.265209\pi\)
0.672527 + 0.740073i \(0.265209\pi\)
\(444\) −9.96637 + 17.2623i −0.472983 + 0.819230i
\(445\) 10.6636 18.4699i 0.505504 0.875559i
\(446\) −20.3082 35.1748i −0.961621 1.66558i
\(447\) −13.3976 −0.633687
\(448\) 29.2163 + 50.6041i 1.38034 + 2.39082i
\(449\) 2.86289 + 4.95867i 0.135108 + 0.234014i 0.925639 0.378408i \(-0.123528\pi\)
−0.790531 + 0.612423i \(0.790195\pi\)
\(450\) 4.42571 0.208630
\(451\) 4.18122 + 7.24209i 0.196886 + 0.341017i
\(452\) −13.2902 + 23.0192i −0.625117 + 1.08273i
\(453\) 6.64915 11.5167i 0.312404 0.541100i
\(454\) −13.3001 −0.624203
\(455\) 39.5471 + 9.78538i 1.85400 + 0.458746i
\(456\) 8.01201 0.375197
\(457\) 6.24493 10.8165i 0.292126 0.505976i −0.682186 0.731178i \(-0.738971\pi\)
0.974312 + 0.225202i \(0.0723041\pi\)
\(458\) 27.0397 46.8341i 1.26348 2.18841i
\(459\) −8.87147 15.3658i −0.414085 0.717216i
\(460\) 46.7850 2.18136
\(461\) 6.58632 + 11.4078i 0.306756 + 0.531316i 0.977651 0.210236i \(-0.0674232\pi\)
−0.670895 + 0.741552i \(0.734090\pi\)
\(462\) 6.29216 + 10.8983i 0.292738 + 0.507037i
\(463\) −10.4086 −0.483727 −0.241863 0.970310i \(-0.577759\pi\)
−0.241863 + 0.970310i \(0.577759\pi\)
\(464\) −0.0195972 0.0339433i −0.000909776 0.00157578i
\(465\) −9.21130 + 15.9544i −0.427164 + 0.739869i
\(466\) −26.1506 + 45.2942i −1.21140 + 2.09821i
\(467\) 23.3553 1.08076 0.540378 0.841422i \(-0.318281\pi\)
0.540378 + 0.841422i \(0.318281\pi\)
\(468\) 4.85543 + 16.8197i 0.224442 + 0.777491i
\(469\) 39.3413 1.81661
\(470\) 19.3148 33.4542i 0.890924 1.54313i
\(471\) −8.54211 + 14.7954i −0.393600 + 0.681735i
\(472\) 15.4452 + 26.7519i 0.710923 + 1.23136i
\(473\) 11.0913 0.509980
\(474\) 2.61551 + 4.53020i 0.120134 + 0.208079i
\(475\) 1.50902 + 2.61370i 0.0692386 + 0.119925i
\(476\) −46.7850 −2.14439
\(477\) −3.06171 5.30304i −0.140186 0.242809i
\(478\) 18.5105 32.0611i 0.846650 1.46644i
\(479\) −4.11094 + 7.12035i −0.187834 + 0.325337i −0.944528 0.328432i \(-0.893480\pi\)
0.756694 + 0.653769i \(0.226813\pi\)
\(480\) 17.5491 0.801005
\(481\) −5.06327 17.5397i −0.230865 0.799740i
\(482\) −0.442864 −0.0201719
\(483\) −15.9488 + 27.6241i −0.725694 + 1.25694i
\(484\) −1.61094 + 2.79023i −0.0732245 + 0.126828i
\(485\) −0.141014 0.244243i −0.00640311 0.0110905i
\(486\) −31.5883 −1.43288
\(487\) −1.86946 3.23801i −0.0847135 0.146728i 0.820556 0.571567i \(-0.193664\pi\)
−0.905269 + 0.424839i \(0.860331\pi\)
\(488\) −0.201835 0.349588i −0.00913664 0.0158251i
\(489\) 1.70393 0.0770546
\(490\) 38.1350 + 66.0518i 1.72276 + 2.98392i
\(491\) 4.08832 7.08119i 0.184504 0.319569i −0.758906 0.651201i \(-0.774266\pi\)
0.943409 + 0.331631i \(0.107599\pi\)
\(492\) 16.4604 28.5102i 0.742090 1.28534i
\(493\) 1.99600 0.0898952
\(494\) −13.4161 + 13.9424i −0.603620 + 0.627300i
\(495\) −3.77812 −0.169814
\(496\) 0.190243 0.329511i 0.00854216 0.0147955i
\(497\) 3.86445 6.69342i 0.173344 0.300241i
\(498\) −7.51159 13.0105i −0.336602 0.583013i
\(499\) −0.918694 −0.0411264 −0.0205632 0.999789i \(-0.506546\pi\)
−0.0205632 + 0.999789i \(0.506546\pi\)
\(500\) 15.0030 + 25.9860i 0.670955 + 1.16213i
\(501\) −14.5613 25.2209i −0.650549 1.12678i
\(502\) −18.6024 −0.830264
\(503\) 9.05425 + 15.6824i 0.403709 + 0.699244i 0.994170 0.107822i \(-0.0343875\pi\)
−0.590461 + 0.807066i \(0.701054\pi\)
\(504\) −9.48240 + 16.4240i −0.422380 + 0.731583i
\(505\) 15.9910 27.6972i 0.711589 1.23251i
\(506\) −13.2359 −0.588408
\(507\) 14.0516 + 7.40723i 0.624052 + 0.328967i
\(508\) −19.5803 −0.868736
\(509\) −10.2043 + 17.6743i −0.452297 + 0.783401i −0.998528 0.0542333i \(-0.982729\pi\)
0.546232 + 0.837634i \(0.316062\pi\)
\(510\) −11.2766 + 19.5316i −0.499335 + 0.864873i
\(511\) 4.50702 + 7.80639i 0.199379 + 0.345334i
\(512\) −0.715746 −0.0316318
\(513\) −6.46637 11.2001i −0.285497 0.494495i
\(514\) −20.4492 35.4191i −0.901976 1.56227i
\(515\) 39.1858 1.72673
\(516\) −21.8318 37.8138i −0.961093 1.66466i
\(517\) −3.37147 + 5.83955i −0.148277 + 0.256823i
\(518\) 26.0737 45.1611i 1.14561 1.98426i
\(519\) −9.03900 −0.396768
\(520\) 17.5000 18.1865i 0.767426 0.797532i
\(521\) −12.0069 −0.526033 −0.263016 0.964791i \(-0.584717\pi\)
−0.263016 + 0.964791i \(0.584717\pi\)
\(522\) 1.06673 1.84762i 0.0466893 0.0808683i
\(523\) −8.92070 + 15.4511i −0.390075 + 0.675629i −0.992459 0.122577i \(-0.960884\pi\)
0.602384 + 0.798206i \(0.294218\pi\)
\(524\) 19.2520 + 33.3454i 0.841025 + 1.45670i
\(525\) 7.07730 0.308879
\(526\) −17.7866 30.8073i −0.775533 1.34326i
\(527\) 9.68824 + 16.7805i 0.422026 + 0.730971i
\(528\) −0.0773036 −0.00336421
\(529\) −5.27457 9.13582i −0.229329 0.397209i
\(530\) −11.6390 + 20.1594i −0.505566 + 0.875667i
\(531\) 8.33627 14.4389i 0.361763 0.626593i
\(532\) −34.1014 −1.47848
\(533\) 8.36245 + 28.9684i 0.362218 + 1.25476i
\(534\) 23.7530 1.02789
\(535\) 7.04411 12.2008i 0.304544 0.527485i
\(536\) 12.1862 21.1072i 0.526365 0.911692i
\(537\) −11.3152 19.5985i −0.488288 0.845739i
\(538\) 3.41168 0.147088
\(539\) −6.65661 11.5296i −0.286720 0.496614i
\(540\) 22.2409 + 38.5224i 0.957097 + 1.65774i
\(541\) −19.1234 −0.822180 −0.411090 0.911595i \(-0.634852\pi\)
−0.411090 + 0.911595i \(0.634852\pi\)
\(542\) 26.5889 + 46.0533i 1.14209 + 1.97816i
\(543\) 11.0312 19.1066i 0.473394 0.819942i
\(544\) 9.22889 15.9849i 0.395686 0.685348i
\(545\) 24.8312 1.06365
\(546\) 12.5843 + 43.5934i 0.538559 + 1.86562i
\(547\) −44.1225 −1.88654 −0.943272 0.332022i \(-0.892269\pi\)
−0.943272 + 0.332022i \(0.892269\pi\)
\(548\) 3.65861 6.33690i 0.156288 0.270699i
\(549\) −0.108937 + 0.188684i −0.00464931 + 0.00805284i
\(550\) 1.46837 + 2.54329i 0.0626114 + 0.108446i
\(551\) 1.45487 0.0619796
\(552\) 9.88049 + 17.1135i 0.420541 + 0.728399i
\(553\) −4.22188 7.31250i −0.179532 0.310959i
\(554\) 32.1295 1.36505
\(555\) −7.75507 13.4322i −0.329184 0.570164i
\(556\) 16.3584 28.3337i 0.693753 1.20161i
\(557\) 10.6726 18.4856i 0.452215 0.783259i −0.546309 0.837584i \(-0.683967\pi\)
0.998523 + 0.0543253i \(0.0173008\pi\)
\(558\) 20.7109 0.876760
\(559\) 38.8197 + 9.60538i 1.64190 + 0.406264i
\(560\) −0.714858 −0.0302082
\(561\) 1.96837 3.40931i 0.0831045 0.143941i
\(562\) 13.3449 23.1140i 0.562919 0.975003i
\(563\) 9.95935 + 17.2501i 0.419736 + 0.727005i 0.995913 0.0903206i \(-0.0287892\pi\)
−0.576176 + 0.817325i \(0.695456\pi\)
\(564\) 26.5451 1.11775
\(565\) −10.3414 17.9118i −0.435066 0.753556i
\(566\) −3.96681 6.87072i −0.166737 0.288798i
\(567\) −9.95077 −0.417893
\(568\) −2.39408 4.14667i −0.100453 0.173990i
\(569\) −23.2109 + 40.2024i −0.973050 + 1.68537i −0.286823 + 0.957984i \(0.592599\pi\)
−0.686227 + 0.727388i \(0.740734\pi\)
\(570\) −8.21943 + 14.2365i −0.344274 + 0.596300i
\(571\) −5.67878 −0.237649 −0.118825 0.992915i \(-0.537913\pi\)
−0.118825 + 0.992915i \(0.537913\pi\)
\(572\) −8.05469 + 8.37068i −0.336784 + 0.349996i
\(573\) −4.10849 −0.171635
\(574\) −43.0632 + 74.5876i −1.79742 + 3.11323i
\(575\) −3.72188 + 6.44648i −0.155213 + 0.268837i
\(576\) −9.76910 16.9206i −0.407046 0.705024i
\(577\) −6.37648 −0.265456 −0.132728 0.991152i \(-0.542374\pi\)
−0.132728 + 0.991152i \(0.542374\pi\)
\(578\) −7.56327 13.1000i −0.314590 0.544887i
\(579\) −9.52963 16.5058i −0.396038 0.685958i
\(580\) −5.00400 −0.207780
\(581\) 12.1250 + 21.0011i 0.503029 + 0.871271i
\(582\) 0.157053 0.272023i 0.00651004 0.0112757i
\(583\) 2.03163 3.51889i 0.0841416 0.145738i
\(584\) 5.58432 0.231081
\(585\) −13.2234 3.27195i −0.546722 0.135279i
\(586\) −14.5783 −0.602224
\(587\) 0.436734 0.756445i 0.0180259 0.0312218i −0.856872 0.515530i \(-0.827595\pi\)
0.874898 + 0.484308i \(0.160929\pi\)
\(588\) −26.2053 + 45.3889i −1.08069 + 1.87181i
\(589\) 7.06171 + 12.2312i 0.290973 + 0.503979i
\(590\) −63.3803 −2.60933
\(591\) 12.8469 + 22.2514i 0.528449 + 0.915300i
\(592\) 0.160167 + 0.277418i 0.00658283 + 0.0114018i
\(593\) 18.7850 0.771409 0.385705 0.922622i \(-0.373958\pi\)
0.385705 + 0.922622i \(0.373958\pi\)
\(594\) −6.29216 10.8983i −0.258170 0.447164i
\(595\) 18.2023 31.5273i 0.746221 1.29249i
\(596\) 17.6636 30.5943i 0.723530 1.25319i
\(597\) −27.6295 −1.13080
\(598\) −46.3257 11.4626i −1.89440 0.468742i
\(599\) 11.7601 0.480504 0.240252 0.970711i \(-0.422770\pi\)
0.240252 + 0.970711i \(0.422770\pi\)
\(600\) 2.19224 3.79708i 0.0894980 0.155015i
\(601\) −14.2585 + 24.6965i −0.581617 + 1.00739i 0.413670 + 0.910427i \(0.364247\pi\)
−0.995288 + 0.0969642i \(0.969087\pi\)
\(602\) 57.1159 + 98.9276i 2.32787 + 4.03199i
\(603\) −13.1546 −0.535697
\(604\) 17.5326 + 30.3674i 0.713393 + 1.23563i
\(605\) −1.25351 2.17114i −0.0509624 0.0882695i
\(606\) 35.6195 1.44694
\(607\) −7.73591 13.3990i −0.313991 0.543848i 0.665231 0.746637i \(-0.268333\pi\)
−0.979223 + 0.202789i \(0.935000\pi\)
\(608\) 6.72689 11.6513i 0.272812 0.472523i
\(609\) 1.70584 2.95460i 0.0691240 0.119726i
\(610\) 0.828241 0.0335345
\(611\) −16.8573 + 17.5187i −0.681975 + 0.708729i
\(612\) 15.6436 0.632354
\(613\) 9.79416 16.9640i 0.395582 0.685169i −0.597593 0.801800i \(-0.703876\pi\)
0.993175 + 0.116631i \(0.0372094\pi\)
\(614\) 5.78514 10.0202i 0.233469 0.404381i
\(615\) 12.8082 + 22.1845i 0.516476 + 0.894563i
\(616\) −12.5843 −0.507037
\(617\) 14.6551 + 25.3833i 0.589990 + 1.02189i 0.994233 + 0.107241i \(0.0342017\pi\)
−0.404243 + 0.914652i \(0.632465\pi\)
\(618\) 21.8213 + 37.7957i 0.877783 + 1.52037i
\(619\) −3.74293 −0.150441 −0.0752206 0.997167i \(-0.523966\pi\)
−0.0752206 + 0.997167i \(0.523966\pi\)
\(620\) −24.2886 42.0691i −0.975454 1.68954i
\(621\) 15.9488 27.6241i 0.640002 1.10852i
\(622\) 3.33583 5.77783i 0.133755 0.231670i
\(623\) −38.3413 −1.53611
\(624\) −0.270563 0.0669469i −0.0108312 0.00268002i
\(625\) −29.7741 −1.19096
\(626\) 18.0391 31.2446i 0.720987 1.24879i
\(627\) 1.43473 2.48503i 0.0572977 0.0992425i
\(628\) −22.5241 39.0128i −0.898808 1.55678i
\(629\) −16.3132 −0.650451
\(630\) −19.4558 33.6984i −0.775137 1.34258i
\(631\) 11.2590 + 19.5011i 0.448213 + 0.776327i 0.998270 0.0588001i \(-0.0187274\pi\)
−0.550057 + 0.835127i \(0.685394\pi\)
\(632\) −5.23102 −0.208079
\(633\) −12.4488 21.5619i −0.494794 0.857009i
\(634\) −23.3539 + 40.4501i −0.927501 + 1.60648i
\(635\) 7.61796 13.1947i 0.302309 0.523615i
\(636\) −15.9960 −0.634283
\(637\) −13.3132 46.1183i −0.527489 1.82728i
\(638\) 1.41568 0.0560472
\(639\) −1.29216 + 2.23809i −0.0511171 + 0.0885374i
\(640\) −22.7746 + 39.4467i −0.900244 + 1.55927i
\(641\) −13.2906 23.0200i −0.524947 0.909235i −0.999578 0.0290503i \(-0.990752\pi\)
0.474631 0.880185i \(-0.342582\pi\)
\(642\) 15.6906 0.619258
\(643\) −0.642571 1.11297i −0.0253405 0.0438911i 0.853077 0.521785i \(-0.174734\pi\)
−0.878418 + 0.477894i \(0.841400\pi\)
\(644\) −42.0541 72.8399i −1.65717 2.87029i
\(645\) 33.9757 1.33779
\(646\) 8.64502 + 14.9736i 0.340134 + 0.589129i
\(647\) 6.88706 11.9287i 0.270758 0.468967i −0.698298 0.715807i \(-0.746059\pi\)
0.969056 + 0.246840i \(0.0793923\pi\)
\(648\) −3.08232 + 5.33874i −0.121085 + 0.209725i
\(649\) 11.0633 0.434271
\(650\) 2.93673 + 10.1731i 0.115188 + 0.399024i
\(651\) 33.1194 1.29805
\(652\) −2.24649 + 3.89104i −0.0879794 + 0.152385i
\(653\) −7.76910 + 13.4565i −0.304029 + 0.526593i −0.977045 0.213035i \(-0.931665\pi\)
0.673016 + 0.739628i \(0.264998\pi\)
\(654\) 13.8277 + 23.9503i 0.540706 + 0.936530i
\(655\) −29.9608 −1.17067
\(656\) −0.264531 0.458180i −0.0103282 0.0178889i
\(657\) −1.50702 2.61023i −0.0587944 0.101835i
\(658\) −69.4467 −2.70731
\(659\) −10.1867 17.6439i −0.396817 0.687307i 0.596514 0.802602i \(-0.296552\pi\)
−0.993331 + 0.115295i \(0.963219\pi\)
\(660\) −4.93473 + 8.54721i −0.192084 + 0.332700i
\(661\) −0.494539 + 0.856566i −0.0192353 + 0.0333166i −0.875483 0.483249i \(-0.839457\pi\)
0.856248 + 0.516566i \(0.172790\pi\)
\(662\) 64.6264 2.51178
\(663\) 9.84183 10.2279i 0.382225 0.397220i
\(664\) 15.0232 0.583013
\(665\) 13.2675 22.9801i 0.514493 0.891129i
\(666\) −8.71832 + 15.1006i −0.337828 + 0.585135i
\(667\) 1.79416 + 3.10758i 0.0694702 + 0.120326i
\(668\) 76.7911 2.97114
\(669\) 10.8589 + 18.8081i 0.419829 + 0.727165i
\(670\) 25.0035 + 43.3073i 0.965968 + 1.67311i
\(671\) −0.144573 −0.00558116
\(672\) −15.7746 27.3223i −0.608517 1.05398i
\(673\) −15.1496 + 26.2399i −0.583974 + 1.01147i 0.411029 + 0.911622i \(0.365170\pi\)
−0.995003 + 0.0998499i \(0.968164\pi\)
\(674\) −36.4773 + 63.1805i −1.40505 + 2.43362i
\(675\) −7.07730 −0.272406
\(676\) −35.4406 + 22.3218i −1.36310 + 0.858531i
\(677\) 20.6788 0.794750 0.397375 0.917656i \(-0.369921\pi\)
0.397375 + 0.917656i \(0.369921\pi\)
\(678\) 11.5176 19.9491i 0.442331 0.766139i
\(679\) −0.253509 + 0.439091i −0.00972879 + 0.0168508i
\(680\) −11.2766 19.5316i −0.432437 0.749002i
\(681\) 7.11161 0.272517
\(682\) 6.87147 + 11.9017i 0.263122 + 0.455741i
\(683\) 0.219875 + 0.380834i 0.00841328 + 0.0145722i 0.870201 0.492696i \(-0.163989\pi\)
−0.861788 + 0.507268i \(0.830655\pi\)
\(684\) 11.4025 0.435987
\(685\) 2.84685 + 4.93089i 0.108773 + 0.188400i
\(686\) 32.5105 56.3098i 1.24126 2.14992i
\(687\) −14.4582 + 25.0424i −0.551616 + 0.955427i
\(688\) −0.701708 −0.0267524
\(689\) 10.1582 10.5567i 0.386995 0.402177i
\(690\) −40.5451 −1.54353
\(691\) −10.0211 + 17.3570i −0.381219 + 0.660291i −0.991237 0.132097i \(-0.957829\pi\)
0.610018 + 0.792388i \(0.291162\pi\)
\(692\) 11.9171 20.6411i 0.453022 0.784656i
\(693\) 3.39608 + 5.88218i 0.129006 + 0.223446i
\(694\) 4.38449 0.166433
\(695\) 12.7289 + 22.0471i 0.482835 + 0.836294i
\(696\) −1.05679 1.83041i −0.0400575 0.0693817i
\(697\) 26.9428 1.02053
\(698\) −0.216859 0.375611i −0.00820823 0.0142171i
\(699\) 13.9828 24.2190i 0.528880 0.916047i
\(700\) −9.33081 + 16.1614i −0.352672 + 0.610845i
\(701\) −36.9898 −1.39708 −0.698542 0.715569i \(-0.746168\pi\)
−0.698542 + 0.715569i \(0.746168\pi\)
\(702\) −12.5843 43.5934i −0.474965 1.64533i
\(703\) −11.8906 −0.448463
\(704\) 6.48240 11.2279i 0.244315 0.423166i
\(705\) −10.3277 + 17.8881i −0.388964 + 0.673705i
\(706\) −12.5110 21.6697i −0.470858 0.815551i
\(707\) −57.4959 −2.16236
\(708\) −21.7766 37.7181i −0.818413 1.41753i
\(709\) −16.9011 29.2736i −0.634734 1.09939i −0.986571 0.163330i \(-0.947776\pi\)
0.351837 0.936061i \(-0.385557\pi\)
\(710\) 9.82424 0.368697
\(711\) 1.41168 + 2.44509i 0.0529420 + 0.0916982i
\(712\) −11.8765 + 20.5707i −0.445090 + 0.770919i
\(713\) −17.4171 + 30.1674i −0.652277 + 1.12978i
\(714\) 40.5451 1.51736
\(715\) −2.50702 8.68457i −0.0937572 0.324784i
\(716\) 59.6725 2.23007
\(717\) −9.89764 + 17.1432i −0.369634 + 0.640225i
\(718\) 4.33281 7.50465i 0.161699 0.280071i
\(719\) −6.11049 10.5837i −0.227883 0.394705i 0.729298 0.684197i \(-0.239847\pi\)
−0.957180 + 0.289492i \(0.906514\pi\)
\(720\) 0.239028 0.00890805
\(721\) −35.2233 61.0086i −1.31179 2.27208i
\(722\) −15.4075 26.6867i −0.573409 0.993174i
\(723\) 0.236802 0.00880674
\(724\) 29.0873 + 50.3807i 1.08102 + 1.87239i
\(725\) 0.398082 0.689498i 0.0147844 0.0256073i
\(726\) 1.39608 2.41808i 0.0518134 0.0897435i
\(727\) 35.2771 1.30836 0.654178 0.756340i \(-0.273015\pi\)
0.654178 + 0.756340i \(0.273015\pi\)
\(728\) −44.0451 10.8983i −1.63242 0.403919i
\(729\) 23.5139 0.870887
\(730\) −5.72889 + 9.92274i −0.212036 + 0.367257i
\(731\) 17.8675 30.9474i 0.660852 1.14463i
\(732\) 0.284572 + 0.492893i 0.0105181 + 0.0182178i
\(733\) 17.0953 0.631431 0.315715 0.948854i \(-0.397755\pi\)
0.315715 + 0.948854i \(0.397755\pi\)
\(734\) −28.5722 49.4885i −1.05462 1.82665i
\(735\) −20.3910 35.3182i −0.752132 1.30273i
\(736\) 33.1827 1.22313
\(737\) −4.36445 7.55944i −0.160766 0.278456i
\(738\) 14.3991 24.9400i 0.530038 0.918053i
\(739\) 21.6140 37.4365i 0.795082 1.37712i −0.127705 0.991812i \(-0.540761\pi\)
0.922787 0.385310i \(-0.125906\pi\)
\(740\) 40.8975 1.50342
\(741\) 7.17366 7.45509i 0.263531 0.273870i
\(742\) 41.8483 1.53630
\(743\) −0.729339 + 1.26325i −0.0267568 + 0.0463442i −0.879094 0.476649i \(-0.841851\pi\)
0.852337 + 0.522993i \(0.175185\pi\)
\(744\) 10.2590 17.7691i 0.376112 0.651445i
\(745\) 13.7445 + 23.8062i 0.503559 + 0.872190i
\(746\) 19.8343 0.726184
\(747\) −4.05425 7.02216i −0.148337 0.256927i
\(748\) 5.19024 + 8.98976i 0.189774 + 0.328698i
\(749\) −25.3273 −0.925438
\(750\) −13.0020 22.5201i −0.474766 0.822319i
\(751\) −7.67967 + 13.3016i −0.280235 + 0.485381i −0.971442 0.237275i \(-0.923746\pi\)
0.691208 + 0.722656i \(0.257079\pi\)
\(752\) 0.213300 0.369447i 0.00777826 0.0134723i
\(753\) 9.94677 0.362480
\(754\) 4.95487 + 1.22601i 0.180446 + 0.0446488i
\(755\) −27.2851 −0.993008
\(756\) 39.9839 69.2541i 1.45420 2.51875i
\(757\) −17.1898 + 29.7736i −0.624774 + 1.08214i 0.363811 + 0.931473i \(0.381476\pi\)
−0.988585 + 0.150667i \(0.951858\pi\)
\(758\) 16.8128 + 29.1206i 0.610667 + 1.05771i
\(759\) 7.07730 0.256890
\(760\) −8.21943 14.2365i −0.298150 0.516411i
\(761\) 1.94331 + 3.36591i 0.0704449 + 0.122014i 0.899096 0.437751i \(-0.144225\pi\)
−0.828651 + 0.559765i \(0.810891\pi\)
\(762\) 16.9688 0.614715
\(763\) −22.3202 38.6598i −0.808047 1.39958i
\(764\) 5.41669 9.38199i 0.195969 0.339428i
\(765\) −6.08632 + 10.5418i −0.220051 + 0.381140i
\(766\) 12.3181 0.445071
\(767\) 38.7214 + 9.58107i 1.39815 + 0.345952i
\(768\) −19.0470 −0.687300
\(769\) −19.7129 + 34.1437i −0.710864 + 1.23125i 0.253670 + 0.967291i \(0.418362\pi\)
−0.964533 + 0.263961i \(0.914971\pi\)
\(770\)