Properties

Label 143.2.e.b.100.2
Level $143$
Weight $2$
Character 143.100
Analytic conductor $1.142$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [143,2,Mod(100,143)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(143, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("143.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14186074890\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.2
Root \(0.610938 - 1.05818i\) of defining polynomial
Character \(\chi\) \(=\) 143.100
Dual form 143.2.e.b.133.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.610938 - 1.05818i) q^{2} +(1.25351 - 2.17114i) q^{3} +(0.253509 + 0.439091i) q^{4} -2.28514 q^{5} +(-1.53163 - 2.65287i) q^{6} +(0.142571 + 0.246941i) q^{7} +3.06327 q^{8} +(-1.64257 - 2.84502i) q^{9} +O(q^{10})\) \(q+(0.610938 - 1.05818i) q^{2} +(1.25351 - 2.17114i) q^{3} +(0.253509 + 0.439091i) q^{4} -2.28514 q^{5} +(-1.53163 - 2.65287i) q^{6} +(0.142571 + 0.246941i) q^{7} +3.06327 q^{8} +(-1.64257 - 2.84502i) q^{9} +(-1.39608 + 2.41808i) q^{10} +(-0.500000 + 0.866025i) q^{11} +1.27111 q^{12} +(-2.50000 + 2.59808i) q^{13} +0.348409 q^{14} +(-2.86445 + 4.96137i) q^{15} +(1.36445 - 2.36329i) q^{16} +(-0.253509 - 0.439091i) q^{17} -4.01404 q^{18} +(1.97539 + 3.42147i) q^{19} +(-0.579305 - 1.00339i) q^{20} +0.714858 q^{21} +(0.610938 + 1.05818i) q^{22} +(0.0316332 - 0.0547902i) q^{23} +(3.83983 - 6.65079i) q^{24} +0.221876 q^{25} +(1.22188 + 4.23270i) q^{26} -0.714858 q^{27} +(-0.0722863 + 0.125204i) q^{28} +(5.37147 - 9.30365i) q^{29} +(3.50000 + 6.06218i) q^{30} -3.57028 q^{31} +(1.39608 + 2.41808i) q^{32} +(1.25351 + 2.17114i) q^{33} -0.619514 q^{34} +(-0.325796 - 0.564295i) q^{35} +(0.832814 - 1.44248i) q^{36} +(-3.86445 + 6.69342i) q^{37} +4.82735 q^{38} +(2.50702 + 8.68457i) q^{39} -7.00000 q^{40} +(0.190243 - 0.329511i) q^{41} +(0.436734 - 0.756445i) q^{42} +(2.70584 + 4.68665i) q^{43} -0.507019 q^{44} +(3.75351 + 6.50127i) q^{45} +(-0.0386518 - 0.0669469i) q^{46} -11.3624 q^{47} +(-3.42070 - 5.92482i) q^{48} +(3.45935 - 5.99176i) q^{49} +(0.135553 - 0.234784i) q^{50} -1.27111 q^{51} +(-1.77457 - 0.439091i) q^{52} -6.72889 q^{53} +(-0.436734 + 0.756445i) q^{54} +(1.14257 - 1.97899i) q^{55} +(0.436734 + 0.756445i) q^{56} +9.90466 q^{57} +(-6.56327 - 11.3679i) q^{58} +(-6.86445 - 11.8896i) q^{59} -2.90466 q^{60} +(1.66719 + 2.88765i) q^{61} +(-2.18122 + 3.77799i) q^{62} +(0.468367 - 0.811235i) q^{63} +8.86946 q^{64} +(5.71286 - 5.93697i) q^{65} +3.06327 q^{66} +(-0.103919 + 0.179994i) q^{67} +(0.128534 - 0.222627i) q^{68} +(-0.0793049 - 0.137360i) q^{69} -0.796164 q^{70} +(1.38906 + 2.40593i) q^{71} +(-5.03163 - 8.71504i) q^{72} -2.00000 q^{73} +(4.72188 + 8.17853i) q^{74} +(0.278124 - 0.481725i) q^{75} +(-1.00156 + 1.73475i) q^{76} -0.285142 q^{77} +(10.7214 + 2.65287i) q^{78} -3.45779 q^{79} +(-3.11796 + 5.40046i) q^{80} +(4.03163 - 6.98299i) q^{81} +(-0.232453 - 0.402621i) q^{82} +4.74293 q^{83} +(0.181223 + 0.313888i) q^{84} +(0.579305 + 1.00339i) q^{85} +6.61240 q^{86} +(-13.4664 - 23.3244i) q^{87} +(-1.53163 + 2.65287i) q^{88} +(1.85743 - 3.21716i) q^{89} +9.17265 q^{90} +(-0.997999 - 0.246941i) q^{91} +0.0320772 q^{92} +(-4.47539 + 7.75160i) q^{93} +(-6.94175 + 12.0235i) q^{94} +(-4.51404 - 7.81854i) q^{95} +7.00000 q^{96} +(-7.51404 - 13.0147i) q^{97} +(-4.22689 - 7.32119i) q^{98} +3.28514 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - q^{3} - 7 q^{4} - 2 q^{5} - 6 q^{6} - 5 q^{7} + 12 q^{8} - 4 q^{9} + 6 q^{10} - 3 q^{11} + 30 q^{12} - 15 q^{13} - 16 q^{14} - 6 q^{15} - 3 q^{16} + 7 q^{17} + 10 q^{18} - 2 q^{19} - 4 q^{20} + 16 q^{21} + q^{22} - 3 q^{23} - 2 q^{24} - 4 q^{25} + 2 q^{26} - 16 q^{27} - 18 q^{28} + 4 q^{29} + 21 q^{30} + 2 q^{31} - 6 q^{32} - q^{33} - 8 q^{34} - 11 q^{35} - 3 q^{36} - 12 q^{37} + 62 q^{38} - 2 q^{39} - 42 q^{40} - q^{41} + 9 q^{42} + 4 q^{43} + 14 q^{44} + 14 q^{45} + 20 q^{46} - 16 q^{47} - 20 q^{48} + 12 q^{50} - 30 q^{51} + 49 q^{52} - 18 q^{53} - 9 q^{54} + q^{55} + 9 q^{56} + 52 q^{57} - 33 q^{58} - 30 q^{59} - 10 q^{60} + 18 q^{61} + 13 q^{62} + 6 q^{63} - 16 q^{64} + 5 q^{65} + 12 q^{66} - 15 q^{67} + 29 q^{68} - q^{69} - 58 q^{70} + 11 q^{71} - 27 q^{72} - 12 q^{73} + 23 q^{74} + 7 q^{75} - 30 q^{76} + 10 q^{77} + 42 q^{78} + 24 q^{79} + q^{80} + 21 q^{81} - 44 q^{82} - 28 q^{83} - 25 q^{84} + 4 q^{85} - 86 q^{86} - 43 q^{87} - 6 q^{88} + 17 q^{89} + 22 q^{90} + 35 q^{91} + 14 q^{92} - 13 q^{93} + 10 q^{94} + 7 q^{95} + 42 q^{96} - 11 q^{97} + 38 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/143\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(79\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.610938 1.05818i 0.431998 0.748243i −0.565047 0.825059i \(-0.691142\pi\)
0.997045 + 0.0768155i \(0.0244753\pi\)
\(3\) 1.25351 2.17114i 0.723714 1.25351i −0.235787 0.971805i \(-0.575767\pi\)
0.959501 0.281705i \(-0.0908998\pi\)
\(4\) 0.253509 + 0.439091i 0.126755 + 0.219546i
\(5\) −2.28514 −1.02195 −0.510973 0.859597i \(-0.670715\pi\)
−0.510973 + 0.859597i \(0.670715\pi\)
\(6\) −1.53163 2.65287i −0.625287 1.08303i
\(7\) 0.142571 + 0.246941i 0.0538869 + 0.0933348i 0.891711 0.452606i \(-0.149506\pi\)
−0.837824 + 0.545941i \(0.816172\pi\)
\(8\) 3.06327 1.08303
\(9\) −1.64257 2.84502i −0.547524 0.948339i
\(10\) −1.39608 + 2.41808i −0.441479 + 0.764665i
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 1.27111 0.366936
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 0.348409 0.0931162
\(15\) −2.86445 + 4.96137i −0.739597 + 1.28102i
\(16\) 1.36445 2.36329i 0.341112 0.590823i
\(17\) −0.253509 0.439091i −0.0614850 0.106495i 0.833644 0.552302i \(-0.186250\pi\)
−0.895129 + 0.445806i \(0.852917\pi\)
\(18\) −4.01404 −0.946118
\(19\) 1.97539 + 3.42147i 0.453185 + 0.784939i 0.998582 0.0532391i \(-0.0169545\pi\)
−0.545397 + 0.838178i \(0.683621\pi\)
\(20\) −0.579305 1.00339i −0.129537 0.224364i
\(21\) 0.714858 0.155995
\(22\) 0.610938 + 1.05818i 0.130252 + 0.225604i
\(23\) 0.0316332 0.0547902i 0.00659597 0.0114246i −0.862709 0.505701i \(-0.831234\pi\)
0.869305 + 0.494277i \(0.164567\pi\)
\(24\) 3.83983 6.65079i 0.783803 1.35759i
\(25\) 0.221876 0.0443752
\(26\) 1.22188 + 4.23270i 0.239630 + 0.830101i
\(27\) −0.714858 −0.137574
\(28\) −0.0722863 + 0.125204i −0.0136608 + 0.0236612i
\(29\) 5.37147 9.30365i 0.997456 1.72764i 0.436996 0.899463i \(-0.356042\pi\)
0.560460 0.828181i \(-0.310624\pi\)
\(30\) 3.50000 + 6.06218i 0.639010 + 1.10680i
\(31\) −3.57028 −0.641242 −0.320621 0.947208i \(-0.603892\pi\)
−0.320621 + 0.947208i \(0.603892\pi\)
\(32\) 1.39608 + 2.41808i 0.246795 + 0.427461i
\(33\) 1.25351 + 2.17114i 0.218208 + 0.377947i
\(34\) −0.619514 −0.106246
\(35\) −0.325796 0.564295i −0.0550695 0.0953832i
\(36\) 0.832814 1.44248i 0.138802 0.240413i
\(37\) −3.86445 + 6.69342i −0.635311 + 1.10039i 0.351138 + 0.936324i \(0.385795\pi\)
−0.986449 + 0.164068i \(0.947538\pi\)
\(38\) 4.82735 0.783100
\(39\) 2.50702 + 8.68457i 0.401444 + 1.39064i
\(40\) −7.00000 −1.10680
\(41\) 0.190243 0.329511i 0.0297110 0.0514609i −0.850788 0.525510i \(-0.823875\pi\)
0.880499 + 0.474049i \(0.157208\pi\)
\(42\) 0.436734 0.756445i 0.0673895 0.116722i
\(43\) 2.70584 + 4.68665i 0.412636 + 0.714707i 0.995177 0.0980944i \(-0.0312747\pi\)
−0.582541 + 0.812801i \(0.697941\pi\)
\(44\) −0.507019 −0.0764359
\(45\) 3.75351 + 6.50127i 0.559540 + 0.969152i
\(46\) −0.0386518 0.0669469i −0.00569890 0.00987078i
\(47\) −11.3624 −1.65738 −0.828692 0.559706i \(-0.810914\pi\)
−0.828692 + 0.559706i \(0.810914\pi\)
\(48\) −3.42070 5.92482i −0.493735 0.855174i
\(49\) 3.45935 5.99176i 0.494192 0.855966i
\(50\) 0.135553 0.234784i 0.0191700 0.0332035i
\(51\) −1.27111 −0.177990
\(52\) −1.77457 0.439091i −0.246088 0.0608910i
\(53\) −6.72889 −0.924285 −0.462142 0.886806i \(-0.652919\pi\)
−0.462142 + 0.886806i \(0.652919\pi\)
\(54\) −0.436734 + 0.756445i −0.0594319 + 0.102939i
\(55\) 1.14257 1.97899i 0.154064 0.266847i
\(56\) 0.436734 + 0.756445i 0.0583610 + 0.101084i
\(57\) 9.90466 1.31190
\(58\) −6.56327 11.3679i −0.861799 1.49268i
\(59\) −6.86445 11.8896i −0.893675 1.54789i −0.835436 0.549588i \(-0.814785\pi\)
−0.0582389 0.998303i \(-0.518549\pi\)
\(60\) −2.90466 −0.374990
\(61\) 1.66719 + 2.88765i 0.213461 + 0.369726i 0.952795 0.303613i \(-0.0981930\pi\)
−0.739334 + 0.673339i \(0.764860\pi\)
\(62\) −2.18122 + 3.77799i −0.277016 + 0.479805i
\(63\) 0.468367 0.811235i 0.0590087 0.102206i
\(64\) 8.86946 1.10868
\(65\) 5.71286 5.93697i 0.708593 0.736391i
\(66\) 3.06327 0.377062
\(67\) −0.103919 + 0.179994i −0.0126958 + 0.0219897i −0.872303 0.488965i \(-0.837375\pi\)
0.859608 + 0.510955i \(0.170708\pi\)
\(68\) 0.128534 0.222627i 0.0155870 0.0269975i
\(69\) −0.0793049 0.137360i −0.00954719 0.0165362i
\(70\) −0.796164 −0.0951598
\(71\) 1.38906 + 2.40593i 0.164851 + 0.285531i 0.936602 0.350394i \(-0.113952\pi\)
−0.771751 + 0.635925i \(0.780619\pi\)
\(72\) −5.03163 8.71504i −0.592984 1.02708i
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 4.72188 + 8.17853i 0.548907 + 0.950735i
\(75\) 0.278124 0.481725i 0.0321150 0.0556248i
\(76\) −1.00156 + 1.73475i −0.114886 + 0.198989i
\(77\) −0.285142 −0.0324950
\(78\) 10.7214 + 2.65287i 1.21396 + 0.300378i
\(79\) −3.45779 −0.389032 −0.194516 0.980899i \(-0.562314\pi\)
−0.194516 + 0.980899i \(0.562314\pi\)
\(80\) −3.11796 + 5.40046i −0.348598 + 0.603790i
\(81\) 4.03163 6.98299i 0.447959 0.775888i
\(82\) −0.232453 0.402621i −0.0256702 0.0444621i
\(83\) 4.74293 0.520604 0.260302 0.965527i \(-0.416178\pi\)
0.260302 + 0.965527i \(0.416178\pi\)
\(84\) 0.181223 + 0.313888i 0.0197731 + 0.0342479i
\(85\) 0.579305 + 1.00339i 0.0628344 + 0.108832i
\(86\) 6.61240 0.713033
\(87\) −13.4664 23.3244i −1.44375 2.50064i
\(88\) −1.53163 + 2.65287i −0.163273 + 0.282797i
\(89\) 1.85743 3.21716i 0.196887 0.341018i −0.750630 0.660722i \(-0.770250\pi\)
0.947518 + 0.319704i \(0.103583\pi\)
\(90\) 9.17265 0.966882
\(91\) −0.997999 0.246941i −0.104619 0.0258864i
\(92\) 0.0320772 0.00334428
\(93\) −4.47539 + 7.75160i −0.464076 + 0.803803i
\(94\) −6.94175 + 12.0235i −0.715987 + 1.24013i
\(95\) −4.51404 7.81854i −0.463130 0.802165i
\(96\) 7.00000 0.714435
\(97\) −7.51404 13.0147i −0.762935 1.32144i −0.941332 0.337483i \(-0.890424\pi\)
0.178397 0.983959i \(-0.442909\pi\)
\(98\) −4.22689 7.32119i −0.426981 0.739552i
\(99\) 3.28514 0.330169
\(100\) 0.0562477 + 0.0974238i 0.00562477 + 0.00974238i
\(101\) −7.46637 + 12.9321i −0.742931 + 1.28679i 0.208224 + 0.978081i \(0.433232\pi\)
−0.951155 + 0.308713i \(0.900102\pi\)
\(102\) −0.776567 + 1.34505i −0.0768915 + 0.133180i
\(103\) −17.3905 −1.71354 −0.856769 0.515700i \(-0.827532\pi\)
−0.856769 + 0.515700i \(0.827532\pi\)
\(104\) −7.65817 + 7.95860i −0.750945 + 0.780405i
\(105\) −1.63355 −0.159418
\(106\) −4.11094 + 7.12035i −0.399290 + 0.691590i
\(107\) 7.87147 13.6338i 0.760963 1.31803i −0.181391 0.983411i \(-0.558060\pi\)
0.942355 0.334616i \(-0.108607\pi\)
\(108\) −0.181223 0.313888i −0.0174382 0.0302038i
\(109\) 18.9648 1.81650 0.908250 0.418429i \(-0.137419\pi\)
0.908250 + 0.418429i \(0.137419\pi\)
\(110\) −1.39608 2.41808i −0.133111 0.230555i
\(111\) 9.68824 + 16.7805i 0.919567 + 1.59274i
\(112\) 0.778124 0.0735258
\(113\) 7.32379 + 12.6852i 0.688965 + 1.19332i 0.972173 + 0.234263i \(0.0752678\pi\)
−0.283209 + 0.959058i \(0.591399\pi\)
\(114\) 6.05113 10.4809i 0.566740 0.981623i
\(115\) −0.0722863 + 0.125204i −0.00674073 + 0.0116753i
\(116\) 5.44687 0.505729
\(117\) 11.4980 + 2.84502i 1.06299 + 0.263022i
\(118\) −16.7750 −1.54426
\(119\) 0.0722863 0.125204i 0.00662647 0.0114774i
\(120\) −8.77457 + 15.1980i −0.801005 + 1.38738i
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 4.07419 0.368860
\(123\) −0.476943 0.826089i −0.0430045 0.0744859i
\(124\) −0.905101 1.56768i −0.0812804 0.140782i
\(125\) 10.9187 0.976598
\(126\) −0.572286 0.991229i −0.0509833 0.0883057i
\(127\) −0.420695 + 0.728665i −0.0373307 + 0.0646586i −0.884087 0.467322i \(-0.845219\pi\)
0.846756 + 0.531981i \(0.178552\pi\)
\(128\) 2.62653 4.54929i 0.232155 0.402104i
\(129\) 13.5672 1.19452
\(130\) −2.79216 9.67233i −0.244889 0.848319i
\(131\) 0.299180 0.0261395 0.0130697 0.999915i \(-0.495840\pi\)
0.0130697 + 0.999915i \(0.495840\pi\)
\(132\) −0.635553 + 1.10081i −0.0553178 + 0.0958132i
\(133\) −0.563266 + 0.975606i −0.0488414 + 0.0845958i
\(134\) 0.126977 + 0.219930i 0.0109691 + 0.0189991i
\(135\) 1.63355 0.140594
\(136\) −0.776567 1.34505i −0.0665900 0.115337i
\(137\) 5.39608 + 9.34629i 0.461018 + 0.798507i 0.999012 0.0444418i \(-0.0141509\pi\)
−0.537994 + 0.842949i \(0.680818\pi\)
\(138\) −0.193802 −0.0164975
\(139\) −1.84139 3.18938i −0.156185 0.270520i 0.777305 0.629124i \(-0.216586\pi\)
−0.933490 + 0.358604i \(0.883253\pi\)
\(140\) 0.165184 0.286108i 0.0139606 0.0241805i
\(141\) −14.2429 + 24.6695i −1.19947 + 2.07755i
\(142\) 3.39452 0.284862
\(143\) −1.00000 3.46410i −0.0836242 0.289683i
\(144\) −8.96481 −0.747067
\(145\) −12.2746 + 21.2602i −1.01935 + 1.76556i
\(146\) −1.22188 + 2.11635i −0.101123 + 0.175151i
\(147\) −8.67265 15.0215i −0.715308 1.23895i
\(148\) −3.91869 −0.322115
\(149\) −5.43473 9.41323i −0.445231 0.771162i 0.552838 0.833289i \(-0.313545\pi\)
−0.998068 + 0.0621269i \(0.980212\pi\)
\(150\) −0.339833 0.588608i −0.0277472 0.0480596i
\(151\) 11.4749 0.933817 0.466909 0.884306i \(-0.345368\pi\)
0.466909 + 0.884306i \(0.345368\pi\)
\(152\) 6.05113 + 10.4809i 0.490812 + 0.850111i
\(153\) −0.832814 + 1.44248i −0.0673290 + 0.116617i
\(154\) −0.174204 + 0.301731i −0.0140378 + 0.0243142i
\(155\) 8.15861 0.655315
\(156\) −3.17776 + 3.30243i −0.254425 + 0.264406i
\(157\) 16.1234 1.28679 0.643394 0.765535i \(-0.277526\pi\)
0.643394 + 0.765535i \(0.277526\pi\)
\(158\) −2.11250 + 3.65895i −0.168061 + 0.291090i
\(159\) −8.43473 + 14.6094i −0.668918 + 1.15860i
\(160\) −3.19024 5.52566i −0.252211 0.436842i
\(161\) 0.0180399 0.00142174
\(162\) −4.92616 8.53235i −0.387035 0.670365i
\(163\) 9.15661 + 15.8597i 0.717201 + 1.24223i 0.962104 + 0.272681i \(0.0879104\pi\)
−0.244904 + 0.969547i \(0.578756\pi\)
\(164\) 0.192913 0.0150640
\(165\) −2.86445 4.96137i −0.222997 0.386242i
\(166\) 2.89764 5.01886i 0.224900 0.389539i
\(167\) 5.38706 9.33066i 0.416863 0.722028i −0.578759 0.815499i \(-0.696463\pi\)
0.995622 + 0.0934704i \(0.0297961\pi\)
\(168\) 2.18980 0.168947
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 1.41568 0.108578
\(171\) 6.48942 11.2400i 0.496259 0.859545i
\(172\) −1.37191 + 2.37622i −0.104607 + 0.181185i
\(173\) 10.6250 + 18.4030i 0.807802 + 1.39915i 0.914383 + 0.404850i \(0.132676\pi\)
−0.106581 + 0.994304i \(0.533990\pi\)
\(174\) −32.9085 −2.49478
\(175\) 0.0316332 + 0.0547902i 0.00239124 + 0.00414175i
\(176\) 1.36445 + 2.36329i 0.102849 + 0.178140i
\(177\) −34.4186 −2.58706
\(178\) −2.26955 3.93097i −0.170110 0.294639i
\(179\) −2.07229 + 3.58931i −0.154890 + 0.268277i −0.933019 0.359827i \(-0.882836\pi\)
0.778129 + 0.628104i \(0.216169\pi\)
\(180\) −1.90310 + 3.29626i −0.141849 + 0.245689i
\(181\) 20.2811 1.50749 0.753743 0.657170i \(-0.228247\pi\)
0.753743 + 0.657170i \(0.228247\pi\)
\(182\) −0.871022 + 0.905193i −0.0645644 + 0.0670973i
\(183\) 8.35933 0.617940
\(184\) 0.0969008 0.167837i 0.00714362 0.0123731i
\(185\) 8.83081 15.2954i 0.649254 1.12454i
\(186\) 5.46837 + 9.47149i 0.400960 + 0.694483i
\(187\) 0.507019 0.0370769
\(188\) −2.88049 4.98915i −0.210081 0.363871i
\(189\) −0.101918 0.176527i −0.00741345 0.0128405i
\(190\) −11.0312 −0.800287
\(191\) −2.30976 4.00062i −0.167128 0.289474i 0.770281 0.637705i \(-0.220116\pi\)
−0.937409 + 0.348230i \(0.886783\pi\)
\(192\) 11.1180 19.2569i 0.802369 1.38974i
\(193\) 2.84841 4.93359i 0.205033 0.355127i −0.745110 0.666941i \(-0.767603\pi\)
0.950143 + 0.311814i \(0.100937\pi\)
\(194\) −18.3624 −1.31835
\(195\) −5.72889 19.8455i −0.410255 1.42116i
\(196\) 3.50791 0.250565
\(197\) 0.929715 1.61031i 0.0662395 0.114730i −0.831004 0.556267i \(-0.812233\pi\)
0.897243 + 0.441537i \(0.145567\pi\)
\(198\) 2.00702 3.47626i 0.142633 0.247047i
\(199\) −4.13355 7.15952i −0.293020 0.507525i 0.681503 0.731816i \(-0.261327\pi\)
−0.974522 + 0.224291i \(0.927993\pi\)
\(200\) 0.679666 0.0480596
\(201\) 0.260528 + 0.451248i 0.0183762 + 0.0318286i
\(202\) 9.12297 + 15.8015i 0.641890 + 1.11179i
\(203\) 3.06327 0.214999
\(204\) −0.322237 0.558131i −0.0225611 0.0390770i
\(205\) −0.434732 + 0.752979i −0.0303630 + 0.0525903i
\(206\) −10.6245 + 18.4022i −0.740246 + 1.28214i
\(207\) −0.207839 −0.0144458
\(208\) 2.72889 + 9.45317i 0.189215 + 0.655459i
\(209\) −3.95077 −0.273281
\(210\) −0.997999 + 1.72858i −0.0688685 + 0.119284i
\(211\) −1.40510 + 2.43371i −0.0967311 + 0.167543i −0.910330 0.413884i \(-0.864172\pi\)
0.813599 + 0.581427i \(0.197505\pi\)
\(212\) −1.70584 2.95460i −0.117157 0.202923i
\(213\) 6.96481 0.477221
\(214\) −9.61796 16.6588i −0.657470 1.13877i
\(215\) −6.18322 10.7097i −0.421692 0.730393i
\(216\) −2.18980 −0.148997
\(217\) −0.509020 0.881648i −0.0345545 0.0598502i
\(218\) 11.5863 20.0681i 0.784725 1.35918i
\(219\) −2.50702 + 4.34228i −0.169409 + 0.293424i
\(220\) 1.15861 0.0781135
\(221\) 1.77457 + 0.439091i 0.119370 + 0.0295365i
\(222\) 23.6757 1.58901
\(223\) 7.03008 12.1764i 0.470769 0.815395i −0.528672 0.848826i \(-0.677310\pi\)
0.999441 + 0.0334307i \(0.0106433\pi\)
\(224\) −0.398082 + 0.689498i −0.0265980 + 0.0460690i
\(225\) −0.364447 0.631241i −0.0242965 0.0420828i
\(226\) 17.8975 1.19053
\(227\) 9.60192 + 16.6310i 0.637302 + 1.10384i 0.986022 + 0.166612i \(0.0532828\pi\)
−0.348721 + 0.937227i \(0.613384\pi\)
\(228\) 2.51092 + 4.34905i 0.166290 + 0.288023i
\(229\) 12.4789 0.824632 0.412316 0.911041i \(-0.364720\pi\)
0.412316 + 0.911041i \(0.364720\pi\)
\(230\) 0.0883249 + 0.152983i 0.00582397 + 0.0100874i
\(231\) −0.357429 + 0.619085i −0.0235171 + 0.0407328i
\(232\) 16.4542 28.4996i 1.08027 1.87109i
\(233\) −7.97193 −0.522258 −0.261129 0.965304i \(-0.584095\pi\)
−0.261129 + 0.965304i \(0.584095\pi\)
\(234\) 10.0351 10.4288i 0.656015 0.681750i
\(235\) 25.9648 1.69376
\(236\) 3.48040 6.02823i 0.226555 0.392405i
\(237\) −4.33437 + 7.50735i −0.281548 + 0.487655i
\(238\) −0.0883249 0.152983i −0.00572525 0.00991643i
\(239\) −18.9468 −1.22556 −0.612782 0.790252i \(-0.709950\pi\)
−0.612782 + 0.790252i \(0.709950\pi\)
\(240\) 7.81678 + 13.5391i 0.504571 + 0.873942i
\(241\) −7.81678 13.5391i −0.503523 0.872127i −0.999992 0.00407255i \(-0.998704\pi\)
0.496469 0.868054i \(-0.334630\pi\)
\(242\) −1.22188 −0.0785452
\(243\) −11.1797 19.3637i −0.717176 1.24219i
\(244\) −0.845294 + 1.46409i −0.0541144 + 0.0937289i
\(245\) −7.90510 + 13.6920i −0.505038 + 0.874752i
\(246\) −1.16553 −0.0743115
\(247\) −13.8277 3.42147i −0.879835 0.217703i
\(248\) −10.9367 −0.694483
\(249\) 5.94531 10.2976i 0.376769 0.652583i
\(250\) 6.67065 11.5539i 0.421889 0.730733i
\(251\) −1.94375 3.36668i −0.122689 0.212503i 0.798138 0.602474i \(-0.205818\pi\)
−0.920827 + 0.389971i \(0.872485\pi\)
\(252\) 0.474941 0.0299185
\(253\) 0.0316332 + 0.0547902i 0.00198876 + 0.00344463i
\(254\) 0.514037 + 0.890339i 0.0322536 + 0.0558648i
\(255\) 2.90466 0.181897
\(256\) 5.66017 + 9.80370i 0.353760 + 0.612731i
\(257\) −7.02261 + 12.1635i −0.438059 + 0.758740i −0.997540 0.0701034i \(-0.977667\pi\)
0.559481 + 0.828843i \(0.311000\pi\)
\(258\) 8.28870 14.3565i 0.516032 0.893794i
\(259\) −2.20384 −0.136940
\(260\) 4.05513 + 1.00339i 0.251489 + 0.0622273i
\(261\) −35.2921 −2.18452
\(262\) 0.182780 0.316585i 0.0112922 0.0195587i
\(263\) −10.0597 + 17.4239i −0.620308 + 1.07441i 0.369120 + 0.929382i \(0.379659\pi\)
−0.989428 + 0.145024i \(0.953674\pi\)
\(264\) 3.83983 + 6.65079i 0.236325 + 0.409328i
\(265\) 15.3765 0.944570
\(266\) 0.688242 + 1.19207i 0.0421988 + 0.0730905i
\(267\) −4.65661 8.06548i −0.284980 0.493600i
\(268\) −0.105378 −0.00643700
\(269\) 3.14257 + 5.44309i 0.191606 + 0.331871i 0.945783 0.324800i \(-0.105297\pi\)
−0.754177 + 0.656672i \(0.771964\pi\)
\(270\) 0.997999 1.72858i 0.0607363 0.105198i
\(271\) −15.8961 + 27.5328i −0.965618 + 1.67250i −0.257673 + 0.966232i \(0.582956\pi\)
−0.707945 + 0.706267i \(0.750378\pi\)
\(272\) −1.38360 −0.0838931
\(273\) −1.78714 + 1.85725i −0.108163 + 0.112406i
\(274\) 13.1867 0.796637
\(275\) −0.110938 + 0.192150i −0.00668982 + 0.0115871i
\(276\) 0.0402091 0.0696442i 0.00242030 0.00419209i
\(277\) −8.41714 14.5789i −0.505737 0.875962i −0.999978 0.00663691i \(-0.997887\pi\)
0.494241 0.869325i \(-0.335446\pi\)
\(278\) −4.49990 −0.269886
\(279\) 5.86445 + 10.1575i 0.351095 + 0.608115i
\(280\) −0.997999 1.72858i −0.0596418 0.103303i
\(281\) −9.09134 −0.542344 −0.271172 0.962531i \(-0.587411\pi\)
−0.271172 + 0.962531i \(0.587411\pi\)
\(282\) 17.4031 + 30.1431i 1.03634 + 1.79499i
\(283\) −11.5773 + 20.0525i −0.688199 + 1.19200i 0.284221 + 0.958759i \(0.408265\pi\)
−0.972420 + 0.233237i \(0.925068\pi\)
\(284\) −0.704280 + 1.21985i −0.0417913 + 0.0723847i
\(285\) −22.6336 −1.34070
\(286\) −4.27657 1.05818i −0.252879 0.0625712i
\(287\) 0.108493 0.00640412
\(288\) 4.58632 7.94375i 0.270252 0.468090i
\(289\) 8.37147 14.4998i 0.492439 0.852930i
\(290\) 14.9980 + 25.9773i 0.880713 + 1.52544i
\(291\) −37.6757 −2.20859
\(292\) −0.507019 0.878182i −0.0296710 0.0513917i
\(293\) −11.1867 19.3759i −0.653533 1.13195i −0.982259 0.187527i \(-0.939953\pi\)
0.328726 0.944425i \(-0.393381\pi\)
\(294\) −21.1938 −1.23605
\(295\) 15.6862 + 27.1694i 0.913288 + 1.58186i
\(296\) −11.8378 + 20.5037i −0.688060 + 1.19175i
\(297\) 0.357429 0.619085i 0.0207401 0.0359229i
\(298\) −13.2811 −0.769356
\(299\) 0.0632663 + 0.219161i 0.00365879 + 0.0126744i
\(300\) 0.282028 0.0162829
\(301\) −0.771549 + 1.33636i −0.0444714 + 0.0770267i
\(302\) 7.01048 12.1425i 0.403408 0.698723i
\(303\) 18.7183 + 32.4211i 1.07534 + 1.86254i
\(304\) 10.7812 0.618346
\(305\) −3.80976 6.59869i −0.218146 0.377840i
\(306\) 1.01760 + 1.76253i 0.0581721 + 0.100757i
\(307\) 7.72889 0.441111 0.220556 0.975374i \(-0.429213\pi\)
0.220556 + 0.975374i \(0.429213\pi\)
\(308\) −0.0722863 0.125204i −0.00411889 0.00713413i
\(309\) −21.7992 + 37.7573i −1.24011 + 2.14794i
\(310\) 4.98441 8.63324i 0.283095 0.490335i
\(311\) −23.7218 −1.34514 −0.672569 0.740034i \(-0.734809\pi\)
−0.672569 + 0.740034i \(0.734809\pi\)
\(312\) 7.67967 + 26.6031i 0.434775 + 1.50611i
\(313\) 2.48987 0.140736 0.0703678 0.997521i \(-0.477583\pi\)
0.0703678 + 0.997521i \(0.477583\pi\)
\(314\) 9.85041 17.0614i 0.555891 0.962831i
\(315\) −1.07028 + 1.85379i −0.0603037 + 0.104449i
\(316\) −0.876582 1.51828i −0.0493116 0.0854102i
\(317\) −5.53910 −0.311107 −0.155553 0.987827i \(-0.549716\pi\)
−0.155553 + 0.987827i \(0.549716\pi\)
\(318\) 10.3062 + 17.8509i 0.577943 + 1.00103i
\(319\) 5.37147 + 9.30365i 0.300744 + 0.520905i
\(320\) −20.2680 −1.13302
\(321\) −19.7339 34.1801i −1.10144 1.90775i
\(322\) 0.0110213 0.0190894i 0.000614191 0.00106381i
\(323\) 1.00156 1.73475i 0.0557281 0.0965240i
\(324\) 4.08823 0.227124
\(325\) −0.554690 + 0.576451i −0.0307687 + 0.0319758i
\(326\) 22.3765 1.23932
\(327\) 23.7726 41.1753i 1.31463 2.27700i
\(328\) 0.582765 1.00938i 0.0321778 0.0557336i
\(329\) −1.61996 2.80585i −0.0893112 0.154691i
\(330\) −7.00000 −0.385337
\(331\) 9.88750 + 17.1257i 0.543466 + 0.941311i 0.998702 + 0.0509403i \(0.0162218\pi\)
−0.455235 + 0.890371i \(0.650445\pi\)
\(332\) 1.20238 + 2.08258i 0.0659890 + 0.114296i
\(333\) 25.3905 1.39139
\(334\) −6.58232 11.4009i −0.360169 0.623830i
\(335\) 0.237471 0.411311i 0.0129744 0.0224723i
\(336\) 0.975385 1.68942i 0.0532116 0.0921653i
\(337\) 19.1858 1.04512 0.522558 0.852603i \(-0.324978\pi\)
0.522558 + 0.852603i \(0.324978\pi\)
\(338\) −14.0516 7.40723i −0.764305 0.402900i
\(339\) 36.7218 1.99445
\(340\) −0.293718 + 0.508735i −0.0159291 + 0.0275900i
\(341\) 1.78514 3.09196i 0.0966709 0.167439i
\(342\) −7.92927 13.7339i −0.428766 0.742644i
\(343\) 3.96881 0.214296
\(344\) 8.28870 + 14.3565i 0.446897 + 0.774048i
\(345\) 0.181223 + 0.313888i 0.00975672 + 0.0168991i
\(346\) 25.9648 1.39588
\(347\) 0.697262 + 1.20769i 0.0374310 + 0.0648323i 0.884134 0.467233i \(-0.154749\pi\)
−0.846703 + 0.532066i \(0.821416\pi\)
\(348\) 6.82770 11.8259i 0.366003 0.633936i
\(349\) 4.09334 7.08988i 0.219112 0.379512i −0.735425 0.677606i \(-0.763017\pi\)
0.954537 + 0.298094i \(0.0963508\pi\)
\(350\) 0.0773036 0.00413205
\(351\) 1.78714 1.85725i 0.0953907 0.0991329i
\(352\) −2.79216 −0.148823
\(353\) 12.4086 21.4923i 0.660441 1.14392i −0.320059 0.947398i \(-0.603703\pi\)
0.980500 0.196520i \(-0.0629640\pi\)
\(354\) −21.0276 + 36.4209i −1.11761 + 1.93575i
\(355\) −3.17420 5.49788i −0.168469 0.291797i
\(356\) 1.88350 0.0998254
\(357\) −0.181223 0.313888i −0.00959134 0.0166127i
\(358\) 2.53208 + 4.38569i 0.133824 + 0.231791i
\(359\) −2.06327 −0.108895 −0.0544475 0.998517i \(-0.517340\pi\)
−0.0544475 + 0.998517i \(0.517340\pi\)
\(360\) 11.4980 + 19.9151i 0.605998 + 1.04962i
\(361\) 1.69570 2.93705i 0.0892476 0.154581i
\(362\) 12.3905 21.4610i 0.651231 1.12797i
\(363\) −2.50702 −0.131584
\(364\) −0.144573 0.500814i −0.00757766 0.0262498i
\(365\) 4.57028 0.239220
\(366\) 5.10703 8.84564i 0.266949 0.462369i
\(367\) −12.7902 + 22.1532i −0.667641 + 1.15639i 0.310921 + 0.950436i \(0.399362\pi\)
−0.978562 + 0.205952i \(0.933971\pi\)
\(368\) −0.0863236 0.149517i −0.00449993 0.00779410i
\(369\) −1.24995 −0.0650698
\(370\) −10.7902 18.6891i −0.560954 0.971600i
\(371\) −0.959347 1.66164i −0.0498068 0.0862679i
\(372\) −4.53821 −0.235295
\(373\) −6.04567 10.4714i −0.313033 0.542189i 0.665984 0.745966i \(-0.268012\pi\)
−0.979017 + 0.203777i \(0.934678\pi\)
\(374\) 0.309757 0.536515i 0.0160172 0.0277425i
\(375\) 13.6867 23.7060i 0.706777 1.22417i
\(376\) −34.8062 −1.79499
\(377\) 10.7429 + 37.2146i 0.553289 + 1.91665i
\(378\) −0.249063 −0.0128104
\(379\) −7.88906 + 13.6643i −0.405234 + 0.701886i −0.994349 0.106164i \(-0.966143\pi\)
0.589115 + 0.808049i \(0.299477\pi\)
\(380\) 2.28870 3.96415i 0.117408 0.203356i
\(381\) 1.05469 + 1.82678i 0.0540334 + 0.0935886i
\(382\) −5.64447 −0.288796
\(383\) −10.8800 18.8448i −0.555944 0.962924i −0.997829 0.0658520i \(-0.979023\pi\)
0.441885 0.897072i \(-0.354310\pi\)
\(384\) −6.58477 11.4051i −0.336027 0.582017i
\(385\) 0.651591 0.0332082
\(386\) −3.48040 6.02823i −0.177148 0.306829i
\(387\) 8.88906 15.3963i 0.451856 0.782638i
\(388\) 3.80976 6.59869i 0.193411 0.334998i
\(389\) 4.54913 0.230650 0.115325 0.993328i \(-0.463209\pi\)
0.115325 + 0.993328i \(0.463209\pi\)
\(390\) −24.5000 6.06218i −1.24061 0.306970i
\(391\) −0.0320772 −0.00162221
\(392\) 10.5969 18.3544i 0.535224 0.927036i
\(393\) 0.375025 0.649562i 0.0189175 0.0327661i
\(394\) −1.13600 1.96760i −0.0572307 0.0991265i
\(395\) 7.90154 0.397570
\(396\) 0.832814 + 1.44248i 0.0418505 + 0.0724872i
\(397\) −6.93629 12.0140i −0.348122 0.602966i 0.637794 0.770207i \(-0.279847\pi\)
−0.985916 + 0.167242i \(0.946514\pi\)
\(398\) −10.1014 −0.506336
\(399\) 1.41212 + 2.44586i 0.0706944 + 0.122446i
\(400\) 0.302738 0.524358i 0.0151369 0.0262179i
\(401\) −6.01204 + 10.4132i −0.300227 + 0.520008i −0.976187 0.216930i \(-0.930396\pi\)
0.675960 + 0.736938i \(0.263729\pi\)
\(402\) 0.636666 0.0317540
\(403\) 8.92571 9.27587i 0.444621 0.462064i
\(404\) −7.57117 −0.376680
\(405\) −9.21286 + 15.9571i −0.457791 + 0.792916i
\(406\) 1.87147 3.24147i 0.0928793 0.160872i
\(407\) −3.86445 6.69342i −0.191554 0.331780i
\(408\) −3.89373 −0.192769
\(409\) 8.73391 + 15.1276i 0.431864 + 0.748011i 0.997034 0.0769640i \(-0.0245227\pi\)
−0.565170 + 0.824975i \(0.691189\pi\)
\(410\) 0.531189 + 0.920047i 0.0262336 + 0.0454379i
\(411\) 27.0561 1.33458
\(412\) −4.40866 7.63602i −0.217199 0.376200i
\(413\) 1.95735 3.39022i 0.0963147 0.166822i
\(414\) −0.126977 + 0.219930i −0.00624056 + 0.0108090i
\(415\) −10.8383 −0.532030
\(416\) −9.77256 2.41808i −0.479139 0.118556i
\(417\) −9.23280 −0.452132
\(418\) −2.41368 + 4.18061i −0.118057 + 0.204480i
\(419\) −11.7500 + 20.3515i −0.574023 + 0.994236i 0.422124 + 0.906538i \(0.361285\pi\)
−0.996147 + 0.0876985i \(0.972049\pi\)
\(420\) −0.414120 0.717278i −0.0202070 0.0349996i
\(421\) 1.87347 0.0913072 0.0456536 0.998957i \(-0.485463\pi\)
0.0456536 + 0.998957i \(0.485463\pi\)
\(422\) 1.71686 + 2.97369i 0.0835754 + 0.144757i
\(423\) 18.6636 + 32.3264i 0.907457 + 1.57176i
\(424\) −20.6124 −1.00103
\(425\) −0.0562477 0.0974238i −0.00272841 0.00472575i
\(426\) 4.25507 7.36999i 0.206159 0.357077i
\(427\) −0.475385 + 0.823392i −0.0230055 + 0.0398467i
\(428\) 7.98196 0.385823
\(429\) −8.77457 2.17114i −0.423640 0.104824i
\(430\) −15.1103 −0.728682
\(431\) −3.07886 + 5.33274i −0.148304 + 0.256869i −0.930601 0.366036i \(-0.880715\pi\)
0.782297 + 0.622906i \(0.214048\pi\)
\(432\) −0.975385 + 1.68942i −0.0469283 + 0.0812821i
\(433\) −11.1812 19.3664i −0.537335 0.930692i −0.999046 0.0436617i \(-0.986098\pi\)
0.461711 0.887030i \(-0.347236\pi\)
\(434\) −1.24392 −0.0597100
\(435\) 30.7726 + 53.2996i 1.47543 + 2.55552i
\(436\) 4.80776 + 8.32728i 0.230250 + 0.398804i
\(437\) 0.249951 0.0119568
\(438\) 3.06327 + 5.30573i 0.146369 + 0.253518i
\(439\) 19.2816 33.3967i 0.920260 1.59394i 0.121247 0.992622i \(-0.461311\pi\)
0.799013 0.601314i \(-0.205356\pi\)
\(440\) 3.50000 6.06218i 0.166856 0.289003i
\(441\) −22.7289 −1.08233
\(442\) 1.54878 1.60954i 0.0736682 0.0765582i
\(443\) −25.4819 −1.21068 −0.605340 0.795967i \(-0.706963\pi\)
−0.605340 + 0.795967i \(0.706963\pi\)
\(444\) −4.91212 + 8.50804i −0.233119 + 0.403774i
\(445\) −4.24449 + 7.35167i −0.201208 + 0.348503i
\(446\) −8.58988 14.8781i −0.406743 0.704499i
\(447\) −27.2500 −1.28888
\(448\) 1.26453 + 2.19023i 0.0597435 + 0.103479i
\(449\) −18.1777 31.4846i −0.857857 1.48585i −0.873969 0.485982i \(-0.838462\pi\)
0.0161119 0.999870i \(-0.494871\pi\)
\(450\) −0.890619 −0.0419842
\(451\) 0.190243 + 0.329511i 0.00895819 + 0.0155160i
\(452\) −3.71330 + 6.43162i −0.174659 + 0.302518i
\(453\) 14.3839 24.9137i 0.675817 1.17055i
\(454\) 23.4647 1.10125
\(455\) 2.28057 + 0.564295i 0.106915 + 0.0264545i
\(456\) 30.3406 1.42083
\(457\) −8.13901 + 14.0972i −0.380727 + 0.659438i −0.991166 0.132625i \(-0.957660\pi\)
0.610439 + 0.792063i \(0.290993\pi\)
\(458\) 7.62386 13.2049i 0.356240 0.617025i
\(459\) 0.181223 + 0.313888i 0.00845877 + 0.0146510i
\(460\) −0.0733010 −0.00341768
\(461\) −1.40310 2.43024i −0.0653488 0.113188i 0.831500 0.555525i \(-0.187483\pi\)
−0.896849 + 0.442337i \(0.854149\pi\)
\(462\) 0.436734 + 0.756445i 0.0203187 + 0.0351930i
\(463\) 18.8835 0.877591 0.438795 0.898587i \(-0.355405\pi\)
0.438795 + 0.898587i \(0.355405\pi\)
\(464\) −14.6582 25.3887i −0.680488 1.17864i
\(465\) 10.2269 17.7135i 0.474261 0.821444i
\(466\) −4.87035 + 8.43570i −0.225615 + 0.390776i
\(467\) −25.6295 −1.18599 −0.592997 0.805205i \(-0.702055\pi\)
−0.592997 + 0.805205i \(0.702055\pi\)
\(468\) 1.66563 + 5.76991i 0.0769937 + 0.266714i
\(469\) −0.0592637 −0.00273654
\(470\) 15.8629 27.4753i 0.731701 1.26734i
\(471\) 20.2109 35.0062i 0.931267 1.61300i
\(472\) −21.0276 36.4209i −0.967875 1.67641i
\(473\) −5.41168 −0.248829
\(474\) 5.29607 + 9.17305i 0.243256 + 0.421332i
\(475\) 0.438291 + 0.759142i 0.0201102 + 0.0348318i
\(476\) 0.0733010 0.00335974
\(477\) 11.0527 + 19.1438i 0.506068 + 0.876535i
\(478\) −11.5753 + 20.0490i −0.529442 + 0.917020i
\(479\) −2.24649 + 3.89104i −0.102645 + 0.177786i −0.912774 0.408466i \(-0.866064\pi\)
0.810129 + 0.586252i \(0.199397\pi\)
\(480\) −15.9960 −0.730114
\(481\) −7.72889 26.7737i −0.352407 1.22077i
\(482\) −19.1023 −0.870084
\(483\) 0.0226132 0.0391672i 0.00102894 0.00178217i
\(484\) 0.253509 0.439091i 0.0115232 0.0199587i
\(485\) 17.1706 + 29.7404i 0.779679 + 1.35044i
\(486\) −27.3203 −1.23928
\(487\) 10.9047 + 18.8874i 0.494137 + 0.855871i 0.999977 0.00675665i \(-0.00215073\pi\)
−0.505840 + 0.862627i \(0.668817\pi\)
\(488\) 5.10703 + 8.84564i 0.231185 + 0.400423i
\(489\) 45.9116 2.07619
\(490\) 9.65905 + 16.7300i 0.436352 + 0.755783i
\(491\) −0.179666 + 0.311190i −0.00810820 + 0.0140438i −0.870051 0.492962i \(-0.835914\pi\)
0.861943 + 0.507005i \(0.169248\pi\)
\(492\) 0.241819 0.418843i 0.0109020 0.0188829i
\(493\) −5.44687 −0.245315
\(494\) −12.0684 + 12.5418i −0.542982 + 0.564284i
\(495\) −7.50702 −0.337415
\(496\) −4.87147 + 8.43763i −0.218735 + 0.378861i
\(497\) −0.396081 + 0.686032i −0.0177666 + 0.0307727i
\(498\) −7.26443 12.5824i −0.325527 0.563829i
\(499\) −0.394523 −0.0176613 −0.00883064 0.999961i \(-0.502811\pi\)
−0.00883064 + 0.999961i \(0.502811\pi\)
\(500\) 2.76799 + 4.79430i 0.123788 + 0.214408i
\(501\) −13.5055 23.3921i −0.603380 1.04508i
\(502\) −4.75005 −0.212005
\(503\) 12.7906 + 22.1540i 0.570305 + 0.987797i 0.996534 + 0.0831819i \(0.0265083\pi\)
−0.426230 + 0.904615i \(0.640158\pi\)
\(504\) 1.43473 2.48503i 0.0639081 0.110692i
\(505\) 17.0617 29.5517i 0.759236 1.31504i
\(506\) 0.0773036 0.00343656
\(507\) −28.8307 15.1980i −1.28042 0.674967i
\(508\) −0.426600 −0.0189273
\(509\) 4.44175 7.69334i 0.196877 0.341001i −0.750637 0.660715i \(-0.770253\pi\)
0.947514 + 0.319713i \(0.103587\pi\)
\(510\) 1.77457 3.07364i 0.0785791 0.136103i
\(511\) −0.285142 0.493881i −0.0126140 0.0218480i
\(512\) 24.3382 1.07561
\(513\) −1.41212 2.44586i −0.0623466 0.107987i
\(514\) 8.58076 + 14.8623i 0.378481 + 0.655549i
\(515\) 39.7398 1.75115
\(516\) 3.43940 + 5.95722i 0.151411 + 0.262252i
\(517\) 5.68122 9.84017i 0.249860 0.432770i
\(518\) −1.34641 + 2.33205i −0.0591577 + 0.102464i
\(519\) 53.2740 2.33847
\(520\) 17.5000 18.1865i 0.767426 0.797532i
\(521\) 38.5803 1.69023 0.845117 0.534581i \(-0.179531\pi\)
0.845117 + 0.534581i \(0.179531\pi\)
\(522\) −21.5613 + 37.3452i −0.943711 + 1.63456i
\(523\) −12.1180 + 20.9889i −0.529881 + 0.917781i 0.469511 + 0.882927i \(0.344430\pi\)
−0.999392 + 0.0348547i \(0.988903\pi\)
\(524\) 0.0758449 + 0.131367i 0.00331330 + 0.00573880i
\(525\) 0.158610 0.00692230
\(526\) 12.2917 + 21.2899i 0.535944 + 0.928283i
\(527\) 0.905101 + 1.56768i 0.0394268 + 0.0682892i
\(528\) 6.84139 0.297733
\(529\) 11.4980 + 19.9151i 0.499913 + 0.865875i
\(530\) 9.39408 16.2710i 0.408053 0.706768i
\(531\) −22.5507 + 39.0589i −0.978616 + 1.69501i
\(532\) −0.571173 −0.0247635
\(533\) 0.380486 + 1.31804i 0.0164807 + 0.0570907i
\(534\) −11.3796 −0.492443
\(535\) −17.9874 + 31.1551i −0.777664 + 1.34695i
\(536\) −0.318333 + 0.551369i −0.0137499 + 0.0238155i
\(537\) 5.19526 + 8.99845i 0.224192 + 0.388312i
\(538\) 7.67967 0.331094
\(539\) 3.45935 + 5.99176i 0.149005 + 0.258084i
\(540\) 0.414120 + 0.717278i 0.0178209 + 0.0308667i
\(541\) 9.10538 0.391471 0.195735 0.980657i \(-0.437291\pi\)
0.195735 + 0.980657i \(0.437291\pi\)
\(542\) 19.4230 + 33.6417i 0.834291 + 1.44503i
\(543\) 25.4226 44.0332i 1.09099 1.88965i
\(544\) 0.707839 1.22601i 0.0303483 0.0525649i
\(545\) −43.3373 −1.85637
\(546\) 0.873467 + 3.02578i 0.0373810 + 0.129491i
\(547\) −42.0109 −1.79626 −0.898129 0.439733i \(-0.855073\pi\)
−0.898129 + 0.439733i \(0.855073\pi\)
\(548\) −2.73591 + 4.73874i −0.116872 + 0.202429i
\(549\) 5.47694 9.48634i 0.233750 0.404867i
\(550\) 0.135553 + 0.234784i 0.00577998 + 0.0100112i
\(551\) 42.4429 1.80813
\(552\) −0.242932 0.420771i −0.0103399 0.0179092i
\(553\) −0.492981 0.853869i −0.0209637 0.0363102i
\(554\) −20.5694 −0.873910
\(555\) −22.1390 38.3459i −0.939749 1.62769i
\(556\) 0.933619 1.61708i 0.0395943 0.0685793i
\(557\) −5.30620 + 9.19061i −0.224831 + 0.389418i −0.956269 0.292490i \(-0.905516\pi\)
0.731438 + 0.681908i \(0.238850\pi\)
\(558\) 14.3313 0.606690
\(559\) −18.9409 4.68665i −0.801113 0.198224i
\(560\) −1.77812 −0.0751394
\(561\) 0.635553 1.10081i 0.0268331 0.0464762i
\(562\) −5.55425 + 9.62024i −0.234292 + 0.405805i
\(563\) 9.69726 + 16.7961i 0.408691 + 0.707873i 0.994743 0.102400i \(-0.0326521\pi\)
−0.586052 + 0.810273i \(0.699319\pi\)
\(564\) −14.4429 −0.608154
\(565\) −16.7359 28.9875i −0.704085 1.21951i
\(566\) 14.1460 + 24.5016i 0.594602 + 1.02988i
\(567\) 2.29918 0.0965565
\(568\) 4.25507 + 7.36999i 0.178539 + 0.309238i
\(569\) −16.8313 + 29.1526i −0.705603 + 1.22214i 0.260870 + 0.965374i \(0.415990\pi\)
−0.966473 + 0.256766i \(0.917343\pi\)
\(570\) −13.8277 + 23.9503i −0.579179 + 1.00317i
\(571\) −11.0250 −0.461380 −0.230690 0.973027i \(-0.574098\pi\)
−0.230690 + 0.973027i \(0.574098\pi\)
\(572\) 1.26755 1.31727i 0.0529988 0.0550780i
\(573\) −11.5812 −0.483812
\(574\) 0.0662823 0.114804i 0.00276657 0.00479184i
\(575\) 0.00701864 0.0121566i 0.000292698 0.000506967i
\(576\) −14.5687 25.2338i −0.607030 1.05141i
\(577\) 11.1898 0.465837 0.232919 0.972496i \(-0.425172\pi\)
0.232919 + 0.972496i \(0.425172\pi\)
\(578\) −10.2289 17.7170i −0.425466 0.736929i
\(579\) −7.14101 12.3686i −0.296770 0.514021i
\(580\) −12.4469 −0.516828
\(581\) 0.676206 + 1.17122i 0.0280537 + 0.0485905i
\(582\) −23.0175 + 39.8675i −0.954106 + 1.65256i
\(583\) 3.36445 5.82739i 0.139341 0.241346i
\(584\) −6.12653 −0.253518
\(585\) −26.2746 6.50127i −1.08632 0.268794i
\(586\) −27.3375 −1.12930
\(587\) −2.22889 + 3.86056i −0.0919963 + 0.159342i −0.908351 0.418209i \(-0.862658\pi\)
0.816355 + 0.577551i \(0.195991\pi\)
\(588\) 4.39719 7.61616i 0.181337 0.314085i
\(589\) −7.05269 12.2156i −0.290601 0.503336i
\(590\) 38.3333 1.57816
\(591\) −2.33081 4.03709i −0.0958768 0.166064i
\(592\) 10.5457 + 18.2656i 0.433424 + 0.750713i
\(593\) −28.0733 −1.15283 −0.576416 0.817156i \(-0.695549\pi\)
−0.576416 + 0.817156i \(0.695549\pi\)
\(594\) −0.436734 0.756445i −0.0179194 0.0310373i
\(595\) −0.165184 + 0.286108i −0.00677190 + 0.0117293i
\(596\) 2.75551 4.77268i 0.112870 0.195497i
\(597\) −20.7258 −0.848250
\(598\) 0.270563 + 0.0669469i 0.0110641 + 0.00273766i
\(599\) 17.6304 0.720360 0.360180 0.932883i \(-0.382715\pi\)
0.360180 + 0.932883i \(0.382715\pi\)
\(600\) 0.851967 1.47565i 0.0347814 0.0602432i
\(601\) −3.34885 + 5.80038i −0.136603 + 0.236603i −0.926209 0.377012i \(-0.876952\pi\)
0.789606 + 0.613614i \(0.210285\pi\)
\(602\) 0.942738 + 1.63287i 0.0384231 + 0.0665508i
\(603\) 0.682780 0.0278050
\(604\) 2.90900 + 5.03854i 0.118366 + 0.205015i
\(605\) 1.14257 + 1.97899i 0.0464521 + 0.0804574i
\(606\) 45.7429 1.85818
\(607\) 5.57730 + 9.66017i 0.226376 + 0.392094i 0.956731 0.290973i \(-0.0939789\pi\)
−0.730356 + 0.683067i \(0.760646\pi\)
\(608\) −5.51559 + 9.55329i −0.223687 + 0.387437i
\(609\) 3.83983 6.65079i 0.155598 0.269503i
\(610\) −9.31010 −0.376955
\(611\) 28.4061 29.5205i 1.14919 1.19427i
\(612\) −0.844505 −0.0341371
\(613\) 7.66017 13.2678i 0.309391 0.535881i −0.668838 0.743408i \(-0.733208\pi\)
0.978229 + 0.207527i \(0.0665414\pi\)
\(614\) 4.72188 8.17853i 0.190559 0.330059i
\(615\) 1.08988 + 1.88773i 0.0439483 + 0.0761207i
\(616\) −0.873467 −0.0351930
\(617\) −12.2409 21.2019i −0.492801 0.853557i 0.507164 0.861849i \(-0.330694\pi\)
−0.999966 + 0.00829247i \(0.997360\pi\)
\(618\) 26.6359 + 46.1347i 1.07145 + 1.85581i
\(619\) 14.3624 0.577275 0.288638 0.957438i \(-0.406798\pi\)
0.288638 + 0.957438i \(0.406798\pi\)
\(620\) 2.06828 + 3.58237i 0.0830643 + 0.143872i
\(621\) −0.0226132 + 0.0391672i −0.000907437 + 0.00157173i
\(622\) −14.4925 + 25.1018i −0.581098 + 1.00649i
\(623\) 1.05926 0.0424385
\(624\) 23.9449 + 5.92482i 0.958562 + 0.237183i
\(625\) −26.0602 −1.04241
\(626\) 1.52115 2.63472i 0.0607976 0.105304i
\(627\) −4.95233 + 8.57768i −0.197777 + 0.342560i
\(628\) 4.08744 + 7.07965i 0.163106 + 0.282509i
\(629\) 3.91869 0.156249
\(630\) 1.30776 + 2.26510i 0.0521022 + 0.0902437i
\(631\) −12.7093 22.0131i −0.505949 0.876330i −0.999976 0.00688316i \(-0.997809\pi\)
0.494027 0.869446i \(-0.335524\pi\)
\(632\) −10.5921 −0.421332
\(633\) 3.52261 + 6.10135i 0.140011 + 0.242507i
\(634\) −3.38404 + 5.86134i −0.134398 + 0.232783i
\(635\) 0.961348 1.66510i 0.0381499 0.0660776i
\(636\) −8.55313 −0.339154
\(637\) 6.91869 + 23.9671i 0.274129 + 0.949609i
\(638\) 13.1265 0.519684
\(639\) 4.56327 7.90381i 0.180520 0.312670i
\(640\) −6.00200 + 10.3958i −0.237250 + 0.410929i
\(641\) 9.34485 + 16.1858i 0.369099 + 0.639299i 0.989425 0.145046i \(-0.0463329\pi\)
−0.620326 + 0.784344i \(0.713000\pi\)
\(642\) −48.2248 −1.90328
\(643\) −0.110938 0.192150i −0.00437497 0.00757767i 0.863830 0.503784i \(-0.168059\pi\)
−0.868205 + 0.496206i \(0.834726\pi\)
\(644\) 0.00457329 + 0.00792116i 0.000180213 + 0.000312138i
\(645\) −31.0029 −1.22074
\(646\) −1.22378 2.11965i −0.0481489 0.0833964i
\(647\) 5.03008 8.71235i 0.197753 0.342518i −0.750047 0.661385i \(-0.769969\pi\)
0.947799 + 0.318867i \(0.103302\pi\)
\(648\) 12.3500 21.3908i 0.485152 0.840309i
\(649\) 13.7289 0.538906
\(650\) 0.271105 + 0.939136i 0.0106336 + 0.0368359i
\(651\) −2.55225 −0.100030
\(652\) −4.64257 + 8.04117i −0.181817 + 0.314916i
\(653\) −12.5687 + 21.7697i −0.491852 + 0.851913i −0.999956 0.00938271i \(-0.997013\pi\)
0.508104 + 0.861296i \(0.330347\pi\)
\(654\) −29.0471 50.3111i −1.13583 1.96732i
\(655\) −0.683668 −0.0267131
\(656\) −0.519153 0.899200i −0.0202695 0.0351078i
\(657\) 3.28514 + 5.69003i 0.128166 + 0.221989i
\(658\) −3.95878 −0.154329
\(659\) 15.3765 + 26.6329i 0.598983 + 1.03747i 0.992972 + 0.118353i \(0.0377615\pi\)
−0.393989 + 0.919115i \(0.628905\pi\)
\(660\) 1.45233 2.51551i 0.0565318 0.0979159i
\(661\) −22.0667 + 38.2207i −0.858296 + 1.48661i 0.0152568 + 0.999884i \(0.495143\pi\)
−0.873553 + 0.486729i \(0.838190\pi\)
\(662\) 24.1626 0.939107
\(663\) 3.17776 3.30243i 0.123414 0.128256i
\(664\) 14.5289 0.563829
\(665\) 1.28714 2.22940i 0.0499133 0.0864524i
\(666\) 15.5120 26.8676i 0.601079 1.04110i
\(667\) −0.339833 0.588608i −0.0131584 0.0227910i
\(668\) 5.46268 0.211357
\(669\) −17.6245 30.5266i −0.681404 1.18023i
\(670\) −0.290160 0.502572i −0.0112099 0.0194160i
\(671\) −3.33437 −0.128722
\(672\) 0.997999 + 1.72858i 0.0384986 + 0.0666816i
\(673\) −9.82580 + 17.0188i −0.378757 + 0.656026i −0.990882 0.134735i \(-0.956982\pi\)
0.612125 + 0.790761i \(0.290315\pi\)
\(674\) 11.7213 20.3019i 0.451489 0.782002i
\(675\) −0.158610 −0.00610490
\(676\) 5.57721 3.51273i 0.214508 0.135105i
\(677\) 26.0250 1.00022 0.500110 0.865962i \(-0.333293\pi\)
0.500110 + 0.865962i \(0.333293\pi\)
\(678\) 22.4347 38.8581i 0.861601 1.49234i
\(679\) 2.14257 3.71104i 0.0822243 0.142417i
\(680\) 1.77457 + 3.07364i 0.0680515 + 0.117869i
\(681\) 48.1444 1.84490
\(682\) −2.18122 3.77799i −0.0835233 0.144667i
\(683\) −7.23045 12.5235i −0.276666 0.479199i 0.693888 0.720083i \(-0.255896\pi\)
−0.970554 + 0.240884i \(0.922563\pi\)
\(684\) 6.58052 0.251612
\(685\) −12.3308 21.3576i −0.471136 0.816032i
\(686\) 2.42470 4.19970i 0.0925754 0.160345i
\(687\) 15.6425 27.0936i 0.596798 1.03368i
\(688\) 14.7679 0.563021
\(689\) 16.8222 17.4822i 0.640876 0.666018i
\(690\) 0.442864 0.0168596
\(691\) 4.35543 7.54382i 0.165688 0.286980i −0.771211 0.636579i \(-0.780349\pi\)
0.936899 + 0.349599i \(0.113682\pi\)
\(692\) −5.38706 + 9.33066i −0.204785 + 0.354699i
\(693\) 0.468367 + 0.811235i 0.0177918 + 0.0308163i
\(694\) 1.70393 0.0646805
\(695\) 4.20784 + 7.28819i 0.159612 + 0.276457i
\(696\) −41.2511 71.4489i −1.56362 2.70827i
\(697\) −0.192913 −0.00730712
\(698\) −5.00156 8.66295i −0.189312 0.327898i
\(699\) −9.99288 + 17.3082i −0.377966 + 0.654656i
\(700\) −0.0160386 + 0.0277797i −0.000606202 + 0.00104997i
\(701\) 37.5732 1.41912 0.709560 0.704645i \(-0.248894\pi\)
0.709560 + 0.704645i \(0.248894\pi\)
\(702\) −0.873467 3.02578i −0.0329669 0.114201i
\(703\) −30.5351 −1.15165
\(704\) −4.43473 + 7.68118i −0.167140 + 0.289495i
\(705\) 32.5471 56.3733i 1.22580 2.12314i
\(706\) −15.1617 26.2609i −0.570619 0.988341i
\(707\) −4.25796 −0.160137
\(708\) −8.72543 15.1129i −0.327922 0.567977i
\(709\) −5.45979 9.45664i −0.205047 0.355151i 0.745101 0.666952i \(-0.232401\pi\)
−0.950148 + 0.311800i \(0.899068\pi\)
\(710\) −7.75697 −0.291114
\(711\) 5.67967 + 9.83747i 0.213004 + 0.368934i
\(712\) 5.68980 9.85502i 0.213234 0.369333i
\(713\) −0.112939 + 0.195617i −0.00422961 + 0.00732591i
\(714\) −0.442864 −0.0165738
\(715\) 2.28514 + 7.91597i 0.0854595 + 0.296040i
\(716\) −2.10138 −0.0785321
\(717\) −23.7500 + 41.1361i −0.886958 + 1.53626i
\(718\) −1.26053 + 2.18330i −0.0470425 + 0.0814800i
\(719\) −17.3046 29.9725i −0.645354 1.11779i −0.984220 0.176951i \(-0.943376\pi\)
0.338865 0.940835i \(-0.389957\pi\)
\(720\) 20.4859 0.763463
\(721\) −2.47939 4.29443i −0.0923372 0.159933i
\(722\) −2.07194 3.58871i −0.0771097 0.133558i
\(723\) −39.1936 −1.45763
\(724\) 5.14146 + 8.90527i 0.191081 + 0.330962i
\(725\) 1.19180 2.06426i 0.0442624 0.0766646i
\(726\) −1.53163 + 2.65287i −0.0568442 + 0.0984571i
\(727\) 19.3281 0.716841 0.358421 0.933560i \(-0.383315\pi\)
0.358421 + 0.933560i \(0.383315\pi\)
\(728\) −3.05714 0.756445i −0.113305 0.0280357i
\(729\) −31.8655 −1.18020
\(730\) 2.79216 4.83616i 0.103343 0.178994i
\(731\) 1.37191 2.37622i 0.0507419 0.0878876i
\(732\) 2.11917 + 3.67051i 0.0783267 + 0.135666i
\(733\) 8.03519 0.296787 0.148393 0.988928i \(-0.452590\pi\)
0.148393 + 0.988928i \(0.452590\pi\)
\(734\) 15.6280 + 27.0685i 0.576840 + 0.999116i
\(735\) 19.8182 + 34.3262i 0.731007 + 1.26614i
\(736\) 0.176650 0.00651140
\(737\) −0.103919 0.179994i −0.00382792 0.00663015i
\(738\) −0.763643 + 1.32267i −0.0281101 + 0.0486881i
\(739\) 7.51448 13.0155i 0.276425 0.478782i −0.694069 0.719909i \(-0.744184\pi\)
0.970494 + 0.241127i \(0.0775170\pi\)
\(740\) 8.95477 0.329184
\(741\) −24.7616 + 25.7331i −0.909642 + 0.945327i
\(742\) −2.34441 −0.0860659
\(743\) 20.8503 36.1138i 0.764924 1.32489i −0.175363 0.984504i \(-0.556110\pi\)
0.940287 0.340383i \(-0.110557\pi\)
\(744\) −13.7093 + 23.7452i −0.502607 + 0.870541i
\(745\) 12.4191 + 21.5106i 0.455002 + 0.788087i
\(746\) −14.7741 −0.540919
\(747\) −7.79060 13.4937i −0.285043 0.493709i
\(748\) 0.128534 + 0.222627i 0.00469967 + 0.00814006i
\(749\) 4.48898 0.164024
\(750\) −16.7234 28.9658i −0.610653 1.05768i
\(751\) 13.0913 22.6749i 0.477710 0.827418i −0.521964 0.852968i \(-0.674800\pi\)
0.999674 + 0.0255500i \(0.00813371\pi\)
\(752\) −15.5035 + 26.8528i −0.565353 + 0.979220i
\(753\) −9.74605 −0.355166
\(754\) 45.9429 + 11.3679i 1.67314 + 0.413995i
\(755\) −26.2219 −0.954312
\(756\) 0.0516744 0.0895027i 0.00187938 0.00325518i
\(757\) −25.1867 + 43.6246i −0.915426 + 1.58556i −0.109149 + 0.994025i \(0.534812\pi\)
−0.806277 + 0.591538i \(0.798521\pi\)
\(758\) 9.63946 + 16.6960i 0.350121 + 0.606427i
\(759\) 0.158610 0.00575717
\(760\) −13.8277 23.9503i −0.501583 0.868768i
\(761\) 7.54411 + 13.0668i 0.273474 + 0.473671i 0.969749 0.244104i \(-0.0784940\pi\)
−0.696275 + 0.717775i \(0.745161\pi\)
\(762\) 2.57740 0.0933694
\(763\) 2.70384 + 4.68318i 0.0978854 + 0.169543i
\(764\) 1.17109 2.02839i 0.0423685 0.0733845i
\(765\) 1.90310 3.29626i 0.0688067 0.119177i
\(766\) −26.5881 −0.960668
\(767\) 48.0511 + 11.8896i 1.73503 + 0.429308i
\(768\) 28.3803 1.02409
\(769\) −17.0547 + 29.5396i −0.615008 + 1.06522i 0.375375 + 0.926873i \(0.377514\pi\)
−0.990383 +