Properties

Label 143.2.a
Level $143$
Weight $2$
Character orbit 143.a
Rep. character $\chi_{143}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $3$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 143.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(143))\).

Total New Old
Modular forms 16 11 5
Cusp forms 13 11 2
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(1\)\(1\)\(0\)\(1\)\(1\)\(0\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(7\)\(6\)\(1\)\(6\)\(6\)\(0\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(6\)\(4\)\(2\)\(5\)\(4\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
Minus space\(-\)\(13\)\(10\)\(3\)\(11\)\(10\)\(1\)\(2\)\(0\)\(2\)

Trace form

\( 11 q + 3 q^{2} + 2 q^{3} + 9 q^{4} - 4 q^{6} + 8 q^{7} + 3 q^{8} + 13 q^{9} - 2 q^{10} - 3 q^{11} + q^{13} - 16 q^{14} - 6 q^{15} + 17 q^{16} + 2 q^{17} - 9 q^{18} - 18 q^{20} - 12 q^{21} + 3 q^{22} + 14 q^{23}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(143))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 13
143.2.a.a 143.a 1.a $1$ $1.142$ \(\Q\) None 143.2.a.a \(0\) \(-1\) \(-1\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}-q^{5}-2q^{7}-2q^{9}-q^{11}+\cdots\)
143.2.a.b 143.a 1.a $4$ $1.142$ 4.4.1957.1 None 143.2.a.b \(3\) \(0\) \(0\) \(6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(-\beta _{2}-\beta _{3})q^{3}+\cdots\)
143.2.a.c 143.a 1.a $6$ $1.142$ 6.6.194616205.1 None 143.2.a.c \(0\) \(3\) \(1\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(143))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(143)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)