Properties

Label 143.1.d
Level $143$
Weight $1$
Character orbit 143.d
Rep. character $\chi_{143}(142,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $14$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 143 = 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 143.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 143 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(14\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(143, [\chi])\).

Total New Old
Modular forms 6 6 0
Cusp forms 4 4 0
Eisenstein series 2 2 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{3} + 2 q^{4} + 2 q^{9} - 6 q^{12} - 4 q^{14} - 2 q^{22} - 2 q^{23} + 4 q^{25} - 2 q^{26} - 4 q^{27} + 6 q^{36} + 6 q^{38} + 2 q^{42} + 2 q^{49} - 2 q^{53} + 2 q^{56} - 2 q^{64} + 6 q^{66} - 4 q^{69}+ \cdots + 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(143, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
143.1.d.a 143.d 143.d $2$ $0.071$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-143}) \) None 143.1.d.a \(-1\) \(-1\) \(0\) \(-1\) \(q+(-1+\beta )q^{2}+(-1+\beta )q^{3}+(1-\beta )q^{4}+\cdots\)
143.1.d.b 143.d 143.d $2$ $0.071$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-143}) \) None 143.1.d.a \(1\) \(-1\) \(0\) \(1\) \(q+(1-\beta )q^{2}+(-1+\beta )q^{3}+(1-\beta )q^{4}+\cdots\)