Properties

Label 1425.4.a.f
Level $1425$
Weight $4$
Character orbit 1425.a
Self dual yes
Analytic conductor $84.078$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,4,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.0777217582\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 3 q^{3} + q^{4} + 9 q^{6} - 32 q^{7} - 21 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{2} + 3 q^{3} + q^{4} + 9 q^{6} - 32 q^{7} - 21 q^{8} + 9 q^{9} - 12 q^{11} + 3 q^{12} + 10 q^{13} - 96 q^{14} - 71 q^{16} + 30 q^{17} + 27 q^{18} + 19 q^{19} - 96 q^{21} - 36 q^{22} + 48 q^{23} - 63 q^{24} + 30 q^{26} + 27 q^{27} - 32 q^{28} + 150 q^{29} + 224 q^{31} - 45 q^{32} - 36 q^{33} + 90 q^{34} + 9 q^{36} - 254 q^{37} + 57 q^{38} + 30 q^{39} - 54 q^{41} - 288 q^{42} + 196 q^{43} - 12 q^{44} + 144 q^{46} + 504 q^{47} - 213 q^{48} + 681 q^{49} + 90 q^{51} + 10 q^{52} - 78 q^{53} + 81 q^{54} + 672 q^{56} + 57 q^{57} + 450 q^{58} + 132 q^{59} + 230 q^{61} + 672 q^{62} - 288 q^{63} + 433 q^{64} - 108 q^{66} - 740 q^{67} + 30 q^{68} + 144 q^{69} - 120 q^{71} - 189 q^{72} - 122 q^{73} - 762 q^{74} + 19 q^{76} + 384 q^{77} + 90 q^{78} + 1184 q^{79} + 81 q^{81} - 162 q^{82} - 612 q^{83} - 96 q^{84} + 588 q^{86} + 450 q^{87} + 252 q^{88} + 1050 q^{89} - 320 q^{91} + 48 q^{92} + 672 q^{93} + 1512 q^{94} - 135 q^{96} + 1006 q^{97} + 2043 q^{98} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 3.00000 1.00000 0 9.00000 −32.0000 −21.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.4.a.f 1
5.b even 2 1 285.4.a.a 1
15.d odd 2 1 855.4.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.4.a.a 1 5.b even 2 1
855.4.a.f 1 15.d odd 2 1
1425.4.a.f 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1425))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{7} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 32 \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T - 10 \) Copy content Toggle raw display
$17$ \( T - 30 \) Copy content Toggle raw display
$19$ \( T - 19 \) Copy content Toggle raw display
$23$ \( T - 48 \) Copy content Toggle raw display
$29$ \( T - 150 \) Copy content Toggle raw display
$31$ \( T - 224 \) Copy content Toggle raw display
$37$ \( T + 254 \) Copy content Toggle raw display
$41$ \( T + 54 \) Copy content Toggle raw display
$43$ \( T - 196 \) Copy content Toggle raw display
$47$ \( T - 504 \) Copy content Toggle raw display
$53$ \( T + 78 \) Copy content Toggle raw display
$59$ \( T - 132 \) Copy content Toggle raw display
$61$ \( T - 230 \) Copy content Toggle raw display
$67$ \( T + 740 \) Copy content Toggle raw display
$71$ \( T + 120 \) Copy content Toggle raw display
$73$ \( T + 122 \) Copy content Toggle raw display
$79$ \( T - 1184 \) Copy content Toggle raw display
$83$ \( T + 612 \) Copy content Toggle raw display
$89$ \( T - 1050 \) Copy content Toggle raw display
$97$ \( T - 1006 \) Copy content Toggle raw display
show more
show less