Properties

Label 1425.4.a.e.1.1
Level $1425$
Weight $4$
Character 1425.1
Self dual yes
Analytic conductor $84.078$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,4,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.0777217582\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} -4.00000 q^{4} -6.00000 q^{6} -9.00000 q^{7} -24.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -3.00000 q^{3} -4.00000 q^{4} -6.00000 q^{6} -9.00000 q^{7} -24.0000 q^{8} +9.00000 q^{9} -62.0000 q^{11} +12.0000 q^{12} +38.0000 q^{13} -18.0000 q^{14} -16.0000 q^{16} -76.0000 q^{17} +18.0000 q^{18} -19.0000 q^{19} +27.0000 q^{21} -124.000 q^{22} -42.0000 q^{23} +72.0000 q^{24} +76.0000 q^{26} -27.0000 q^{27} +36.0000 q^{28} -259.000 q^{29} -120.000 q^{31} +160.000 q^{32} +186.000 q^{33} -152.000 q^{34} -36.0000 q^{36} -230.000 q^{37} -38.0000 q^{38} -114.000 q^{39} +455.000 q^{41} +54.0000 q^{42} -340.000 q^{43} +248.000 q^{44} -84.0000 q^{46} +224.000 q^{47} +48.0000 q^{48} -262.000 q^{49} +228.000 q^{51} -152.000 q^{52} -61.0000 q^{53} -54.0000 q^{54} +216.000 q^{56} +57.0000 q^{57} -518.000 q^{58} -119.000 q^{59} -113.000 q^{61} -240.000 q^{62} -81.0000 q^{63} +448.000 q^{64} +372.000 q^{66} +468.000 q^{67} +304.000 q^{68} +126.000 q^{69} +995.000 q^{71} -216.000 q^{72} -271.000 q^{73} -460.000 q^{74} +76.0000 q^{76} +558.000 q^{77} -228.000 q^{78} +318.000 q^{79} +81.0000 q^{81} +910.000 q^{82} -336.000 q^{83} -108.000 q^{84} -680.000 q^{86} +777.000 q^{87} +1488.00 q^{88} -945.000 q^{89} -342.000 q^{91} +168.000 q^{92} +360.000 q^{93} +448.000 q^{94} -480.000 q^{96} -872.000 q^{97} -524.000 q^{98} -558.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −3.00000 −0.577350
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) −9.00000 −0.485954 −0.242977 0.970032i \(-0.578124\pi\)
−0.242977 + 0.970032i \(0.578124\pi\)
\(8\) −24.0000 −1.06066
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −62.0000 −1.69943 −0.849714 0.527244i \(-0.823225\pi\)
−0.849714 + 0.527244i \(0.823225\pi\)
\(12\) 12.0000 0.288675
\(13\) 38.0000 0.810716 0.405358 0.914158i \(-0.367147\pi\)
0.405358 + 0.914158i \(0.367147\pi\)
\(14\) −18.0000 −0.343622
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) −76.0000 −1.08428 −0.542138 0.840289i \(-0.682385\pi\)
−0.542138 + 0.840289i \(0.682385\pi\)
\(18\) 18.0000 0.235702
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) 27.0000 0.280566
\(22\) −124.000 −1.20168
\(23\) −42.0000 −0.380765 −0.190383 0.981710i \(-0.560973\pi\)
−0.190383 + 0.981710i \(0.560973\pi\)
\(24\) 72.0000 0.612372
\(25\) 0 0
\(26\) 76.0000 0.573263
\(27\) −27.0000 −0.192450
\(28\) 36.0000 0.242977
\(29\) −259.000 −1.65845 −0.829226 0.558914i \(-0.811218\pi\)
−0.829226 + 0.558914i \(0.811218\pi\)
\(30\) 0 0
\(31\) −120.000 −0.695246 −0.347623 0.937634i \(-0.613011\pi\)
−0.347623 + 0.937634i \(0.613011\pi\)
\(32\) 160.000 0.883883
\(33\) 186.000 0.981165
\(34\) −152.000 −0.766700
\(35\) 0 0
\(36\) −36.0000 −0.166667
\(37\) −230.000 −1.02194 −0.510970 0.859599i \(-0.670714\pi\)
−0.510970 + 0.859599i \(0.670714\pi\)
\(38\) −38.0000 −0.162221
\(39\) −114.000 −0.468067
\(40\) 0 0
\(41\) 455.000 1.73315 0.866574 0.499049i \(-0.166317\pi\)
0.866574 + 0.499049i \(0.166317\pi\)
\(42\) 54.0000 0.198390
\(43\) −340.000 −1.20580 −0.602901 0.797816i \(-0.705989\pi\)
−0.602901 + 0.797816i \(0.705989\pi\)
\(44\) 248.000 0.849714
\(45\) 0 0
\(46\) −84.0000 −0.269242
\(47\) 224.000 0.695186 0.347593 0.937645i \(-0.386999\pi\)
0.347593 + 0.937645i \(0.386999\pi\)
\(48\) 48.0000 0.144338
\(49\) −262.000 −0.763848
\(50\) 0 0
\(51\) 228.000 0.626008
\(52\) −152.000 −0.405358
\(53\) −61.0000 −0.158094 −0.0790471 0.996871i \(-0.525188\pi\)
−0.0790471 + 0.996871i \(0.525188\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) 216.000 0.515432
\(57\) 57.0000 0.132453
\(58\) −518.000 −1.17270
\(59\) −119.000 −0.262584 −0.131292 0.991344i \(-0.541913\pi\)
−0.131292 + 0.991344i \(0.541913\pi\)
\(60\) 0 0
\(61\) −113.000 −0.237183 −0.118592 0.992943i \(-0.537838\pi\)
−0.118592 + 0.992943i \(0.537838\pi\)
\(62\) −240.000 −0.491613
\(63\) −81.0000 −0.161985
\(64\) 448.000 0.875000
\(65\) 0 0
\(66\) 372.000 0.693788
\(67\) 468.000 0.853363 0.426681 0.904402i \(-0.359683\pi\)
0.426681 + 0.904402i \(0.359683\pi\)
\(68\) 304.000 0.542138
\(69\) 126.000 0.219835
\(70\) 0 0
\(71\) 995.000 1.66317 0.831583 0.555401i \(-0.187435\pi\)
0.831583 + 0.555401i \(0.187435\pi\)
\(72\) −216.000 −0.353553
\(73\) −271.000 −0.434495 −0.217248 0.976117i \(-0.569708\pi\)
−0.217248 + 0.976117i \(0.569708\pi\)
\(74\) −460.000 −0.722620
\(75\) 0 0
\(76\) 76.0000 0.114708
\(77\) 558.000 0.825844
\(78\) −228.000 −0.330973
\(79\) 318.000 0.452883 0.226442 0.974025i \(-0.427291\pi\)
0.226442 + 0.974025i \(0.427291\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 910.000 1.22552
\(83\) −336.000 −0.444347 −0.222173 0.975007i \(-0.571315\pi\)
−0.222173 + 0.975007i \(0.571315\pi\)
\(84\) −108.000 −0.140283
\(85\) 0 0
\(86\) −680.000 −0.852631
\(87\) 777.000 0.957507
\(88\) 1488.00 1.80252
\(89\) −945.000 −1.12550 −0.562752 0.826626i \(-0.690257\pi\)
−0.562752 + 0.826626i \(0.690257\pi\)
\(90\) 0 0
\(91\) −342.000 −0.393971
\(92\) 168.000 0.190383
\(93\) 360.000 0.401401
\(94\) 448.000 0.491571
\(95\) 0 0
\(96\) −480.000 −0.510310
\(97\) −872.000 −0.912765 −0.456382 0.889784i \(-0.650855\pi\)
−0.456382 + 0.889784i \(0.650855\pi\)
\(98\) −524.000 −0.540122
\(99\) −558.000 −0.566476
\(100\) 0 0
\(101\) 954.000 0.939867 0.469933 0.882702i \(-0.344278\pi\)
0.469933 + 0.882702i \(0.344278\pi\)
\(102\) 456.000 0.442654
\(103\) 1246.00 1.19196 0.595981 0.802999i \(-0.296763\pi\)
0.595981 + 0.802999i \(0.296763\pi\)
\(104\) −912.000 −0.859894
\(105\) 0 0
\(106\) −122.000 −0.111790
\(107\) 1581.00 1.42842 0.714210 0.699931i \(-0.246786\pi\)
0.714210 + 0.699931i \(0.246786\pi\)
\(108\) 108.000 0.0962250
\(109\) −790.000 −0.694204 −0.347102 0.937827i \(-0.612834\pi\)
−0.347102 + 0.937827i \(0.612834\pi\)
\(110\) 0 0
\(111\) 690.000 0.590017
\(112\) 144.000 0.121489
\(113\) 1922.00 1.60006 0.800029 0.599961i \(-0.204817\pi\)
0.800029 + 0.599961i \(0.204817\pi\)
\(114\) 114.000 0.0936586
\(115\) 0 0
\(116\) 1036.00 0.829226
\(117\) 342.000 0.270239
\(118\) −238.000 −0.185675
\(119\) 684.000 0.526909
\(120\) 0 0
\(121\) 2513.00 1.88805
\(122\) −226.000 −0.167714
\(123\) −1365.00 −1.00063
\(124\) 480.000 0.347623
\(125\) 0 0
\(126\) −162.000 −0.114541
\(127\) −1972.00 −1.37785 −0.688924 0.724834i \(-0.741917\pi\)
−0.688924 + 0.724834i \(0.741917\pi\)
\(128\) −384.000 −0.265165
\(129\) 1020.00 0.696170
\(130\) 0 0
\(131\) 1086.00 0.724307 0.362154 0.932118i \(-0.382042\pi\)
0.362154 + 0.932118i \(0.382042\pi\)
\(132\) −744.000 −0.490582
\(133\) 171.000 0.111486
\(134\) 936.000 0.603419
\(135\) 0 0
\(136\) 1824.00 1.15005
\(137\) −2568.00 −1.60145 −0.800726 0.599030i \(-0.795553\pi\)
−0.800726 + 0.599030i \(0.795553\pi\)
\(138\) 252.000 0.155447
\(139\) 1547.00 0.943992 0.471996 0.881601i \(-0.343534\pi\)
0.471996 + 0.881601i \(0.343534\pi\)
\(140\) 0 0
\(141\) −672.000 −0.401366
\(142\) 1990.00 1.17604
\(143\) −2356.00 −1.37775
\(144\) −144.000 −0.0833333
\(145\) 0 0
\(146\) −542.000 −0.307235
\(147\) 786.000 0.441008
\(148\) 920.000 0.510970
\(149\) −1102.00 −0.605902 −0.302951 0.953006i \(-0.597972\pi\)
−0.302951 + 0.953006i \(0.597972\pi\)
\(150\) 0 0
\(151\) 2524.00 1.36027 0.680133 0.733089i \(-0.261922\pi\)
0.680133 + 0.733089i \(0.261922\pi\)
\(152\) 456.000 0.243332
\(153\) −684.000 −0.361426
\(154\) 1116.00 0.583960
\(155\) 0 0
\(156\) 456.000 0.234033
\(157\) −2381.00 −1.21035 −0.605174 0.796094i \(-0.706896\pi\)
−0.605174 + 0.796094i \(0.706896\pi\)
\(158\) 636.000 0.320237
\(159\) 183.000 0.0912757
\(160\) 0 0
\(161\) 378.000 0.185035
\(162\) 162.000 0.0785674
\(163\) −953.000 −0.457943 −0.228972 0.973433i \(-0.573536\pi\)
−0.228972 + 0.973433i \(0.573536\pi\)
\(164\) −1820.00 −0.866574
\(165\) 0 0
\(166\) −672.000 −0.314201
\(167\) 2889.00 1.33867 0.669334 0.742962i \(-0.266580\pi\)
0.669334 + 0.742962i \(0.266580\pi\)
\(168\) −648.000 −0.297585
\(169\) −753.000 −0.342740
\(170\) 0 0
\(171\) −171.000 −0.0764719
\(172\) 1360.00 0.602901
\(173\) −1851.00 −0.813462 −0.406731 0.913548i \(-0.633331\pi\)
−0.406731 + 0.913548i \(0.633331\pi\)
\(174\) 1554.00 0.677060
\(175\) 0 0
\(176\) 992.000 0.424857
\(177\) 357.000 0.151603
\(178\) −1890.00 −0.795851
\(179\) 2407.00 1.00507 0.502535 0.864557i \(-0.332401\pi\)
0.502535 + 0.864557i \(0.332401\pi\)
\(180\) 0 0
\(181\) −340.000 −0.139624 −0.0698122 0.997560i \(-0.522240\pi\)
−0.0698122 + 0.997560i \(0.522240\pi\)
\(182\) −684.000 −0.278579
\(183\) 339.000 0.136938
\(184\) 1008.00 0.403863
\(185\) 0 0
\(186\) 720.000 0.283833
\(187\) 4712.00 1.84265
\(188\) −896.000 −0.347593
\(189\) 243.000 0.0935220
\(190\) 0 0
\(191\) 2552.00 0.966787 0.483393 0.875403i \(-0.339404\pi\)
0.483393 + 0.875403i \(0.339404\pi\)
\(192\) −1344.00 −0.505181
\(193\) 3442.00 1.28373 0.641867 0.766816i \(-0.278160\pi\)
0.641867 + 0.766816i \(0.278160\pi\)
\(194\) −1744.00 −0.645422
\(195\) 0 0
\(196\) 1048.00 0.381924
\(197\) 456.000 0.164917 0.0824585 0.996594i \(-0.473723\pi\)
0.0824585 + 0.996594i \(0.473723\pi\)
\(198\) −1116.00 −0.400559
\(199\) 1363.00 0.485530 0.242765 0.970085i \(-0.421946\pi\)
0.242765 + 0.970085i \(0.421946\pi\)
\(200\) 0 0
\(201\) −1404.00 −0.492689
\(202\) 1908.00 0.664586
\(203\) 2331.00 0.805932
\(204\) −912.000 −0.313004
\(205\) 0 0
\(206\) 2492.00 0.842844
\(207\) −378.000 −0.126922
\(208\) −608.000 −0.202679
\(209\) 1178.00 0.389875
\(210\) 0 0
\(211\) 1988.00 0.648624 0.324312 0.945950i \(-0.394867\pi\)
0.324312 + 0.945950i \(0.394867\pi\)
\(212\) 244.000 0.0790471
\(213\) −2985.00 −0.960229
\(214\) 3162.00 1.01005
\(215\) 0 0
\(216\) 648.000 0.204124
\(217\) 1080.00 0.337858
\(218\) −1580.00 −0.490877
\(219\) 813.000 0.250856
\(220\) 0 0
\(221\) −2888.00 −0.879040
\(222\) 1380.00 0.417205
\(223\) −5168.00 −1.55191 −0.775953 0.630791i \(-0.782730\pi\)
−0.775953 + 0.630791i \(0.782730\pi\)
\(224\) −1440.00 −0.429527
\(225\) 0 0
\(226\) 3844.00 1.13141
\(227\) −5171.00 −1.51194 −0.755972 0.654604i \(-0.772835\pi\)
−0.755972 + 0.654604i \(0.772835\pi\)
\(228\) −228.000 −0.0662266
\(229\) 2874.00 0.829342 0.414671 0.909971i \(-0.363897\pi\)
0.414671 + 0.909971i \(0.363897\pi\)
\(230\) 0 0
\(231\) −1674.00 −0.476801
\(232\) 6216.00 1.75905
\(233\) −2484.00 −0.698422 −0.349211 0.937044i \(-0.613550\pi\)
−0.349211 + 0.937044i \(0.613550\pi\)
\(234\) 684.000 0.191088
\(235\) 0 0
\(236\) 476.000 0.131292
\(237\) −954.000 −0.261472
\(238\) 1368.00 0.372581
\(239\) 4066.00 1.10045 0.550225 0.835016i \(-0.314542\pi\)
0.550225 + 0.835016i \(0.314542\pi\)
\(240\) 0 0
\(241\) 1246.00 0.333037 0.166518 0.986038i \(-0.446747\pi\)
0.166518 + 0.986038i \(0.446747\pi\)
\(242\) 5026.00 1.33506
\(243\) −243.000 −0.0641500
\(244\) 452.000 0.118592
\(245\) 0 0
\(246\) −2730.00 −0.707555
\(247\) −722.000 −0.185991
\(248\) 2880.00 0.737420
\(249\) 1008.00 0.256544
\(250\) 0 0
\(251\) −3288.00 −0.826840 −0.413420 0.910541i \(-0.635666\pi\)
−0.413420 + 0.910541i \(0.635666\pi\)
\(252\) 324.000 0.0809924
\(253\) 2604.00 0.647083
\(254\) −3944.00 −0.974286
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 6879.00 1.66965 0.834825 0.550515i \(-0.185569\pi\)
0.834825 + 0.550515i \(0.185569\pi\)
\(258\) 2040.00 0.492267
\(259\) 2070.00 0.496616
\(260\) 0 0
\(261\) −2331.00 −0.552817
\(262\) 2172.00 0.512163
\(263\) 4492.00 1.05319 0.526594 0.850117i \(-0.323469\pi\)
0.526594 + 0.850117i \(0.323469\pi\)
\(264\) −4464.00 −1.04068
\(265\) 0 0
\(266\) 342.000 0.0788322
\(267\) 2835.00 0.649810
\(268\) −1872.00 −0.426681
\(269\) 7846.00 1.77836 0.889180 0.457557i \(-0.151275\pi\)
0.889180 + 0.457557i \(0.151275\pi\)
\(270\) 0 0
\(271\) −203.000 −0.0455032 −0.0227516 0.999741i \(-0.507243\pi\)
−0.0227516 + 0.999741i \(0.507243\pi\)
\(272\) 1216.00 0.271069
\(273\) 1026.00 0.227459
\(274\) −5136.00 −1.13240
\(275\) 0 0
\(276\) −504.000 −0.109918
\(277\) −8331.00 −1.80708 −0.903540 0.428503i \(-0.859041\pi\)
−0.903540 + 0.428503i \(0.859041\pi\)
\(278\) 3094.00 0.667503
\(279\) −1080.00 −0.231749
\(280\) 0 0
\(281\) 4578.00 0.971888 0.485944 0.873990i \(-0.338476\pi\)
0.485944 + 0.873990i \(0.338476\pi\)
\(282\) −1344.00 −0.283809
\(283\) −5412.00 −1.13678 −0.568392 0.822758i \(-0.692434\pi\)
−0.568392 + 0.822758i \(0.692434\pi\)
\(284\) −3980.00 −0.831583
\(285\) 0 0
\(286\) −4712.00 −0.974218
\(287\) −4095.00 −0.842231
\(288\) 1440.00 0.294628
\(289\) 863.000 0.175656
\(290\) 0 0
\(291\) 2616.00 0.526985
\(292\) 1084.00 0.217248
\(293\) −3282.00 −0.654391 −0.327195 0.944957i \(-0.606104\pi\)
−0.327195 + 0.944957i \(0.606104\pi\)
\(294\) 1572.00 0.311840
\(295\) 0 0
\(296\) 5520.00 1.08393
\(297\) 1674.00 0.327055
\(298\) −2204.00 −0.428437
\(299\) −1596.00 −0.308693
\(300\) 0 0
\(301\) 3060.00 0.585965
\(302\) 5048.00 0.961854
\(303\) −2862.00 −0.542632
\(304\) 304.000 0.0573539
\(305\) 0 0
\(306\) −1368.00 −0.255567
\(307\) −7030.00 −1.30692 −0.653458 0.756963i \(-0.726682\pi\)
−0.653458 + 0.756963i \(0.726682\pi\)
\(308\) −2232.00 −0.412922
\(309\) −3738.00 −0.688179
\(310\) 0 0
\(311\) 552.000 0.100646 0.0503232 0.998733i \(-0.483975\pi\)
0.0503232 + 0.998733i \(0.483975\pi\)
\(312\) 2736.00 0.496460
\(313\) −9182.00 −1.65814 −0.829069 0.559146i \(-0.811129\pi\)
−0.829069 + 0.559146i \(0.811129\pi\)
\(314\) −4762.00 −0.855845
\(315\) 0 0
\(316\) −1272.00 −0.226442
\(317\) 3733.00 0.661407 0.330704 0.943735i \(-0.392714\pi\)
0.330704 + 0.943735i \(0.392714\pi\)
\(318\) 366.000 0.0645417
\(319\) 16058.0 2.81842
\(320\) 0 0
\(321\) −4743.00 −0.824699
\(322\) 756.000 0.130839
\(323\) 1444.00 0.248750
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) −1906.00 −0.323815
\(327\) 2370.00 0.400799
\(328\) −10920.0 −1.83828
\(329\) −2016.00 −0.337829
\(330\) 0 0
\(331\) 10962.0 1.82032 0.910160 0.414257i \(-0.135958\pi\)
0.910160 + 0.414257i \(0.135958\pi\)
\(332\) 1344.00 0.222173
\(333\) −2070.00 −0.340647
\(334\) 5778.00 0.946581
\(335\) 0 0
\(336\) −432.000 −0.0701415
\(337\) −3838.00 −0.620383 −0.310192 0.950674i \(-0.600393\pi\)
−0.310192 + 0.950674i \(0.600393\pi\)
\(338\) −1506.00 −0.242354
\(339\) −5766.00 −0.923794
\(340\) 0 0
\(341\) 7440.00 1.18152
\(342\) −342.000 −0.0540738
\(343\) 5445.00 0.857150
\(344\) 8160.00 1.27895
\(345\) 0 0
\(346\) −3702.00 −0.575204
\(347\) −316.000 −0.0488869 −0.0244435 0.999701i \(-0.507781\pi\)
−0.0244435 + 0.999701i \(0.507781\pi\)
\(348\) −3108.00 −0.478754
\(349\) −5027.00 −0.771029 −0.385515 0.922702i \(-0.625976\pi\)
−0.385515 + 0.922702i \(0.625976\pi\)
\(350\) 0 0
\(351\) −1026.00 −0.156022
\(352\) −9920.00 −1.50210
\(353\) −2256.00 −0.340155 −0.170078 0.985431i \(-0.554402\pi\)
−0.170078 + 0.985431i \(0.554402\pi\)
\(354\) 714.000 0.107200
\(355\) 0 0
\(356\) 3780.00 0.562752
\(357\) −2052.00 −0.304211
\(358\) 4814.00 0.710692
\(359\) −7698.00 −1.13171 −0.565856 0.824504i \(-0.691454\pi\)
−0.565856 + 0.824504i \(0.691454\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −680.000 −0.0987293
\(363\) −7539.00 −1.09007
\(364\) 1368.00 0.196985
\(365\) 0 0
\(366\) 678.000 0.0968296
\(367\) −2880.00 −0.409632 −0.204816 0.978801i \(-0.565660\pi\)
−0.204816 + 0.978801i \(0.565660\pi\)
\(368\) 672.000 0.0951914
\(369\) 4095.00 0.577716
\(370\) 0 0
\(371\) 549.000 0.0768266
\(372\) −1440.00 −0.200700
\(373\) −7258.00 −1.00752 −0.503760 0.863844i \(-0.668050\pi\)
−0.503760 + 0.863844i \(0.668050\pi\)
\(374\) 9424.00 1.30295
\(375\) 0 0
\(376\) −5376.00 −0.737356
\(377\) −9842.00 −1.34453
\(378\) 486.000 0.0661300
\(379\) 5830.00 0.790150 0.395075 0.918649i \(-0.370719\pi\)
0.395075 + 0.918649i \(0.370719\pi\)
\(380\) 0 0
\(381\) 5916.00 0.795501
\(382\) 5104.00 0.683621
\(383\) 1869.00 0.249351 0.124676 0.992198i \(-0.460211\pi\)
0.124676 + 0.992198i \(0.460211\pi\)
\(384\) 1152.00 0.153093
\(385\) 0 0
\(386\) 6884.00 0.907737
\(387\) −3060.00 −0.401934
\(388\) 3488.00 0.456382
\(389\) −14970.0 −1.95118 −0.975590 0.219599i \(-0.929525\pi\)
−0.975590 + 0.219599i \(0.929525\pi\)
\(390\) 0 0
\(391\) 3192.00 0.412855
\(392\) 6288.00 0.810184
\(393\) −3258.00 −0.418179
\(394\) 912.000 0.116614
\(395\) 0 0
\(396\) 2232.00 0.283238
\(397\) −934.000 −0.118076 −0.0590379 0.998256i \(-0.518803\pi\)
−0.0590379 + 0.998256i \(0.518803\pi\)
\(398\) 2726.00 0.343322
\(399\) −513.000 −0.0643662
\(400\) 0 0
\(401\) −14778.0 −1.84034 −0.920172 0.391514i \(-0.871951\pi\)
−0.920172 + 0.391514i \(0.871951\pi\)
\(402\) −2808.00 −0.348384
\(403\) −4560.00 −0.563647
\(404\) −3816.00 −0.469933
\(405\) 0 0
\(406\) 4662.00 0.569880
\(407\) 14260.0 1.73671
\(408\) −5472.00 −0.663981
\(409\) −4204.00 −0.508250 −0.254125 0.967171i \(-0.581788\pi\)
−0.254125 + 0.967171i \(0.581788\pi\)
\(410\) 0 0
\(411\) 7704.00 0.924599
\(412\) −4984.00 −0.595981
\(413\) 1071.00 0.127604
\(414\) −756.000 −0.0897473
\(415\) 0 0
\(416\) 6080.00 0.716578
\(417\) −4641.00 −0.545014
\(418\) 2356.00 0.275684
\(419\) −13744.0 −1.60248 −0.801239 0.598344i \(-0.795825\pi\)
−0.801239 + 0.598344i \(0.795825\pi\)
\(420\) 0 0
\(421\) −3284.00 −0.380172 −0.190086 0.981767i \(-0.560877\pi\)
−0.190086 + 0.981767i \(0.560877\pi\)
\(422\) 3976.00 0.458646
\(423\) 2016.00 0.231729
\(424\) 1464.00 0.167684
\(425\) 0 0
\(426\) −5970.00 −0.678985
\(427\) 1017.00 0.115260
\(428\) −6324.00 −0.714210
\(429\) 7068.00 0.795446
\(430\) 0 0
\(431\) 14541.0 1.62509 0.812547 0.582896i \(-0.198080\pi\)
0.812547 + 0.582896i \(0.198080\pi\)
\(432\) 432.000 0.0481125
\(433\) −1588.00 −0.176246 −0.0881229 0.996110i \(-0.528087\pi\)
−0.0881229 + 0.996110i \(0.528087\pi\)
\(434\) 2160.00 0.238902
\(435\) 0 0
\(436\) 3160.00 0.347102
\(437\) 798.000 0.0873536
\(438\) 1626.00 0.177382
\(439\) 18070.0 1.96454 0.982271 0.187466i \(-0.0600274\pi\)
0.982271 + 0.187466i \(0.0600274\pi\)
\(440\) 0 0
\(441\) −2358.00 −0.254616
\(442\) −5776.00 −0.621575
\(443\) 6378.00 0.684036 0.342018 0.939693i \(-0.388890\pi\)
0.342018 + 0.939693i \(0.388890\pi\)
\(444\) −2760.00 −0.295009
\(445\) 0 0
\(446\) −10336.0 −1.09736
\(447\) 3306.00 0.349818
\(448\) −4032.00 −0.425210
\(449\) −5075.00 −0.533417 −0.266708 0.963777i \(-0.585936\pi\)
−0.266708 + 0.963777i \(0.585936\pi\)
\(450\) 0 0
\(451\) −28210.0 −2.94536
\(452\) −7688.00 −0.800029
\(453\) −7572.00 −0.785350
\(454\) −10342.0 −1.06911
\(455\) 0 0
\(456\) −1368.00 −0.140488
\(457\) 1127.00 0.115359 0.0576793 0.998335i \(-0.481630\pi\)
0.0576793 + 0.998335i \(0.481630\pi\)
\(458\) 5748.00 0.586433
\(459\) 2052.00 0.208669
\(460\) 0 0
\(461\) −6894.00 −0.696498 −0.348249 0.937402i \(-0.613224\pi\)
−0.348249 + 0.937402i \(0.613224\pi\)
\(462\) −3348.00 −0.337149
\(463\) −4116.00 −0.413146 −0.206573 0.978431i \(-0.566231\pi\)
−0.206573 + 0.978431i \(0.566231\pi\)
\(464\) 4144.00 0.414613
\(465\) 0 0
\(466\) −4968.00 −0.493859
\(467\) −578.000 −0.0572733 −0.0286367 0.999590i \(-0.509117\pi\)
−0.0286367 + 0.999590i \(0.509117\pi\)
\(468\) −1368.00 −0.135119
\(469\) −4212.00 −0.414695
\(470\) 0 0
\(471\) 7143.00 0.698794
\(472\) 2856.00 0.278513
\(473\) 21080.0 2.04917
\(474\) −1908.00 −0.184889
\(475\) 0 0
\(476\) −2736.00 −0.263455
\(477\) −549.000 −0.0526981
\(478\) 8132.00 0.778136
\(479\) −12978.0 −1.23795 −0.618977 0.785409i \(-0.712453\pi\)
−0.618977 + 0.785409i \(0.712453\pi\)
\(480\) 0 0
\(481\) −8740.00 −0.828502
\(482\) 2492.00 0.235493
\(483\) −1134.00 −0.106830
\(484\) −10052.0 −0.944027
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) −12614.0 −1.17371 −0.586853 0.809693i \(-0.699633\pi\)
−0.586853 + 0.809693i \(0.699633\pi\)
\(488\) 2712.00 0.251571
\(489\) 2859.00 0.264394
\(490\) 0 0
\(491\) −9136.00 −0.839719 −0.419859 0.907589i \(-0.637921\pi\)
−0.419859 + 0.907589i \(0.637921\pi\)
\(492\) 5460.00 0.500317
\(493\) 19684.0 1.79822
\(494\) −1444.00 −0.131515
\(495\) 0 0
\(496\) 1920.00 0.173812
\(497\) −8955.00 −0.808223
\(498\) 2016.00 0.181404
\(499\) 16483.0 1.47872 0.739359 0.673311i \(-0.235129\pi\)
0.739359 + 0.673311i \(0.235129\pi\)
\(500\) 0 0
\(501\) −8667.00 −0.772880
\(502\) −6576.00 −0.584664
\(503\) −10394.0 −0.921363 −0.460681 0.887566i \(-0.652395\pi\)
−0.460681 + 0.887566i \(0.652395\pi\)
\(504\) 1944.00 0.171811
\(505\) 0 0
\(506\) 5208.00 0.457557
\(507\) 2259.00 0.197881
\(508\) 7888.00 0.688924
\(509\) 1759.00 0.153175 0.0765877 0.997063i \(-0.475597\pi\)
0.0765877 + 0.997063i \(0.475597\pi\)
\(510\) 0 0
\(511\) 2439.00 0.211145
\(512\) −5632.00 −0.486136
\(513\) 513.000 0.0441511
\(514\) 13758.0 1.18062
\(515\) 0 0
\(516\) −4080.00 −0.348085
\(517\) −13888.0 −1.18142
\(518\) 4140.00 0.351161
\(519\) 5553.00 0.469652
\(520\) 0 0
\(521\) 4403.00 0.370247 0.185124 0.982715i \(-0.440731\pi\)
0.185124 + 0.982715i \(0.440731\pi\)
\(522\) −4662.00 −0.390901
\(523\) 10136.0 0.847450 0.423725 0.905791i \(-0.360722\pi\)
0.423725 + 0.905791i \(0.360722\pi\)
\(524\) −4344.00 −0.362154
\(525\) 0 0
\(526\) 8984.00 0.744717
\(527\) 9120.00 0.753840
\(528\) −2976.00 −0.245291
\(529\) −10403.0 −0.855018
\(530\) 0 0
\(531\) −1071.00 −0.0875281
\(532\) −684.000 −0.0557428
\(533\) 17290.0 1.40509
\(534\) 5670.00 0.459485
\(535\) 0 0
\(536\) −11232.0 −0.905128
\(537\) −7221.00 −0.580278
\(538\) 15692.0 1.25749
\(539\) 16244.0 1.29811
\(540\) 0 0
\(541\) −1842.00 −0.146384 −0.0731920 0.997318i \(-0.523319\pi\)
−0.0731920 + 0.997318i \(0.523319\pi\)
\(542\) −406.000 −0.0321756
\(543\) 1020.00 0.0806121
\(544\) −12160.0 −0.958374
\(545\) 0 0
\(546\) 2052.00 0.160838
\(547\) −4738.00 −0.370351 −0.185176 0.982705i \(-0.559285\pi\)
−0.185176 + 0.982705i \(0.559285\pi\)
\(548\) 10272.0 0.800726
\(549\) −1017.00 −0.0790610
\(550\) 0 0
\(551\) 4921.00 0.380475
\(552\) −3024.00 −0.233170
\(553\) −2862.00 −0.220081
\(554\) −16662.0 −1.27780
\(555\) 0 0
\(556\) −6188.00 −0.471996
\(557\) −7596.00 −0.577833 −0.288916 0.957354i \(-0.593295\pi\)
−0.288916 + 0.957354i \(0.593295\pi\)
\(558\) −2160.00 −0.163871
\(559\) −12920.0 −0.977563
\(560\) 0 0
\(561\) −14136.0 −1.06385
\(562\) 9156.00 0.687229
\(563\) 12411.0 0.929061 0.464530 0.885557i \(-0.346223\pi\)
0.464530 + 0.885557i \(0.346223\pi\)
\(564\) 2688.00 0.200683
\(565\) 0 0
\(566\) −10824.0 −0.803828
\(567\) −729.000 −0.0539949
\(568\) −23880.0 −1.76405
\(569\) 9345.00 0.688511 0.344256 0.938876i \(-0.388131\pi\)
0.344256 + 0.938876i \(0.388131\pi\)
\(570\) 0 0
\(571\) −3319.00 −0.243250 −0.121625 0.992576i \(-0.538811\pi\)
−0.121625 + 0.992576i \(0.538811\pi\)
\(572\) 9424.00 0.688876
\(573\) −7656.00 −0.558174
\(574\) −8190.00 −0.595547
\(575\) 0 0
\(576\) 4032.00 0.291667
\(577\) −1106.00 −0.0797979 −0.0398989 0.999204i \(-0.512704\pi\)
−0.0398989 + 0.999204i \(0.512704\pi\)
\(578\) 1726.00 0.124208
\(579\) −10326.0 −0.741164
\(580\) 0 0
\(581\) 3024.00 0.215932
\(582\) 5232.00 0.372635
\(583\) 3782.00 0.268670
\(584\) 6504.00 0.460852
\(585\) 0 0
\(586\) −6564.00 −0.462724
\(587\) −864.000 −0.0607514 −0.0303757 0.999539i \(-0.509670\pi\)
−0.0303757 + 0.999539i \(0.509670\pi\)
\(588\) −3144.00 −0.220504
\(589\) 2280.00 0.159500
\(590\) 0 0
\(591\) −1368.00 −0.0952149
\(592\) 3680.00 0.255485
\(593\) 10846.0 0.751082 0.375541 0.926806i \(-0.377457\pi\)
0.375541 + 0.926806i \(0.377457\pi\)
\(594\) 3348.00 0.231263
\(595\) 0 0
\(596\) 4408.00 0.302951
\(597\) −4089.00 −0.280321
\(598\) −3192.00 −0.218279
\(599\) 5264.00 0.359067 0.179534 0.983752i \(-0.442541\pi\)
0.179534 + 0.983752i \(0.442541\pi\)
\(600\) 0 0
\(601\) 9050.00 0.614238 0.307119 0.951671i \(-0.400635\pi\)
0.307119 + 0.951671i \(0.400635\pi\)
\(602\) 6120.00 0.414340
\(603\) 4212.00 0.284454
\(604\) −10096.0 −0.680133
\(605\) 0 0
\(606\) −5724.00 −0.383699
\(607\) 12758.0 0.853099 0.426550 0.904464i \(-0.359729\pi\)
0.426550 + 0.904464i \(0.359729\pi\)
\(608\) −3040.00 −0.202777
\(609\) −6993.00 −0.465305
\(610\) 0 0
\(611\) 8512.00 0.563598
\(612\) 2736.00 0.180713
\(613\) −1789.00 −0.117874 −0.0589372 0.998262i \(-0.518771\pi\)
−0.0589372 + 0.998262i \(0.518771\pi\)
\(614\) −14060.0 −0.924129
\(615\) 0 0
\(616\) −13392.0 −0.875940
\(617\) 6288.00 0.410284 0.205142 0.978732i \(-0.434234\pi\)
0.205142 + 0.978732i \(0.434234\pi\)
\(618\) −7476.00 −0.486616
\(619\) −28681.0 −1.86234 −0.931169 0.364589i \(-0.881210\pi\)
−0.931169 + 0.364589i \(0.881210\pi\)
\(620\) 0 0
\(621\) 1134.00 0.0732783
\(622\) 1104.00 0.0711678
\(623\) 8505.00 0.546943
\(624\) 1824.00 0.117017
\(625\) 0 0
\(626\) −18364.0 −1.17248
\(627\) −3534.00 −0.225095
\(628\) 9524.00 0.605174
\(629\) 17480.0 1.10807
\(630\) 0 0
\(631\) 23848.0 1.50455 0.752277 0.658847i \(-0.228955\pi\)
0.752277 + 0.658847i \(0.228955\pi\)
\(632\) −7632.00 −0.480355
\(633\) −5964.00 −0.374483
\(634\) 7466.00 0.467686
\(635\) 0 0
\(636\) −732.000 −0.0456379
\(637\) −9956.00 −0.619264
\(638\) 32116.0 1.99292
\(639\) 8955.00 0.554389
\(640\) 0 0
\(641\) 23526.0 1.44964 0.724821 0.688937i \(-0.241922\pi\)
0.724821 + 0.688937i \(0.241922\pi\)
\(642\) −9486.00 −0.583150
\(643\) 26853.0 1.64693 0.823467 0.567364i \(-0.192037\pi\)
0.823467 + 0.567364i \(0.192037\pi\)
\(644\) −1512.00 −0.0925173
\(645\) 0 0
\(646\) 2888.00 0.175893
\(647\) 1892.00 0.114965 0.0574824 0.998347i \(-0.481693\pi\)
0.0574824 + 0.998347i \(0.481693\pi\)
\(648\) −1944.00 −0.117851
\(649\) 7378.00 0.446243
\(650\) 0 0
\(651\) −3240.00 −0.195062
\(652\) 3812.00 0.228972
\(653\) −3974.00 −0.238154 −0.119077 0.992885i \(-0.537994\pi\)
−0.119077 + 0.992885i \(0.537994\pi\)
\(654\) 4740.00 0.283408
\(655\) 0 0
\(656\) −7280.00 −0.433287
\(657\) −2439.00 −0.144832
\(658\) −4032.00 −0.238881
\(659\) −28796.0 −1.70217 −0.851087 0.525024i \(-0.824056\pi\)
−0.851087 + 0.525024i \(0.824056\pi\)
\(660\) 0 0
\(661\) 11788.0 0.693646 0.346823 0.937931i \(-0.387260\pi\)
0.346823 + 0.937931i \(0.387260\pi\)
\(662\) 21924.0 1.28716
\(663\) 8664.00 0.507514
\(664\) 8064.00 0.471301
\(665\) 0 0
\(666\) −4140.00 −0.240873
\(667\) 10878.0 0.631481
\(668\) −11556.0 −0.669334
\(669\) 15504.0 0.895993
\(670\) 0 0
\(671\) 7006.00 0.403075
\(672\) 4320.00 0.247988
\(673\) −1518.00 −0.0869459 −0.0434730 0.999055i \(-0.513842\pi\)
−0.0434730 + 0.999055i \(0.513842\pi\)
\(674\) −7676.00 −0.438677
\(675\) 0 0
\(676\) 3012.00 0.171370
\(677\) 28095.0 1.59495 0.797473 0.603355i \(-0.206170\pi\)
0.797473 + 0.603355i \(0.206170\pi\)
\(678\) −11532.0 −0.653221
\(679\) 7848.00 0.443562
\(680\) 0 0
\(681\) 15513.0 0.872921
\(682\) 14880.0 0.835461
\(683\) 30081.0 1.68524 0.842619 0.538510i \(-0.181013\pi\)
0.842619 + 0.538510i \(0.181013\pi\)
\(684\) 684.000 0.0382360
\(685\) 0 0
\(686\) 10890.0 0.606096
\(687\) −8622.00 −0.478821
\(688\) 5440.00 0.301451
\(689\) −2318.00 −0.128169
\(690\) 0 0
\(691\) −22976.0 −1.26490 −0.632452 0.774600i \(-0.717951\pi\)
−0.632452 + 0.774600i \(0.717951\pi\)
\(692\) 7404.00 0.406731
\(693\) 5022.00 0.275281
\(694\) −632.000 −0.0345683
\(695\) 0 0
\(696\) −18648.0 −1.01559
\(697\) −34580.0 −1.87921
\(698\) −10054.0 −0.545200
\(699\) 7452.00 0.403234
\(700\) 0 0
\(701\) −6574.00 −0.354203 −0.177102 0.984193i \(-0.556672\pi\)
−0.177102 + 0.984193i \(0.556672\pi\)
\(702\) −2052.00 −0.110324
\(703\) 4370.00 0.234449
\(704\) −27776.0 −1.48700
\(705\) 0 0
\(706\) −4512.00 −0.240526
\(707\) −8586.00 −0.456732
\(708\) −1428.00 −0.0758016
\(709\) −7373.00 −0.390548 −0.195274 0.980749i \(-0.562560\pi\)
−0.195274 + 0.980749i \(0.562560\pi\)
\(710\) 0 0
\(711\) 2862.00 0.150961
\(712\) 22680.0 1.19378
\(713\) 5040.00 0.264726
\(714\) −4104.00 −0.215110
\(715\) 0 0
\(716\) −9628.00 −0.502535
\(717\) −12198.0 −0.635345
\(718\) −15396.0 −0.800242
\(719\) −13692.0 −0.710188 −0.355094 0.934831i \(-0.615551\pi\)
−0.355094 + 0.934831i \(0.615551\pi\)
\(720\) 0 0
\(721\) −11214.0 −0.579239
\(722\) 722.000 0.0372161
\(723\) −3738.00 −0.192279
\(724\) 1360.00 0.0698122
\(725\) 0 0
\(726\) −15078.0 −0.770795
\(727\) −27113.0 −1.38317 −0.691586 0.722294i \(-0.743088\pi\)
−0.691586 + 0.722294i \(0.743088\pi\)
\(728\) 8208.00 0.417869
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 25840.0 1.30742
\(732\) −1356.00 −0.0684689
\(733\) −5273.00 −0.265706 −0.132853 0.991136i \(-0.542414\pi\)
−0.132853 + 0.991136i \(0.542414\pi\)
\(734\) −5760.00 −0.289653
\(735\) 0 0
\(736\) −6720.00 −0.336552
\(737\) −29016.0 −1.45023
\(738\) 8190.00 0.408507
\(739\) 37261.0 1.85476 0.927380 0.374120i \(-0.122055\pi\)
0.927380 + 0.374120i \(0.122055\pi\)
\(740\) 0 0
\(741\) 2166.00 0.107382
\(742\) 1098.00 0.0543246
\(743\) 8891.00 0.439003 0.219501 0.975612i \(-0.429557\pi\)
0.219501 + 0.975612i \(0.429557\pi\)
\(744\) −8640.00 −0.425750
\(745\) 0 0
\(746\) −14516.0 −0.712424
\(747\) −3024.00 −0.148116
\(748\) −18848.0 −0.921325
\(749\) −14229.0 −0.694147
\(750\) 0 0
\(751\) −29660.0 −1.44116 −0.720578 0.693373i \(-0.756124\pi\)
−0.720578 + 0.693373i \(0.756124\pi\)
\(752\) −3584.00 −0.173797
\(753\) 9864.00 0.477376
\(754\) −19684.0 −0.950728
\(755\) 0 0
\(756\) −972.000 −0.0467610
\(757\) 15035.0 0.721871 0.360936 0.932591i \(-0.382457\pi\)
0.360936 + 0.932591i \(0.382457\pi\)
\(758\) 11660.0 0.558721
\(759\) −7812.00 −0.373594
\(760\) 0 0
\(761\) −5604.00 −0.266945 −0.133472 0.991053i \(-0.542613\pi\)
−0.133472 + 0.991053i \(0.542613\pi\)
\(762\) 11832.0 0.562504
\(763\) 7110.00 0.337352
\(764\) −10208.0 −0.483393
\(765\) 0 0
\(766\) 3738.00 0.176318
\(767\) −4522.00 −0.212881
\(768\) 13056.0 0.613435
\(769\) 21311.0 0.999342 0.499671 0.866215i \(-0.333454\pi\)
0.499671 + 0.866215i \(0.333454\pi\)
\(770\) 0 0
\(771\) −20637.0 −0.963973
\(772\) −13768.0 −0.641867
\(773\) −4923.00 −0.229066 −0.114533 0.993419i \(-0.536537\pi\)
−0.114533 + 0.993419i \(0.536537\pi\)
\(774\) −6120.00 −0.284210
\(775\) 0 0
\(776\) 20928.0 0.968133
\(777\) −6210.00 −0.286721
\(778\) −29940.0 −1.37969
\(779\) −8645.00 −0.397611
\(780\) 0 0
\(781\) −61690.0 −2.82643
\(782\) 6384.00 0.291933
\(783\) 6993.00 0.319169
\(784\) 4192.00 0.190962
\(785\) 0 0
\(786\) −6516.00 −0.295697
\(787\) −4354.00 −0.197209 −0.0986044 0.995127i \(-0.531438\pi\)
−0.0986044 + 0.995127i \(0.531438\pi\)
\(788\) −1824.00 −0.0824585
\(789\) −13476.0 −0.608059
\(790\) 0 0
\(791\) −17298.0 −0.777555
\(792\) 13392.0 0.600838
\(793\) −4294.00 −0.192288
\(794\) −1868.00 −0.0834922
\(795\) 0 0
\(796\) −5452.00 −0.242765
\(797\) −26063.0 −1.15834 −0.579171 0.815206i \(-0.696624\pi\)
−0.579171 + 0.815206i \(0.696624\pi\)
\(798\) −1026.00 −0.0455138
\(799\) −17024.0 −0.753775
\(800\) 0 0
\(801\) −8505.00 −0.375168
\(802\) −29556.0 −1.30132
\(803\) 16802.0 0.738393
\(804\) 5616.00 0.246345
\(805\) 0 0
\(806\) −9120.00 −0.398559
\(807\) −23538.0 −1.02674
\(808\) −22896.0 −0.996879
\(809\) 32768.0 1.42406 0.712028 0.702151i \(-0.247777\pi\)
0.712028 + 0.702151i \(0.247777\pi\)
\(810\) 0 0
\(811\) −16896.0 −0.731564 −0.365782 0.930700i \(-0.619199\pi\)
−0.365782 + 0.930700i \(0.619199\pi\)
\(812\) −9324.00 −0.402966
\(813\) 609.000 0.0262713
\(814\) 28520.0 1.22804
\(815\) 0 0
\(816\) −3648.00 −0.156502
\(817\) 6460.00 0.276630
\(818\) −8408.00 −0.359387
\(819\) −3078.00 −0.131324
\(820\) 0 0
\(821\) 4506.00 0.191547 0.0957737 0.995403i \(-0.469467\pi\)
0.0957737 + 0.995403i \(0.469467\pi\)
\(822\) 15408.0 0.653790
\(823\) −40667.0 −1.72243 −0.861217 0.508238i \(-0.830297\pi\)
−0.861217 + 0.508238i \(0.830297\pi\)
\(824\) −29904.0 −1.26427
\(825\) 0 0
\(826\) 2142.00 0.0902297
\(827\) 3212.00 0.135057 0.0675285 0.997717i \(-0.478489\pi\)
0.0675285 + 0.997717i \(0.478489\pi\)
\(828\) 1512.00 0.0634609
\(829\) 10248.0 0.429346 0.214673 0.976686i \(-0.431131\pi\)
0.214673 + 0.976686i \(0.431131\pi\)
\(830\) 0 0
\(831\) 24993.0 1.04332
\(832\) 17024.0 0.709376
\(833\) 19912.0 0.828223
\(834\) −9282.00 −0.385383
\(835\) 0 0
\(836\) −4712.00 −0.194938
\(837\) 3240.00 0.133800
\(838\) −27488.0 −1.13312
\(839\) −6649.00 −0.273598 −0.136799 0.990599i \(-0.543681\pi\)
−0.136799 + 0.990599i \(0.543681\pi\)
\(840\) 0 0
\(841\) 42692.0 1.75046
\(842\) −6568.00 −0.268822
\(843\) −13734.0 −0.561120
\(844\) −7952.00 −0.324312
\(845\) 0 0
\(846\) 4032.00 0.163857
\(847\) −22617.0 −0.917508
\(848\) 976.000 0.0395236
\(849\) 16236.0 0.656323
\(850\) 0 0
\(851\) 9660.00 0.389119
\(852\) 11940.0 0.480115
\(853\) 30465.0 1.22286 0.611431 0.791298i \(-0.290594\pi\)
0.611431 + 0.791298i \(0.290594\pi\)
\(854\) 2034.00 0.0815012
\(855\) 0 0
\(856\) −37944.0 −1.51507
\(857\) 19385.0 0.772671 0.386335 0.922358i \(-0.373741\pi\)
0.386335 + 0.922358i \(0.373741\pi\)
\(858\) 14136.0 0.562465
\(859\) −10253.0 −0.407250 −0.203625 0.979049i \(-0.565272\pi\)
−0.203625 + 0.979049i \(0.565272\pi\)
\(860\) 0 0
\(861\) 12285.0 0.486262
\(862\) 29082.0 1.14911
\(863\) 32185.0 1.26951 0.634757 0.772712i \(-0.281100\pi\)
0.634757 + 0.772712i \(0.281100\pi\)
\(864\) −4320.00 −0.170103
\(865\) 0 0
\(866\) −3176.00 −0.124625
\(867\) −2589.00 −0.101415
\(868\) −4320.00 −0.168929
\(869\) −19716.0 −0.769643
\(870\) 0 0
\(871\) 17784.0 0.691835
\(872\) 18960.0 0.736315
\(873\) −7848.00 −0.304255
\(874\) 1596.00 0.0617683
\(875\) 0 0
\(876\) −3252.00 −0.125428
\(877\) 43494.0 1.67467 0.837336 0.546688i \(-0.184112\pi\)
0.837336 + 0.546688i \(0.184112\pi\)
\(878\) 36140.0 1.38914
\(879\) 9846.00 0.377813
\(880\) 0 0
\(881\) 20770.0 0.794278 0.397139 0.917758i \(-0.370003\pi\)
0.397139 + 0.917758i \(0.370003\pi\)
\(882\) −4716.00 −0.180041
\(883\) 15637.0 0.595954 0.297977 0.954573i \(-0.403688\pi\)
0.297977 + 0.954573i \(0.403688\pi\)
\(884\) 11552.0 0.439520
\(885\) 0 0
\(886\) 12756.0 0.483686
\(887\) 12312.0 0.466061 0.233031 0.972469i \(-0.425136\pi\)
0.233031 + 0.972469i \(0.425136\pi\)
\(888\) −16560.0 −0.625808
\(889\) 17748.0 0.669571
\(890\) 0 0
\(891\) −5022.00 −0.188825
\(892\) 20672.0 0.775953
\(893\) −4256.00 −0.159487
\(894\) 6612.00 0.247358
\(895\) 0 0
\(896\) 3456.00 0.128858
\(897\) 4788.00 0.178224
\(898\) −10150.0 −0.377183
\(899\) 31080.0 1.15303
\(900\) 0 0
\(901\) 4636.00 0.171418
\(902\) −56420.0 −2.08268
\(903\) −9180.00 −0.338307
\(904\) −46128.0 −1.69712
\(905\) 0 0
\(906\) −15144.0 −0.555326
\(907\) 23784.0 0.870711 0.435355 0.900259i \(-0.356623\pi\)
0.435355 + 0.900259i \(0.356623\pi\)
\(908\) 20684.0 0.755972
\(909\) 8586.00 0.313289
\(910\) 0 0
\(911\) −33515.0 −1.21888 −0.609441 0.792831i \(-0.708606\pi\)
−0.609441 + 0.792831i \(0.708606\pi\)
\(912\) −912.000 −0.0331133
\(913\) 20832.0 0.755135
\(914\) 2254.00 0.0815708
\(915\) 0 0
\(916\) −11496.0 −0.414671
\(917\) −9774.00 −0.351980
\(918\) 4104.00 0.147551
\(919\) −39707.0 −1.42526 −0.712630 0.701541i \(-0.752496\pi\)
−0.712630 + 0.701541i \(0.752496\pi\)
\(920\) 0 0
\(921\) 21090.0 0.754548
\(922\) −13788.0 −0.492498
\(923\) 37810.0 1.34835
\(924\) 6696.00 0.238401
\(925\) 0 0
\(926\) −8232.00 −0.292139
\(927\) 11214.0 0.397320
\(928\) −41440.0 −1.46588
\(929\) 49310.0 1.74145 0.870726 0.491769i \(-0.163649\pi\)
0.870726 + 0.491769i \(0.163649\pi\)
\(930\) 0 0
\(931\) 4978.00 0.175239
\(932\) 9936.00 0.349211
\(933\) −1656.00 −0.0581083
\(934\) −1156.00 −0.0404984
\(935\) 0 0
\(936\) −8208.00 −0.286631
\(937\) −16269.0 −0.567220 −0.283610 0.958940i \(-0.591532\pi\)
−0.283610 + 0.958940i \(0.591532\pi\)
\(938\) −8424.00 −0.293234
\(939\) 27546.0 0.957327
\(940\) 0 0
\(941\) 24770.0 0.858107 0.429054 0.903279i \(-0.358847\pi\)
0.429054 + 0.903279i \(0.358847\pi\)
\(942\) 14286.0 0.494122
\(943\) −19110.0 −0.659923
\(944\) 1904.00 0.0656461
\(945\) 0 0
\(946\) 42160.0 1.44899
\(947\) −29364.0 −1.00760 −0.503802 0.863819i \(-0.668066\pi\)
−0.503802 + 0.863819i \(0.668066\pi\)
\(948\) 3816.00 0.130736
\(949\) −10298.0 −0.352252
\(950\) 0 0
\(951\) −11199.0 −0.381864
\(952\) −16416.0 −0.558871
\(953\) 4763.00 0.161898 0.0809490 0.996718i \(-0.474205\pi\)
0.0809490 + 0.996718i \(0.474205\pi\)
\(954\) −1098.00 −0.0372632
\(955\) 0 0
\(956\) −16264.0 −0.550225
\(957\) −48174.0 −1.62721
\(958\) −25956.0 −0.875366
\(959\) 23112.0 0.778233
\(960\) 0 0
\(961\) −15391.0 −0.516633
\(962\) −17480.0 −0.585840
\(963\) 14229.0 0.476140
\(964\) −4984.00 −0.166518
\(965\) 0 0
\(966\) −2268.00 −0.0755401
\(967\) −2027.00 −0.0674084 −0.0337042 0.999432i \(-0.510730\pi\)
−0.0337042 + 0.999432i \(0.510730\pi\)
\(968\) −60312.0 −2.00258
\(969\) −4332.00 −0.143616
\(970\) 0 0
\(971\) 4581.00 0.151402 0.0757010 0.997131i \(-0.475881\pi\)
0.0757010 + 0.997131i \(0.475881\pi\)
\(972\) 972.000 0.0320750
\(973\) −13923.0 −0.458737
\(974\) −25228.0 −0.829936
\(975\) 0 0
\(976\) 1808.00 0.0592958
\(977\) 12206.0 0.399698 0.199849 0.979827i \(-0.435955\pi\)
0.199849 + 0.979827i \(0.435955\pi\)
\(978\) 5718.00 0.186954
\(979\) 58590.0 1.91271
\(980\) 0 0
\(981\) −7110.00 −0.231401
\(982\) −18272.0 −0.593771
\(983\) −53712.0 −1.74277 −0.871387 0.490596i \(-0.836779\pi\)
−0.871387 + 0.490596i \(0.836779\pi\)
\(984\) 32760.0 1.06133
\(985\) 0 0
\(986\) 39368.0 1.27153
\(987\) 6048.00 0.195046
\(988\) 2888.00 0.0929955
\(989\) 14280.0 0.459128
\(990\) 0 0
\(991\) 2288.00 0.0733408 0.0366704 0.999327i \(-0.488325\pi\)
0.0366704 + 0.999327i \(0.488325\pi\)
\(992\) −19200.0 −0.614517
\(993\) −32886.0 −1.05096
\(994\) −17910.0 −0.571500
\(995\) 0 0
\(996\) −4032.00 −0.128272
\(997\) 57426.0 1.82417 0.912086 0.409999i \(-0.134471\pi\)
0.912086 + 0.409999i \(0.134471\pi\)
\(998\) 32966.0 1.04561
\(999\) 6210.00 0.196672
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.4.a.e.1.1 yes 1
5.4 even 2 1425.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.4.a.a.1.1 1 5.4 even 2
1425.4.a.e.1.1 yes 1 1.1 even 1 trivial