Properties

Label 1425.4.a.c.1.1
Level $1425$
Weight $4$
Character 1425.1
Self dual yes
Analytic conductor $84.078$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,4,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.0777217582\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} -3.00000 q^{6} +20.0000 q^{7} -15.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} -3.00000 q^{6} +20.0000 q^{7} -15.0000 q^{8} +9.00000 q^{9} -4.00000 q^{11} +21.0000 q^{12} +76.0000 q^{13} +20.0000 q^{14} +41.0000 q^{16} -22.0000 q^{17} +9.00000 q^{18} -19.0000 q^{19} -60.0000 q^{21} -4.00000 q^{22} -82.0000 q^{23} +45.0000 q^{24} +76.0000 q^{26} -27.0000 q^{27} -140.000 q^{28} +242.000 q^{29} -126.000 q^{31} +161.000 q^{32} +12.0000 q^{33} -22.0000 q^{34} -63.0000 q^{36} +180.000 q^{37} -19.0000 q^{38} -228.000 q^{39} -390.000 q^{41} -60.0000 q^{42} -308.000 q^{43} +28.0000 q^{44} -82.0000 q^{46} +522.000 q^{47} -123.000 q^{48} +57.0000 q^{49} +66.0000 q^{51} -532.000 q^{52} +70.0000 q^{53} -27.0000 q^{54} -300.000 q^{56} +57.0000 q^{57} +242.000 q^{58} +188.000 q^{59} -706.000 q^{61} -126.000 q^{62} +180.000 q^{63} -167.000 q^{64} +12.0000 q^{66} -104.000 q^{67} +154.000 q^{68} +246.000 q^{69} -432.000 q^{71} -135.000 q^{72} -718.000 q^{73} +180.000 q^{74} +133.000 q^{76} -80.0000 q^{77} -228.000 q^{78} +94.0000 q^{79} +81.0000 q^{81} -390.000 q^{82} +1296.00 q^{83} +420.000 q^{84} -308.000 q^{86} -726.000 q^{87} +60.0000 q^{88} +846.000 q^{89} +1520.00 q^{91} +574.000 q^{92} +378.000 q^{93} +522.000 q^{94} -483.000 q^{96} -830.000 q^{97} +57.0000 q^{98} -36.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.00000 −0.875000
\(5\) 0 0
\(6\) −3.00000 −0.204124
\(7\) 20.0000 1.07990 0.539949 0.841698i \(-0.318443\pi\)
0.539949 + 0.841698i \(0.318443\pi\)
\(8\) −15.0000 −0.662913
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −4.00000 −0.109640 −0.0548202 0.998496i \(-0.517459\pi\)
−0.0548202 + 0.998496i \(0.517459\pi\)
\(12\) 21.0000 0.505181
\(13\) 76.0000 1.62143 0.810716 0.585440i \(-0.199078\pi\)
0.810716 + 0.585440i \(0.199078\pi\)
\(14\) 20.0000 0.381802
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) −22.0000 −0.313870 −0.156935 0.987609i \(-0.550161\pi\)
−0.156935 + 0.987609i \(0.550161\pi\)
\(18\) 9.00000 0.117851
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) −60.0000 −0.623480
\(22\) −4.00000 −0.0387638
\(23\) −82.0000 −0.743399 −0.371700 0.928353i \(-0.621225\pi\)
−0.371700 + 0.928353i \(0.621225\pi\)
\(24\) 45.0000 0.382733
\(25\) 0 0
\(26\) 76.0000 0.573263
\(27\) −27.0000 −0.192450
\(28\) −140.000 −0.944911
\(29\) 242.000 1.54960 0.774798 0.632209i \(-0.217852\pi\)
0.774798 + 0.632209i \(0.217852\pi\)
\(30\) 0 0
\(31\) −126.000 −0.730009 −0.365004 0.931006i \(-0.618932\pi\)
−0.365004 + 0.931006i \(0.618932\pi\)
\(32\) 161.000 0.889408
\(33\) 12.0000 0.0633010
\(34\) −22.0000 −0.110970
\(35\) 0 0
\(36\) −63.0000 −0.291667
\(37\) 180.000 0.799779 0.399889 0.916563i \(-0.369049\pi\)
0.399889 + 0.916563i \(0.369049\pi\)
\(38\) −19.0000 −0.0811107
\(39\) −228.000 −0.936134
\(40\) 0 0
\(41\) −390.000 −1.48556 −0.742778 0.669538i \(-0.766492\pi\)
−0.742778 + 0.669538i \(0.766492\pi\)
\(42\) −60.0000 −0.220433
\(43\) −308.000 −1.09232 −0.546158 0.837682i \(-0.683910\pi\)
−0.546158 + 0.837682i \(0.683910\pi\)
\(44\) 28.0000 0.0959354
\(45\) 0 0
\(46\) −82.0000 −0.262831
\(47\) 522.000 1.62003 0.810016 0.586407i \(-0.199458\pi\)
0.810016 + 0.586407i \(0.199458\pi\)
\(48\) −123.000 −0.369865
\(49\) 57.0000 0.166181
\(50\) 0 0
\(51\) 66.0000 0.181213
\(52\) −532.000 −1.41875
\(53\) 70.0000 0.181420 0.0907098 0.995877i \(-0.471086\pi\)
0.0907098 + 0.995877i \(0.471086\pi\)
\(54\) −27.0000 −0.0680414
\(55\) 0 0
\(56\) −300.000 −0.715878
\(57\) 57.0000 0.132453
\(58\) 242.000 0.547865
\(59\) 188.000 0.414839 0.207420 0.978252i \(-0.433493\pi\)
0.207420 + 0.978252i \(0.433493\pi\)
\(60\) 0 0
\(61\) −706.000 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(62\) −126.000 −0.258097
\(63\) 180.000 0.359966
\(64\) −167.000 −0.326172
\(65\) 0 0
\(66\) 12.0000 0.0223803
\(67\) −104.000 −0.189636 −0.0948181 0.995495i \(-0.530227\pi\)
−0.0948181 + 0.995495i \(0.530227\pi\)
\(68\) 154.000 0.274636
\(69\) 246.000 0.429202
\(70\) 0 0
\(71\) −432.000 −0.722098 −0.361049 0.932547i \(-0.617581\pi\)
−0.361049 + 0.932547i \(0.617581\pi\)
\(72\) −135.000 −0.220971
\(73\) −718.000 −1.15117 −0.575586 0.817741i \(-0.695226\pi\)
−0.575586 + 0.817741i \(0.695226\pi\)
\(74\) 180.000 0.282765
\(75\) 0 0
\(76\) 133.000 0.200739
\(77\) −80.0000 −0.118401
\(78\) −228.000 −0.330973
\(79\) 94.0000 0.133871 0.0669356 0.997757i \(-0.478678\pi\)
0.0669356 + 0.997757i \(0.478678\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −390.000 −0.525223
\(83\) 1296.00 1.71391 0.856955 0.515392i \(-0.172354\pi\)
0.856955 + 0.515392i \(0.172354\pi\)
\(84\) 420.000 0.545545
\(85\) 0 0
\(86\) −308.000 −0.386192
\(87\) −726.000 −0.894659
\(88\) 60.0000 0.0726821
\(89\) 846.000 1.00759 0.503797 0.863822i \(-0.331936\pi\)
0.503797 + 0.863822i \(0.331936\pi\)
\(90\) 0 0
\(91\) 1520.00 1.75098
\(92\) 574.000 0.650474
\(93\) 378.000 0.421471
\(94\) 522.000 0.572768
\(95\) 0 0
\(96\) −483.000 −0.513500
\(97\) −830.000 −0.868801 −0.434401 0.900720i \(-0.643040\pi\)
−0.434401 + 0.900720i \(0.643040\pi\)
\(98\) 57.0000 0.0587538
\(99\) −36.0000 −0.0365468
\(100\) 0 0
\(101\) 1612.00 1.58812 0.794059 0.607840i \(-0.207964\pi\)
0.794059 + 0.607840i \(0.207964\pi\)
\(102\) 66.0000 0.0640684
\(103\) 1874.00 1.79273 0.896363 0.443322i \(-0.146200\pi\)
0.896363 + 0.443322i \(0.146200\pi\)
\(104\) −1140.00 −1.07487
\(105\) 0 0
\(106\) 70.0000 0.0641415
\(107\) 1932.00 1.74555 0.872773 0.488126i \(-0.162319\pi\)
0.872773 + 0.488126i \(0.162319\pi\)
\(108\) 189.000 0.168394
\(109\) 1096.00 0.963099 0.481549 0.876419i \(-0.340074\pi\)
0.481549 + 0.876419i \(0.340074\pi\)
\(110\) 0 0
\(111\) −540.000 −0.461753
\(112\) 820.000 0.691810
\(113\) −1474.00 −1.22710 −0.613550 0.789656i \(-0.710259\pi\)
−0.613550 + 0.789656i \(0.710259\pi\)
\(114\) 57.0000 0.0468293
\(115\) 0 0
\(116\) −1694.00 −1.35590
\(117\) 684.000 0.540477
\(118\) 188.000 0.146668
\(119\) −440.000 −0.338947
\(120\) 0 0
\(121\) −1315.00 −0.987979
\(122\) −706.000 −0.523920
\(123\) 1170.00 0.857686
\(124\) 882.000 0.638758
\(125\) 0 0
\(126\) 180.000 0.127267
\(127\) 1166.00 0.814691 0.407346 0.913274i \(-0.366454\pi\)
0.407346 + 0.913274i \(0.366454\pi\)
\(128\) −1455.00 −1.00473
\(129\) 924.000 0.630649
\(130\) 0 0
\(131\) 2192.00 1.46195 0.730977 0.682402i \(-0.239065\pi\)
0.730977 + 0.682402i \(0.239065\pi\)
\(132\) −84.0000 −0.0553883
\(133\) −380.000 −0.247746
\(134\) −104.000 −0.0670465
\(135\) 0 0
\(136\) 330.000 0.208068
\(137\) −558.000 −0.347979 −0.173990 0.984747i \(-0.555666\pi\)
−0.173990 + 0.984747i \(0.555666\pi\)
\(138\) 246.000 0.151746
\(139\) 68.0000 0.0414941 0.0207471 0.999785i \(-0.493396\pi\)
0.0207471 + 0.999785i \(0.493396\pi\)
\(140\) 0 0
\(141\) −1566.00 −0.935326
\(142\) −432.000 −0.255300
\(143\) −304.000 −0.177775
\(144\) 369.000 0.213542
\(145\) 0 0
\(146\) −718.000 −0.407001
\(147\) −171.000 −0.0959445
\(148\) −1260.00 −0.699807
\(149\) 576.000 0.316696 0.158348 0.987383i \(-0.449383\pi\)
0.158348 + 0.987383i \(0.449383\pi\)
\(150\) 0 0
\(151\) 990.000 0.533543 0.266772 0.963760i \(-0.414043\pi\)
0.266772 + 0.963760i \(0.414043\pi\)
\(152\) 285.000 0.152083
\(153\) −198.000 −0.104623
\(154\) −80.0000 −0.0418609
\(155\) 0 0
\(156\) 1596.00 0.819117
\(157\) 654.000 0.332451 0.166226 0.986088i \(-0.446842\pi\)
0.166226 + 0.986088i \(0.446842\pi\)
\(158\) 94.0000 0.0473306
\(159\) −210.000 −0.104743
\(160\) 0 0
\(161\) −1640.00 −0.802796
\(162\) 81.0000 0.0392837
\(163\) 900.000 0.432475 0.216238 0.976341i \(-0.430621\pi\)
0.216238 + 0.976341i \(0.430621\pi\)
\(164\) 2730.00 1.29986
\(165\) 0 0
\(166\) 1296.00 0.605958
\(167\) −740.000 −0.342892 −0.171446 0.985194i \(-0.554844\pi\)
−0.171446 + 0.985194i \(0.554844\pi\)
\(168\) 900.000 0.413313
\(169\) 3579.00 1.62904
\(170\) 0 0
\(171\) −171.000 −0.0764719
\(172\) 2156.00 0.955776
\(173\) −582.000 −0.255772 −0.127886 0.991789i \(-0.540819\pi\)
−0.127886 + 0.991789i \(0.540819\pi\)
\(174\) −726.000 −0.316310
\(175\) 0 0
\(176\) −164.000 −0.0702384
\(177\) −564.000 −0.239508
\(178\) 846.000 0.356238
\(179\) 2748.00 1.14746 0.573730 0.819045i \(-0.305496\pi\)
0.573730 + 0.819045i \(0.305496\pi\)
\(180\) 0 0
\(181\) 1336.00 0.548641 0.274321 0.961638i \(-0.411547\pi\)
0.274321 + 0.961638i \(0.411547\pi\)
\(182\) 1520.00 0.619065
\(183\) 2118.00 0.855558
\(184\) 1230.00 0.492809
\(185\) 0 0
\(186\) 378.000 0.149012
\(187\) 88.0000 0.0344128
\(188\) −3654.00 −1.41753
\(189\) −540.000 −0.207827
\(190\) 0 0
\(191\) −606.000 −0.229574 −0.114787 0.993390i \(-0.536619\pi\)
−0.114787 + 0.993390i \(0.536619\pi\)
\(192\) 501.000 0.188315
\(193\) 3002.00 1.11963 0.559815 0.828617i \(-0.310872\pi\)
0.559815 + 0.828617i \(0.310872\pi\)
\(194\) −830.000 −0.307168
\(195\) 0 0
\(196\) −399.000 −0.145408
\(197\) 4456.00 1.61156 0.805779 0.592217i \(-0.201747\pi\)
0.805779 + 0.592217i \(0.201747\pi\)
\(198\) −36.0000 −0.0129213
\(199\) −2844.00 −1.01309 −0.506547 0.862212i \(-0.669078\pi\)
−0.506547 + 0.862212i \(0.669078\pi\)
\(200\) 0 0
\(201\) 312.000 0.109486
\(202\) 1612.00 0.561485
\(203\) 4840.00 1.67341
\(204\) −462.000 −0.158561
\(205\) 0 0
\(206\) 1874.00 0.633824
\(207\) −738.000 −0.247800
\(208\) 3116.00 1.03873
\(209\) 76.0000 0.0251533
\(210\) 0 0
\(211\) −3108.00 −1.01405 −0.507023 0.861933i \(-0.669254\pi\)
−0.507023 + 0.861933i \(0.669254\pi\)
\(212\) −490.000 −0.158742
\(213\) 1296.00 0.416904
\(214\) 1932.00 0.617144
\(215\) 0 0
\(216\) 405.000 0.127578
\(217\) −2520.00 −0.788335
\(218\) 1096.00 0.340507
\(219\) 2154.00 0.664629
\(220\) 0 0
\(221\) −1672.00 −0.508918
\(222\) −540.000 −0.163254
\(223\) 4686.00 1.40716 0.703582 0.710614i \(-0.251583\pi\)
0.703582 + 0.710614i \(0.251583\pi\)
\(224\) 3220.00 0.960470
\(225\) 0 0
\(226\) −1474.00 −0.433845
\(227\) 3036.00 0.887693 0.443847 0.896103i \(-0.353613\pi\)
0.443847 + 0.896103i \(0.353613\pi\)
\(228\) −399.000 −0.115897
\(229\) −4970.00 −1.43418 −0.717089 0.696981i \(-0.754526\pi\)
−0.717089 + 0.696981i \(0.754526\pi\)
\(230\) 0 0
\(231\) 240.000 0.0683586
\(232\) −3630.00 −1.02725
\(233\) 2982.00 0.838443 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(234\) 684.000 0.191088
\(235\) 0 0
\(236\) −1316.00 −0.362984
\(237\) −282.000 −0.0772906
\(238\) −440.000 −0.119836
\(239\) −522.000 −0.141278 −0.0706389 0.997502i \(-0.522504\pi\)
−0.0706389 + 0.997502i \(0.522504\pi\)
\(240\) 0 0
\(241\) 3350.00 0.895404 0.447702 0.894183i \(-0.352242\pi\)
0.447702 + 0.894183i \(0.352242\pi\)
\(242\) −1315.00 −0.349303
\(243\) −243.000 −0.0641500
\(244\) 4942.00 1.29664
\(245\) 0 0
\(246\) 1170.00 0.303238
\(247\) −1444.00 −0.371982
\(248\) 1890.00 0.483932
\(249\) −3888.00 −0.989526
\(250\) 0 0
\(251\) −2968.00 −0.746369 −0.373184 0.927757i \(-0.621734\pi\)
−0.373184 + 0.927757i \(0.621734\pi\)
\(252\) −1260.00 −0.314970
\(253\) 328.000 0.0815067
\(254\) 1166.00 0.288037
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) 1234.00 0.299513 0.149756 0.988723i \(-0.452151\pi\)
0.149756 + 0.988723i \(0.452151\pi\)
\(258\) 924.000 0.222968
\(259\) 3600.00 0.863680
\(260\) 0 0
\(261\) 2178.00 0.516532
\(262\) 2192.00 0.516879
\(263\) 1994.00 0.467511 0.233755 0.972295i \(-0.424899\pi\)
0.233755 + 0.972295i \(0.424899\pi\)
\(264\) −180.000 −0.0419630
\(265\) 0 0
\(266\) −380.000 −0.0875913
\(267\) −2538.00 −0.581734
\(268\) 728.000 0.165932
\(269\) 7214.00 1.63511 0.817556 0.575849i \(-0.195328\pi\)
0.817556 + 0.575849i \(0.195328\pi\)
\(270\) 0 0
\(271\) 7572.00 1.69729 0.848646 0.528961i \(-0.177418\pi\)
0.848646 + 0.528961i \(0.177418\pi\)
\(272\) −902.000 −0.201073
\(273\) −4560.00 −1.01093
\(274\) −558.000 −0.123029
\(275\) 0 0
\(276\) −1722.00 −0.375552
\(277\) −6262.00 −1.35829 −0.679146 0.734003i \(-0.737650\pi\)
−0.679146 + 0.734003i \(0.737650\pi\)
\(278\) 68.0000 0.0146704
\(279\) −1134.00 −0.243336
\(280\) 0 0
\(281\) −2710.00 −0.575320 −0.287660 0.957733i \(-0.592877\pi\)
−0.287660 + 0.957733i \(0.592877\pi\)
\(282\) −1566.00 −0.330688
\(283\) 556.000 0.116787 0.0583936 0.998294i \(-0.481402\pi\)
0.0583936 + 0.998294i \(0.481402\pi\)
\(284\) 3024.00 0.631836
\(285\) 0 0
\(286\) −304.000 −0.0628528
\(287\) −7800.00 −1.60425
\(288\) 1449.00 0.296469
\(289\) −4429.00 −0.901486
\(290\) 0 0
\(291\) 2490.00 0.501603
\(292\) 5026.00 1.00728
\(293\) −3694.00 −0.736539 −0.368269 0.929719i \(-0.620050\pi\)
−0.368269 + 0.929719i \(0.620050\pi\)
\(294\) −171.000 −0.0339215
\(295\) 0 0
\(296\) −2700.00 −0.530183
\(297\) 108.000 0.0211003
\(298\) 576.000 0.111969
\(299\) −6232.00 −1.20537
\(300\) 0 0
\(301\) −6160.00 −1.17959
\(302\) 990.000 0.188636
\(303\) −4836.00 −0.916901
\(304\) −779.000 −0.146969
\(305\) 0 0
\(306\) −198.000 −0.0369899
\(307\) −3384.00 −0.629104 −0.314552 0.949240i \(-0.601854\pi\)
−0.314552 + 0.949240i \(0.601854\pi\)
\(308\) 560.000 0.103601
\(309\) −5622.00 −1.03503
\(310\) 0 0
\(311\) −9666.00 −1.76241 −0.881203 0.472737i \(-0.843266\pi\)
−0.881203 + 0.472737i \(0.843266\pi\)
\(312\) 3420.00 0.620575
\(313\) 6794.00 1.22690 0.613450 0.789734i \(-0.289781\pi\)
0.613450 + 0.789734i \(0.289781\pi\)
\(314\) 654.000 0.117539
\(315\) 0 0
\(316\) −658.000 −0.117137
\(317\) 3242.00 0.574413 0.287206 0.957869i \(-0.407273\pi\)
0.287206 + 0.957869i \(0.407273\pi\)
\(318\) −210.000 −0.0370321
\(319\) −968.000 −0.169898
\(320\) 0 0
\(321\) −5796.00 −1.00779
\(322\) −1640.00 −0.283831
\(323\) 418.000 0.0720066
\(324\) −567.000 −0.0972222
\(325\) 0 0
\(326\) 900.000 0.152903
\(327\) −3288.00 −0.556045
\(328\) 5850.00 0.984793
\(329\) 10440.0 1.74947
\(330\) 0 0
\(331\) 176.000 0.0292261 0.0146130 0.999893i \(-0.495348\pi\)
0.0146130 + 0.999893i \(0.495348\pi\)
\(332\) −9072.00 −1.49967
\(333\) 1620.00 0.266593
\(334\) −740.000 −0.121231
\(335\) 0 0
\(336\) −2460.00 −0.399417
\(337\) 4262.00 0.688920 0.344460 0.938801i \(-0.388062\pi\)
0.344460 + 0.938801i \(0.388062\pi\)
\(338\) 3579.00 0.575952
\(339\) 4422.00 0.708466
\(340\) 0 0
\(341\) 504.000 0.0800385
\(342\) −171.000 −0.0270369
\(343\) −5720.00 −0.900440
\(344\) 4620.00 0.724110
\(345\) 0 0
\(346\) −582.000 −0.0904292
\(347\) −7060.00 −1.09222 −0.546110 0.837713i \(-0.683892\pi\)
−0.546110 + 0.837713i \(0.683892\pi\)
\(348\) 5082.00 0.782827
\(349\) 4746.00 0.727930 0.363965 0.931413i \(-0.381423\pi\)
0.363965 + 0.931413i \(0.381423\pi\)
\(350\) 0 0
\(351\) −2052.00 −0.312045
\(352\) −644.000 −0.0975151
\(353\) −2546.00 −0.383881 −0.191940 0.981407i \(-0.561478\pi\)
−0.191940 + 0.981407i \(0.561478\pi\)
\(354\) −564.000 −0.0846787
\(355\) 0 0
\(356\) −5922.00 −0.881644
\(357\) 1320.00 0.195691
\(358\) 2748.00 0.405688
\(359\) −1702.00 −0.250218 −0.125109 0.992143i \(-0.539928\pi\)
−0.125109 + 0.992143i \(0.539928\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 1336.00 0.193974
\(363\) 3945.00 0.570410
\(364\) −10640.0 −1.53211
\(365\) 0 0
\(366\) 2118.00 0.302485
\(367\) 7844.00 1.11568 0.557839 0.829950i \(-0.311631\pi\)
0.557839 + 0.829950i \(0.311631\pi\)
\(368\) −3362.00 −0.476240
\(369\) −3510.00 −0.495185
\(370\) 0 0
\(371\) 1400.00 0.195915
\(372\) −2646.00 −0.368787
\(373\) −13612.0 −1.88955 −0.944776 0.327718i \(-0.893720\pi\)
−0.944776 + 0.327718i \(0.893720\pi\)
\(374\) 88.0000 0.0121668
\(375\) 0 0
\(376\) −7830.00 −1.07394
\(377\) 18392.0 2.51256
\(378\) −540.000 −0.0734778
\(379\) 976.000 0.132279 0.0661395 0.997810i \(-0.478932\pi\)
0.0661395 + 0.997810i \(0.478932\pi\)
\(380\) 0 0
\(381\) −3498.00 −0.470362
\(382\) −606.000 −0.0811666
\(383\) −2152.00 −0.287107 −0.143554 0.989643i \(-0.545853\pi\)
−0.143554 + 0.989643i \(0.545853\pi\)
\(384\) 4365.00 0.580079
\(385\) 0 0
\(386\) 3002.00 0.395849
\(387\) −2772.00 −0.364105
\(388\) 5810.00 0.760201
\(389\) 10572.0 1.37795 0.688974 0.724786i \(-0.258061\pi\)
0.688974 + 0.724786i \(0.258061\pi\)
\(390\) 0 0
\(391\) 1804.00 0.233330
\(392\) −855.000 −0.110163
\(393\) −6576.00 −0.844059
\(394\) 4456.00 0.569772
\(395\) 0 0
\(396\) 252.000 0.0319785
\(397\) 10910.0 1.37924 0.689619 0.724173i \(-0.257778\pi\)
0.689619 + 0.724173i \(0.257778\pi\)
\(398\) −2844.00 −0.358183
\(399\) 1140.00 0.143036
\(400\) 0 0
\(401\) 10146.0 1.26351 0.631754 0.775169i \(-0.282335\pi\)
0.631754 + 0.775169i \(0.282335\pi\)
\(402\) 312.000 0.0387093
\(403\) −9576.00 −1.18366
\(404\) −11284.0 −1.38960
\(405\) 0 0
\(406\) 4840.00 0.591638
\(407\) −720.000 −0.0876881
\(408\) −990.000 −0.120128
\(409\) −13706.0 −1.65701 −0.828506 0.559980i \(-0.810809\pi\)
−0.828506 + 0.559980i \(0.810809\pi\)
\(410\) 0 0
\(411\) 1674.00 0.200906
\(412\) −13118.0 −1.56863
\(413\) 3760.00 0.447984
\(414\) −738.000 −0.0876104
\(415\) 0 0
\(416\) 12236.0 1.44211
\(417\) −204.000 −0.0239566
\(418\) 76.0000 0.00889302
\(419\) 6812.00 0.794243 0.397122 0.917766i \(-0.370009\pi\)
0.397122 + 0.917766i \(0.370009\pi\)
\(420\) 0 0
\(421\) −6724.00 −0.778403 −0.389202 0.921153i \(-0.627249\pi\)
−0.389202 + 0.921153i \(0.627249\pi\)
\(422\) −3108.00 −0.358519
\(423\) 4698.00 0.540011
\(424\) −1050.00 −0.120265
\(425\) 0 0
\(426\) 1296.00 0.147398
\(427\) −14120.0 −1.60027
\(428\) −13524.0 −1.52735
\(429\) 912.000 0.102638
\(430\) 0 0
\(431\) 13876.0 1.55077 0.775387 0.631487i \(-0.217555\pi\)
0.775387 + 0.631487i \(0.217555\pi\)
\(432\) −1107.00 −0.123288
\(433\) −342.000 −0.0379572 −0.0189786 0.999820i \(-0.506041\pi\)
−0.0189786 + 0.999820i \(0.506041\pi\)
\(434\) −2520.00 −0.278719
\(435\) 0 0
\(436\) −7672.00 −0.842711
\(437\) 1558.00 0.170547
\(438\) 2154.00 0.234982
\(439\) −6526.00 −0.709497 −0.354748 0.934962i \(-0.615433\pi\)
−0.354748 + 0.934962i \(0.615433\pi\)
\(440\) 0 0
\(441\) 513.000 0.0553936
\(442\) −1672.00 −0.179930
\(443\) 5020.00 0.538391 0.269196 0.963085i \(-0.413242\pi\)
0.269196 + 0.963085i \(0.413242\pi\)
\(444\) 3780.00 0.404033
\(445\) 0 0
\(446\) 4686.00 0.497508
\(447\) −1728.00 −0.182845
\(448\) −3340.00 −0.352233
\(449\) 9486.00 0.997042 0.498521 0.866878i \(-0.333877\pi\)
0.498521 + 0.866878i \(0.333877\pi\)
\(450\) 0 0
\(451\) 1560.00 0.162877
\(452\) 10318.0 1.07371
\(453\) −2970.00 −0.308041
\(454\) 3036.00 0.313847
\(455\) 0 0
\(456\) −855.000 −0.0878049
\(457\) 7262.00 0.743330 0.371665 0.928367i \(-0.378787\pi\)
0.371665 + 0.928367i \(0.378787\pi\)
\(458\) −4970.00 −0.507059
\(459\) 594.000 0.0604042
\(460\) 0 0
\(461\) −13968.0 −1.41118 −0.705591 0.708620i \(-0.749318\pi\)
−0.705591 + 0.708620i \(0.749318\pi\)
\(462\) 240.000 0.0241684
\(463\) −4604.00 −0.462130 −0.231065 0.972938i \(-0.574221\pi\)
−0.231065 + 0.972938i \(0.574221\pi\)
\(464\) 9922.00 0.992710
\(465\) 0 0
\(466\) 2982.00 0.296435
\(467\) 19480.0 1.93025 0.965125 0.261789i \(-0.0843124\pi\)
0.965125 + 0.261789i \(0.0843124\pi\)
\(468\) −4788.00 −0.472917
\(469\) −2080.00 −0.204788
\(470\) 0 0
\(471\) −1962.00 −0.191941
\(472\) −2820.00 −0.275002
\(473\) 1232.00 0.119762
\(474\) −282.000 −0.0273263
\(475\) 0 0
\(476\) 3080.00 0.296579
\(477\) 630.000 0.0604732
\(478\) −522.000 −0.0499492
\(479\) −12134.0 −1.15745 −0.578723 0.815524i \(-0.696449\pi\)
−0.578723 + 0.815524i \(0.696449\pi\)
\(480\) 0 0
\(481\) 13680.0 1.29679
\(482\) 3350.00 0.316573
\(483\) 4920.00 0.463494
\(484\) 9205.00 0.864482
\(485\) 0 0
\(486\) −243.000 −0.0226805
\(487\) 15658.0 1.45694 0.728472 0.685076i \(-0.240231\pi\)
0.728472 + 0.685076i \(0.240231\pi\)
\(488\) 10590.0 0.982350
\(489\) −2700.00 −0.249690
\(490\) 0 0
\(491\) 2520.00 0.231621 0.115811 0.993271i \(-0.463053\pi\)
0.115811 + 0.993271i \(0.463053\pi\)
\(492\) −8190.00 −0.750475
\(493\) −5324.00 −0.486371
\(494\) −1444.00 −0.131515
\(495\) 0 0
\(496\) −5166.00 −0.467662
\(497\) −8640.00 −0.779793
\(498\) −3888.00 −0.349850
\(499\) −9460.00 −0.848673 −0.424336 0.905505i \(-0.639493\pi\)
−0.424336 + 0.905505i \(0.639493\pi\)
\(500\) 0 0
\(501\) 2220.00 0.197969
\(502\) −2968.00 −0.263881
\(503\) 12178.0 1.07950 0.539752 0.841824i \(-0.318518\pi\)
0.539752 + 0.841824i \(0.318518\pi\)
\(504\) −2700.00 −0.238626
\(505\) 0 0
\(506\) 328.000 0.0288170
\(507\) −10737.0 −0.940526
\(508\) −8162.00 −0.712855
\(509\) −4746.00 −0.413286 −0.206643 0.978416i \(-0.566254\pi\)
−0.206643 + 0.978416i \(0.566254\pi\)
\(510\) 0 0
\(511\) −14360.0 −1.24315
\(512\) 11521.0 0.994455
\(513\) 513.000 0.0441511
\(514\) 1234.00 0.105894
\(515\) 0 0
\(516\) −6468.00 −0.551817
\(517\) −2088.00 −0.177621
\(518\) 3600.00 0.305357
\(519\) 1746.00 0.147670
\(520\) 0 0
\(521\) 4326.00 0.363773 0.181886 0.983320i \(-0.441780\pi\)
0.181886 + 0.983320i \(0.441780\pi\)
\(522\) 2178.00 0.182622
\(523\) 6328.00 0.529071 0.264535 0.964376i \(-0.414781\pi\)
0.264535 + 0.964376i \(0.414781\pi\)
\(524\) −15344.0 −1.27921
\(525\) 0 0
\(526\) 1994.00 0.165290
\(527\) 2772.00 0.229128
\(528\) 492.000 0.0405522
\(529\) −5443.00 −0.447358
\(530\) 0 0
\(531\) 1692.00 0.138280
\(532\) 2660.00 0.216777
\(533\) −29640.0 −2.40873
\(534\) −2538.00 −0.205674
\(535\) 0 0
\(536\) 1560.00 0.125712
\(537\) −8244.00 −0.662486
\(538\) 7214.00 0.578100
\(539\) −228.000 −0.0182201
\(540\) 0 0
\(541\) 9378.00 0.745271 0.372636 0.927978i \(-0.378454\pi\)
0.372636 + 0.927978i \(0.378454\pi\)
\(542\) 7572.00 0.600083
\(543\) −4008.00 −0.316758
\(544\) −3542.00 −0.279158
\(545\) 0 0
\(546\) −4560.00 −0.357418
\(547\) 5048.00 0.394583 0.197291 0.980345i \(-0.436785\pi\)
0.197291 + 0.980345i \(0.436785\pi\)
\(548\) 3906.00 0.304482
\(549\) −6354.00 −0.493956
\(550\) 0 0
\(551\) −4598.00 −0.355502
\(552\) −3690.00 −0.284523
\(553\) 1880.00 0.144567
\(554\) −6262.00 −0.480229
\(555\) 0 0
\(556\) −476.000 −0.0363074
\(557\) −752.000 −0.0572051 −0.0286026 0.999591i \(-0.509106\pi\)
−0.0286026 + 0.999591i \(0.509106\pi\)
\(558\) −1134.00 −0.0860323
\(559\) −23408.0 −1.77111
\(560\) 0 0
\(561\) −264.000 −0.0198683
\(562\) −2710.00 −0.203406
\(563\) −18156.0 −1.35912 −0.679560 0.733620i \(-0.737829\pi\)
−0.679560 + 0.733620i \(0.737829\pi\)
\(564\) 10962.0 0.818410
\(565\) 0 0
\(566\) 556.000 0.0412905
\(567\) 1620.00 0.119989
\(568\) 6480.00 0.478688
\(569\) 1398.00 0.103000 0.0515002 0.998673i \(-0.483600\pi\)
0.0515002 + 0.998673i \(0.483600\pi\)
\(570\) 0 0
\(571\) 21180.0 1.55229 0.776143 0.630557i \(-0.217173\pi\)
0.776143 + 0.630557i \(0.217173\pi\)
\(572\) 2128.00 0.155553
\(573\) 1818.00 0.132545
\(574\) −7800.00 −0.567188
\(575\) 0 0
\(576\) −1503.00 −0.108724
\(577\) −27186.0 −1.96147 −0.980735 0.195344i \(-0.937418\pi\)
−0.980735 + 0.195344i \(0.937418\pi\)
\(578\) −4429.00 −0.318723
\(579\) −9006.00 −0.646419
\(580\) 0 0
\(581\) 25920.0 1.85085
\(582\) 2490.00 0.177343
\(583\) −280.000 −0.0198909
\(584\) 10770.0 0.763126
\(585\) 0 0
\(586\) −3694.00 −0.260406
\(587\) 10204.0 0.717486 0.358743 0.933436i \(-0.383205\pi\)
0.358743 + 0.933436i \(0.383205\pi\)
\(588\) 1197.00 0.0839514
\(589\) 2394.00 0.167475
\(590\) 0 0
\(591\) −13368.0 −0.930433
\(592\) 7380.00 0.512358
\(593\) −9978.00 −0.690974 −0.345487 0.938424i \(-0.612286\pi\)
−0.345487 + 0.938424i \(0.612286\pi\)
\(594\) 108.000 0.00746009
\(595\) 0 0
\(596\) −4032.00 −0.277109
\(597\) 8532.00 0.584910
\(598\) −6232.00 −0.426163
\(599\) −11100.0 −0.757151 −0.378576 0.925570i \(-0.623586\pi\)
−0.378576 + 0.925570i \(0.623586\pi\)
\(600\) 0 0
\(601\) −3030.00 −0.205651 −0.102826 0.994699i \(-0.532788\pi\)
−0.102826 + 0.994699i \(0.532788\pi\)
\(602\) −6160.00 −0.417048
\(603\) −936.000 −0.0632121
\(604\) −6930.00 −0.466850
\(605\) 0 0
\(606\) −4836.00 −0.324173
\(607\) −10478.0 −0.700641 −0.350320 0.936630i \(-0.613927\pi\)
−0.350320 + 0.936630i \(0.613927\pi\)
\(608\) −3059.00 −0.204044
\(609\) −14520.0 −0.966141
\(610\) 0 0
\(611\) 39672.0 2.62677
\(612\) 1386.00 0.0915453
\(613\) −2706.00 −0.178294 −0.0891471 0.996018i \(-0.528414\pi\)
−0.0891471 + 0.996018i \(0.528414\pi\)
\(614\) −3384.00 −0.222422
\(615\) 0 0
\(616\) 1200.00 0.0784892
\(617\) 19734.0 1.28762 0.643810 0.765186i \(-0.277353\pi\)
0.643810 + 0.765186i \(0.277353\pi\)
\(618\) −5622.00 −0.365939
\(619\) 21196.0 1.37632 0.688158 0.725561i \(-0.258420\pi\)
0.688158 + 0.725561i \(0.258420\pi\)
\(620\) 0 0
\(621\) 2214.00 0.143067
\(622\) −9666.00 −0.623105
\(623\) 16920.0 1.08810
\(624\) −9348.00 −0.599711
\(625\) 0 0
\(626\) 6794.00 0.433775
\(627\) −228.000 −0.0145222
\(628\) −4578.00 −0.290895
\(629\) −3960.00 −0.251026
\(630\) 0 0
\(631\) 5040.00 0.317970 0.158985 0.987281i \(-0.449178\pi\)
0.158985 + 0.987281i \(0.449178\pi\)
\(632\) −1410.00 −0.0887449
\(633\) 9324.00 0.585459
\(634\) 3242.00 0.203086
\(635\) 0 0
\(636\) 1470.00 0.0916498
\(637\) 4332.00 0.269451
\(638\) −968.000 −0.0600682
\(639\) −3888.00 −0.240699
\(640\) 0 0
\(641\) −13602.0 −0.838138 −0.419069 0.907954i \(-0.637644\pi\)
−0.419069 + 0.907954i \(0.637644\pi\)
\(642\) −5796.00 −0.356308
\(643\) −4628.00 −0.283842 −0.141921 0.989878i \(-0.545328\pi\)
−0.141921 + 0.989878i \(0.545328\pi\)
\(644\) 11480.0 0.702446
\(645\) 0 0
\(646\) 418.000 0.0254582
\(647\) 14142.0 0.859319 0.429659 0.902991i \(-0.358634\pi\)
0.429659 + 0.902991i \(0.358634\pi\)
\(648\) −1215.00 −0.0736570
\(649\) −752.000 −0.0454832
\(650\) 0 0
\(651\) 7560.00 0.455146
\(652\) −6300.00 −0.378416
\(653\) 14424.0 0.864402 0.432201 0.901777i \(-0.357737\pi\)
0.432201 + 0.901777i \(0.357737\pi\)
\(654\) −3288.00 −0.196592
\(655\) 0 0
\(656\) −15990.0 −0.951684
\(657\) −6462.00 −0.383724
\(658\) 10440.0 0.618531
\(659\) 24044.0 1.42128 0.710638 0.703558i \(-0.248406\pi\)
0.710638 + 0.703558i \(0.248406\pi\)
\(660\) 0 0
\(661\) 10092.0 0.593848 0.296924 0.954901i \(-0.404039\pi\)
0.296924 + 0.954901i \(0.404039\pi\)
\(662\) 176.000 0.0103330
\(663\) 5016.00 0.293824
\(664\) −19440.0 −1.13617
\(665\) 0 0
\(666\) 1620.00 0.0942548
\(667\) −19844.0 −1.15197
\(668\) 5180.00 0.300030
\(669\) −14058.0 −0.812427
\(670\) 0 0
\(671\) 2824.00 0.162473
\(672\) −9660.00 −0.554528
\(673\) 7098.00 0.406549 0.203275 0.979122i \(-0.434842\pi\)
0.203275 + 0.979122i \(0.434842\pi\)
\(674\) 4262.00 0.243570
\(675\) 0 0
\(676\) −25053.0 −1.42541
\(677\) −29762.0 −1.68958 −0.844791 0.535097i \(-0.820275\pi\)
−0.844791 + 0.535097i \(0.820275\pi\)
\(678\) 4422.00 0.250481
\(679\) −16600.0 −0.938217
\(680\) 0 0
\(681\) −9108.00 −0.512510
\(682\) 504.000 0.0282979
\(683\) −11748.0 −0.658162 −0.329081 0.944302i \(-0.606739\pi\)
−0.329081 + 0.944302i \(0.606739\pi\)
\(684\) 1197.00 0.0669129
\(685\) 0 0
\(686\) −5720.00 −0.318354
\(687\) 14910.0 0.828023
\(688\) −12628.0 −0.699765
\(689\) 5320.00 0.294159
\(690\) 0 0
\(691\) −30676.0 −1.68881 −0.844407 0.535703i \(-0.820047\pi\)
−0.844407 + 0.535703i \(0.820047\pi\)
\(692\) 4074.00 0.223801
\(693\) −720.000 −0.0394669
\(694\) −7060.00 −0.386158
\(695\) 0 0
\(696\) 10890.0 0.593081
\(697\) 8580.00 0.466271
\(698\) 4746.00 0.257362
\(699\) −8946.00 −0.484076
\(700\) 0 0
\(701\) 31228.0 1.68255 0.841273 0.540610i \(-0.181806\pi\)
0.841273 + 0.540610i \(0.181806\pi\)
\(702\) −2052.00 −0.110324
\(703\) −3420.00 −0.183482
\(704\) 668.000 0.0357616
\(705\) 0 0
\(706\) −2546.00 −0.135722
\(707\) 32240.0 1.71501
\(708\) 3948.00 0.209569
\(709\) −14658.0 −0.776435 −0.388218 0.921568i \(-0.626909\pi\)
−0.388218 + 0.921568i \(0.626909\pi\)
\(710\) 0 0
\(711\) 846.000 0.0446237
\(712\) −12690.0 −0.667946
\(713\) 10332.0 0.542688
\(714\) 1320.00 0.0691873
\(715\) 0 0
\(716\) −19236.0 −1.00403
\(717\) 1566.00 0.0815667
\(718\) −1702.00 −0.0884653
\(719\) 5502.00 0.285382 0.142691 0.989767i \(-0.454424\pi\)
0.142691 + 0.989767i \(0.454424\pi\)
\(720\) 0 0
\(721\) 37480.0 1.93596
\(722\) 361.000 0.0186081
\(723\) −10050.0 −0.516962
\(724\) −9352.00 −0.480061
\(725\) 0 0
\(726\) 3945.00 0.201670
\(727\) −6136.00 −0.313028 −0.156514 0.987676i \(-0.550026\pi\)
−0.156514 + 0.987676i \(0.550026\pi\)
\(728\) −22800.0 −1.16075
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 6776.00 0.342845
\(732\) −14826.0 −0.748613
\(733\) −24442.0 −1.23163 −0.615816 0.787890i \(-0.711173\pi\)
−0.615816 + 0.787890i \(0.711173\pi\)
\(734\) 7844.00 0.394451
\(735\) 0 0
\(736\) −13202.0 −0.661185
\(737\) 416.000 0.0207918
\(738\) −3510.00 −0.175074
\(739\) 11980.0 0.596335 0.298167 0.954514i \(-0.403625\pi\)
0.298167 + 0.954514i \(0.403625\pi\)
\(740\) 0 0
\(741\) 4332.00 0.214764
\(742\) 1400.00 0.0692663
\(743\) −15524.0 −0.766515 −0.383257 0.923642i \(-0.625198\pi\)
−0.383257 + 0.923642i \(0.625198\pi\)
\(744\) −5670.00 −0.279398
\(745\) 0 0
\(746\) −13612.0 −0.668057
\(747\) 11664.0 0.571303
\(748\) −616.000 −0.0301112
\(749\) 38640.0 1.88501
\(750\) 0 0
\(751\) 10494.0 0.509895 0.254948 0.966955i \(-0.417942\pi\)
0.254948 + 0.966955i \(0.417942\pi\)
\(752\) 21402.0 1.03783
\(753\) 8904.00 0.430916
\(754\) 18392.0 0.888325
\(755\) 0 0
\(756\) 3780.00 0.181848
\(757\) 24446.0 1.17372 0.586859 0.809689i \(-0.300364\pi\)
0.586859 + 0.809689i \(0.300364\pi\)
\(758\) 976.000 0.0467677
\(759\) −984.000 −0.0470579
\(760\) 0 0
\(761\) −28650.0 −1.36473 −0.682366 0.731010i \(-0.739049\pi\)
−0.682366 + 0.731010i \(0.739049\pi\)
\(762\) −3498.00 −0.166298
\(763\) 21920.0 1.04005
\(764\) 4242.00 0.200877
\(765\) 0 0
\(766\) −2152.00 −0.101508
\(767\) 14288.0 0.672633
\(768\) 357.000 0.0167736
\(769\) 6974.00 0.327034 0.163517 0.986541i \(-0.447716\pi\)
0.163517 + 0.986541i \(0.447716\pi\)
\(770\) 0 0
\(771\) −3702.00 −0.172924
\(772\) −21014.0 −0.979677
\(773\) 6170.00 0.287089 0.143544 0.989644i \(-0.454150\pi\)
0.143544 + 0.989644i \(0.454150\pi\)
\(774\) −2772.00 −0.128731
\(775\) 0 0
\(776\) 12450.0 0.575939
\(777\) −10800.0 −0.498646
\(778\) 10572.0 0.487178
\(779\) 7410.00 0.340810
\(780\) 0 0
\(781\) 1728.00 0.0791712
\(782\) 1804.00 0.0824948
\(783\) −6534.00 −0.298220
\(784\) 2337.00 0.106460
\(785\) 0 0
\(786\) −6576.00 −0.298420
\(787\) 17900.0 0.810757 0.405379 0.914149i \(-0.367140\pi\)
0.405379 + 0.914149i \(0.367140\pi\)
\(788\) −31192.0 −1.41011
\(789\) −5982.00 −0.269917
\(790\) 0 0
\(791\) −29480.0 −1.32514
\(792\) 540.000 0.0242274
\(793\) −53656.0 −2.40275
\(794\) 10910.0 0.487634
\(795\) 0 0
\(796\) 19908.0 0.886458
\(797\) −31358.0 −1.39367 −0.696836 0.717230i \(-0.745410\pi\)
−0.696836 + 0.717230i \(0.745410\pi\)
\(798\) 1140.00 0.0505709
\(799\) −11484.0 −0.508479
\(800\) 0 0
\(801\) 7614.00 0.335864
\(802\) 10146.0 0.446718
\(803\) 2872.00 0.126215
\(804\) −2184.00 −0.0958007
\(805\) 0 0
\(806\) −9576.00 −0.418487
\(807\) −21642.0 −0.944033
\(808\) −24180.0 −1.05278
\(809\) −20210.0 −0.878301 −0.439151 0.898413i \(-0.644721\pi\)
−0.439151 + 0.898413i \(0.644721\pi\)
\(810\) 0 0
\(811\) −8648.00 −0.374442 −0.187221 0.982318i \(-0.559948\pi\)
−0.187221 + 0.982318i \(0.559948\pi\)
\(812\) −33880.0 −1.46423
\(813\) −22716.0 −0.979932
\(814\) −720.000 −0.0310024
\(815\) 0 0
\(816\) 2706.00 0.116089
\(817\) 5852.00 0.250594
\(818\) −13706.0 −0.585842
\(819\) 13680.0 0.583660
\(820\) 0 0
\(821\) −8940.00 −0.380034 −0.190017 0.981781i \(-0.560854\pi\)
−0.190017 + 0.981781i \(0.560854\pi\)
\(822\) 1674.00 0.0710310
\(823\) 17504.0 0.741374 0.370687 0.928758i \(-0.379122\pi\)
0.370687 + 0.928758i \(0.379122\pi\)
\(824\) −28110.0 −1.18842
\(825\) 0 0
\(826\) 3760.00 0.158386
\(827\) −4356.00 −0.183160 −0.0915798 0.995798i \(-0.529192\pi\)
−0.0915798 + 0.995798i \(0.529192\pi\)
\(828\) 5166.00 0.216825
\(829\) 1528.00 0.0640164 0.0320082 0.999488i \(-0.489810\pi\)
0.0320082 + 0.999488i \(0.489810\pi\)
\(830\) 0 0
\(831\) 18786.0 0.784211
\(832\) −12692.0 −0.528865
\(833\) −1254.00 −0.0521591
\(834\) −204.000 −0.00846995
\(835\) 0 0
\(836\) −532.000 −0.0220091
\(837\) 3402.00 0.140490
\(838\) 6812.00 0.280807
\(839\) −30204.0 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 34175.0 1.40125
\(842\) −6724.00 −0.275207
\(843\) 8130.00 0.332161
\(844\) 21756.0 0.887290
\(845\) 0 0
\(846\) 4698.00 0.190923
\(847\) −26300.0 −1.06692
\(848\) 2870.00 0.116222
\(849\) −1668.00 −0.0674271
\(850\) 0 0
\(851\) −14760.0 −0.594555
\(852\) −9072.00 −0.364791
\(853\) 9218.00 0.370010 0.185005 0.982738i \(-0.440770\pi\)
0.185005 + 0.982738i \(0.440770\pi\)
\(854\) −14120.0 −0.565780
\(855\) 0 0
\(856\) −28980.0 −1.15714
\(857\) 44554.0 1.77589 0.887944 0.459952i \(-0.152133\pi\)
0.887944 + 0.459952i \(0.152133\pi\)
\(858\) 912.000 0.0362881
\(859\) 9828.00 0.390369 0.195185 0.980767i \(-0.437469\pi\)
0.195185 + 0.980767i \(0.437469\pi\)
\(860\) 0 0
\(861\) 23400.0 0.926214
\(862\) 13876.0 0.548281
\(863\) 11668.0 0.460236 0.230118 0.973163i \(-0.426089\pi\)
0.230118 + 0.973163i \(0.426089\pi\)
\(864\) −4347.00 −0.171167
\(865\) 0 0
\(866\) −342.000 −0.0134199
\(867\) 13287.0 0.520473
\(868\) 17640.0 0.689793
\(869\) −376.000 −0.0146777
\(870\) 0 0
\(871\) −7904.00 −0.307482
\(872\) −16440.0 −0.638450
\(873\) −7470.00 −0.289600
\(874\) 1558.00 0.0602976
\(875\) 0 0
\(876\) −15078.0 −0.581551
\(877\) −17292.0 −0.665803 −0.332902 0.942962i \(-0.608028\pi\)
−0.332902 + 0.942962i \(0.608028\pi\)
\(878\) −6526.00 −0.250845
\(879\) 11082.0 0.425241
\(880\) 0 0
\(881\) 4618.00 0.176600 0.0882999 0.996094i \(-0.471857\pi\)
0.0882999 + 0.996094i \(0.471857\pi\)
\(882\) 513.000 0.0195846
\(883\) 17740.0 0.676103 0.338051 0.941128i \(-0.390232\pi\)
0.338051 + 0.941128i \(0.390232\pi\)
\(884\) 11704.0 0.445303
\(885\) 0 0
\(886\) 5020.00 0.190350
\(887\) 24516.0 0.928035 0.464017 0.885826i \(-0.346408\pi\)
0.464017 + 0.885826i \(0.346408\pi\)
\(888\) 8100.00 0.306102
\(889\) 23320.0 0.879784
\(890\) 0 0
\(891\) −324.000 −0.0121823
\(892\) −32802.0 −1.23127
\(893\) −9918.00 −0.371661
\(894\) −1728.00 −0.0646454
\(895\) 0 0
\(896\) −29100.0 −1.08500
\(897\) 18696.0 0.695921
\(898\) 9486.00 0.352508
\(899\) −30492.0 −1.13122
\(900\) 0 0
\(901\) −1540.00 −0.0569421
\(902\) 1560.00 0.0575857
\(903\) 18480.0 0.681036
\(904\) 22110.0 0.813460
\(905\) 0 0
\(906\) −2970.00 −0.108909
\(907\) −8392.00 −0.307224 −0.153612 0.988131i \(-0.549091\pi\)
−0.153612 + 0.988131i \(0.549091\pi\)
\(908\) −21252.0 −0.776732
\(909\) 14508.0 0.529373
\(910\) 0 0
\(911\) 17004.0 0.618406 0.309203 0.950996i \(-0.399938\pi\)
0.309203 + 0.950996i \(0.399938\pi\)
\(912\) 2337.00 0.0848529
\(913\) −5184.00 −0.187914
\(914\) 7262.00 0.262807
\(915\) 0 0
\(916\) 34790.0 1.25491
\(917\) 43840.0 1.57876
\(918\) 594.000 0.0213561
\(919\) −46288.0 −1.66148 −0.830740 0.556661i \(-0.812082\pi\)
−0.830740 + 0.556661i \(0.812082\pi\)
\(920\) 0 0
\(921\) 10152.0 0.363214
\(922\) −13968.0 −0.498928
\(923\) −32832.0 −1.17083
\(924\) −1680.00 −0.0598138
\(925\) 0 0
\(926\) −4604.00 −0.163388
\(927\) 16866.0 0.597575
\(928\) 38962.0 1.37822
\(929\) −4978.00 −0.175805 −0.0879025 0.996129i \(-0.528016\pi\)
−0.0879025 + 0.996129i \(0.528016\pi\)
\(930\) 0 0
\(931\) −1083.00 −0.0381245
\(932\) −20874.0 −0.733638
\(933\) 28998.0 1.01753
\(934\) 19480.0 0.682447
\(935\) 0 0
\(936\) −10260.0 −0.358289
\(937\) −39798.0 −1.38756 −0.693780 0.720187i \(-0.744056\pi\)
−0.693780 + 0.720187i \(0.744056\pi\)
\(938\) −2080.00 −0.0724034
\(939\) −20382.0 −0.708351
\(940\) 0 0
\(941\) 31662.0 1.09687 0.548433 0.836194i \(-0.315224\pi\)
0.548433 + 0.836194i \(0.315224\pi\)
\(942\) −1962.00 −0.0678614
\(943\) 31980.0 1.10436
\(944\) 7708.00 0.265756
\(945\) 0 0
\(946\) 1232.00 0.0423423
\(947\) 44744.0 1.53536 0.767679 0.640834i \(-0.221411\pi\)
0.767679 + 0.640834i \(0.221411\pi\)
\(948\) 1974.00 0.0676293
\(949\) −54568.0 −1.86655
\(950\) 0 0
\(951\) −9726.00 −0.331637
\(952\) 6600.00 0.224692
\(953\) −18626.0 −0.633112 −0.316556 0.948574i \(-0.602526\pi\)
−0.316556 + 0.948574i \(0.602526\pi\)
\(954\) 630.000 0.0213805
\(955\) 0 0
\(956\) 3654.00 0.123618
\(957\) 2904.00 0.0980909
\(958\) −12134.0 −0.409219
\(959\) −11160.0 −0.375782
\(960\) 0 0
\(961\) −13915.0 −0.467087
\(962\) 13680.0 0.458483
\(963\) 17388.0 0.581849
\(964\) −23450.0 −0.783479
\(965\) 0 0
\(966\) 4920.00 0.163870
\(967\) −30244.0 −1.00577 −0.502886 0.864353i \(-0.667728\pi\)
−0.502886 + 0.864353i \(0.667728\pi\)
\(968\) 19725.0 0.654944
\(969\) −1254.00 −0.0415730
\(970\) 0 0
\(971\) 46572.0 1.53920 0.769602 0.638524i \(-0.220455\pi\)
0.769602 + 0.638524i \(0.220455\pi\)
\(972\) 1701.00 0.0561313
\(973\) 1360.00 0.0448095
\(974\) 15658.0 0.515107
\(975\) 0 0
\(976\) −28946.0 −0.949323
\(977\) −30162.0 −0.987685 −0.493842 0.869551i \(-0.664408\pi\)
−0.493842 + 0.869551i \(0.664408\pi\)
\(978\) −2700.00 −0.0882786
\(979\) −3384.00 −0.110473
\(980\) 0 0
\(981\) 9864.00 0.321033
\(982\) 2520.00 0.0818905
\(983\) −17792.0 −0.577291 −0.288645 0.957436i \(-0.593205\pi\)
−0.288645 + 0.957436i \(0.593205\pi\)
\(984\) −17550.0 −0.568571
\(985\) 0 0
\(986\) −5324.00 −0.171958
\(987\) −31320.0 −1.01006
\(988\) 10108.0 0.325484
\(989\) 25256.0 0.812026
\(990\) 0 0
\(991\) 9434.00 0.302403 0.151201 0.988503i \(-0.451686\pi\)
0.151201 + 0.988503i \(0.451686\pi\)
\(992\) −20286.0 −0.649275
\(993\) −528.000 −0.0168737
\(994\) −8640.00 −0.275698
\(995\) 0 0
\(996\) 27216.0 0.865835
\(997\) 61286.0 1.94679 0.973394 0.229139i \(-0.0735910\pi\)
0.973394 + 0.229139i \(0.0735910\pi\)
\(998\) −9460.00 −0.300051
\(999\) −4860.00 −0.153918
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.4.a.c.1.1 1
5.4 even 2 57.4.a.a.1.1 1
15.14 odd 2 171.4.a.b.1.1 1
20.19 odd 2 912.4.a.a.1.1 1
95.94 odd 2 1083.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.4.a.a.1.1 1 5.4 even 2
171.4.a.b.1.1 1 15.14 odd 2
912.4.a.a.1.1 1 20.19 odd 2
1083.4.a.a.1.1 1 95.94 odd 2
1425.4.a.c.1.1 1 1.1 even 1 trivial