Properties

Label 1425.4.a.b.1.1
Level $1425$
Weight $4$
Character 1425.1
Self dual yes
Analytic conductor $84.078$
Analytic rank $2$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,4,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.0777217582\)
Analytic rank: \(2\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 285)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} +3.00000 q^{6} +4.00000 q^{7} +15.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} +3.00000 q^{6} +4.00000 q^{7} +15.0000 q^{8} +9.00000 q^{9} -68.0000 q^{11} +21.0000 q^{12} -82.0000 q^{13} -4.00000 q^{14} +41.0000 q^{16} -86.0000 q^{17} -9.00000 q^{18} +19.0000 q^{19} -12.0000 q^{21} +68.0000 q^{22} +18.0000 q^{23} -45.0000 q^{24} +82.0000 q^{26} -27.0000 q^{27} -28.0000 q^{28} +30.0000 q^{29} -298.000 q^{31} -161.000 q^{32} +204.000 q^{33} +86.0000 q^{34} -63.0000 q^{36} +34.0000 q^{37} -19.0000 q^{38} +246.000 q^{39} +52.0000 q^{41} +12.0000 q^{42} -482.000 q^{43} +476.000 q^{44} -18.0000 q^{46} +114.000 q^{47} -123.000 q^{48} -327.000 q^{49} +258.000 q^{51} +574.000 q^{52} -362.000 q^{53} +27.0000 q^{54} +60.0000 q^{56} -57.0000 q^{57} -30.0000 q^{58} -210.000 q^{59} -718.000 q^{61} +298.000 q^{62} +36.0000 q^{63} -167.000 q^{64} -204.000 q^{66} +904.000 q^{67} +602.000 q^{68} -54.0000 q^{69} -988.000 q^{71} +135.000 q^{72} +488.000 q^{73} -34.0000 q^{74} -133.000 q^{76} -272.000 q^{77} -246.000 q^{78} -530.000 q^{79} +81.0000 q^{81} -52.0000 q^{82} -1032.00 q^{83} +84.0000 q^{84} +482.000 q^{86} -90.0000 q^{87} -1020.00 q^{88} -880.000 q^{89} -328.000 q^{91} -126.000 q^{92} +894.000 q^{93} -114.000 q^{94} +483.000 q^{96} -246.000 q^{97} +327.000 q^{98} -612.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.353553 −0.176777 0.984251i \(-0.556567\pi\)
−0.176777 + 0.984251i \(0.556567\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.00000 −0.875000
\(5\) 0 0
\(6\) 3.00000 0.204124
\(7\) 4.00000 0.215980 0.107990 0.994152i \(-0.465559\pi\)
0.107990 + 0.994152i \(0.465559\pi\)
\(8\) 15.0000 0.662913
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −68.0000 −1.86389 −0.931944 0.362602i \(-0.881889\pi\)
−0.931944 + 0.362602i \(0.881889\pi\)
\(12\) 21.0000 0.505181
\(13\) −82.0000 −1.74944 −0.874720 0.484629i \(-0.838954\pi\)
−0.874720 + 0.484629i \(0.838954\pi\)
\(14\) −4.00000 −0.0763604
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) −86.0000 −1.22694 −0.613472 0.789716i \(-0.710228\pi\)
−0.613472 + 0.789716i \(0.710228\pi\)
\(18\) −9.00000 −0.117851
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −12.0000 −0.124696
\(22\) 68.0000 0.658984
\(23\) 18.0000 0.163185 0.0815926 0.996666i \(-0.473999\pi\)
0.0815926 + 0.996666i \(0.473999\pi\)
\(24\) −45.0000 −0.382733
\(25\) 0 0
\(26\) 82.0000 0.618520
\(27\) −27.0000 −0.192450
\(28\) −28.0000 −0.188982
\(29\) 30.0000 0.192099 0.0960493 0.995377i \(-0.469379\pi\)
0.0960493 + 0.995377i \(0.469379\pi\)
\(30\) 0 0
\(31\) −298.000 −1.72653 −0.863264 0.504752i \(-0.831584\pi\)
−0.863264 + 0.504752i \(0.831584\pi\)
\(32\) −161.000 −0.889408
\(33\) 204.000 1.07612
\(34\) 86.0000 0.433791
\(35\) 0 0
\(36\) −63.0000 −0.291667
\(37\) 34.0000 0.151069 0.0755347 0.997143i \(-0.475934\pi\)
0.0755347 + 0.997143i \(0.475934\pi\)
\(38\) −19.0000 −0.0811107
\(39\) 246.000 1.01004
\(40\) 0 0
\(41\) 52.0000 0.198074 0.0990370 0.995084i \(-0.468424\pi\)
0.0990370 + 0.995084i \(0.468424\pi\)
\(42\) 12.0000 0.0440867
\(43\) −482.000 −1.70940 −0.854701 0.519120i \(-0.826260\pi\)
−0.854701 + 0.519120i \(0.826260\pi\)
\(44\) 476.000 1.63090
\(45\) 0 0
\(46\) −18.0000 −0.0576947
\(47\) 114.000 0.353800 0.176900 0.984229i \(-0.443393\pi\)
0.176900 + 0.984229i \(0.443393\pi\)
\(48\) −123.000 −0.369865
\(49\) −327.000 −0.953353
\(50\) 0 0
\(51\) 258.000 0.708377
\(52\) 574.000 1.53076
\(53\) −362.000 −0.938199 −0.469099 0.883145i \(-0.655421\pi\)
−0.469099 + 0.883145i \(0.655421\pi\)
\(54\) 27.0000 0.0680414
\(55\) 0 0
\(56\) 60.0000 0.143176
\(57\) −57.0000 −0.132453
\(58\) −30.0000 −0.0679171
\(59\) −210.000 −0.463384 −0.231692 0.972789i \(-0.574426\pi\)
−0.231692 + 0.972789i \(0.574426\pi\)
\(60\) 0 0
\(61\) −718.000 −1.50706 −0.753529 0.657415i \(-0.771650\pi\)
−0.753529 + 0.657415i \(0.771650\pi\)
\(62\) 298.000 0.610420
\(63\) 36.0000 0.0719932
\(64\) −167.000 −0.326172
\(65\) 0 0
\(66\) −204.000 −0.380465
\(67\) 904.000 1.64838 0.824188 0.566316i \(-0.191632\pi\)
0.824188 + 0.566316i \(0.191632\pi\)
\(68\) 602.000 1.07358
\(69\) −54.0000 −0.0942150
\(70\) 0 0
\(71\) −988.000 −1.65147 −0.825733 0.564062i \(-0.809238\pi\)
−0.825733 + 0.564062i \(0.809238\pi\)
\(72\) 135.000 0.220971
\(73\) 488.000 0.782412 0.391206 0.920303i \(-0.372058\pi\)
0.391206 + 0.920303i \(0.372058\pi\)
\(74\) −34.0000 −0.0534111
\(75\) 0 0
\(76\) −133.000 −0.200739
\(77\) −272.000 −0.402562
\(78\) −246.000 −0.357103
\(79\) −530.000 −0.754806 −0.377403 0.926049i \(-0.623183\pi\)
−0.377403 + 0.926049i \(0.623183\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −52.0000 −0.0700297
\(83\) −1032.00 −1.36478 −0.682390 0.730988i \(-0.739059\pi\)
−0.682390 + 0.730988i \(0.739059\pi\)
\(84\) 84.0000 0.109109
\(85\) 0 0
\(86\) 482.000 0.604365
\(87\) −90.0000 −0.110908
\(88\) −1020.00 −1.23560
\(89\) −880.000 −1.04809 −0.524044 0.851691i \(-0.675577\pi\)
−0.524044 + 0.851691i \(0.675577\pi\)
\(90\) 0 0
\(91\) −328.000 −0.377843
\(92\) −126.000 −0.142787
\(93\) 894.000 0.996812
\(94\) −114.000 −0.125087
\(95\) 0 0
\(96\) 483.000 0.513500
\(97\) −246.000 −0.257500 −0.128750 0.991677i \(-0.541097\pi\)
−0.128750 + 0.991677i \(0.541097\pi\)
\(98\) 327.000 0.337061
\(99\) −612.000 −0.621296
\(100\) 0 0
\(101\) −858.000 −0.845289 −0.422645 0.906296i \(-0.638898\pi\)
−0.422645 + 0.906296i \(0.638898\pi\)
\(102\) −258.000 −0.250449
\(103\) 1088.00 1.04081 0.520407 0.853918i \(-0.325780\pi\)
0.520407 + 0.853918i \(0.325780\pi\)
\(104\) −1230.00 −1.15973
\(105\) 0 0
\(106\) 362.000 0.331703
\(107\) −436.000 −0.393923 −0.196961 0.980411i \(-0.563107\pi\)
−0.196961 + 0.980411i \(0.563107\pi\)
\(108\) 189.000 0.168394
\(109\) −1680.00 −1.47628 −0.738141 0.674646i \(-0.764296\pi\)
−0.738141 + 0.674646i \(0.764296\pi\)
\(110\) 0 0
\(111\) −102.000 −0.0872199
\(112\) 164.000 0.138362
\(113\) −762.000 −0.634362 −0.317181 0.948365i \(-0.602736\pi\)
−0.317181 + 0.948365i \(0.602736\pi\)
\(114\) 57.0000 0.0468293
\(115\) 0 0
\(116\) −210.000 −0.168086
\(117\) −738.000 −0.583146
\(118\) 210.000 0.163831
\(119\) −344.000 −0.264995
\(120\) 0 0
\(121\) 3293.00 2.47408
\(122\) 718.000 0.532825
\(123\) −156.000 −0.114358
\(124\) 2086.00 1.51071
\(125\) 0 0
\(126\) −36.0000 −0.0254535
\(127\) 624.000 0.435992 0.217996 0.975950i \(-0.430048\pi\)
0.217996 + 0.975950i \(0.430048\pi\)
\(128\) 1455.00 1.00473
\(129\) 1446.00 0.986924
\(130\) 0 0
\(131\) 1152.00 0.768326 0.384163 0.923265i \(-0.374490\pi\)
0.384163 + 0.923265i \(0.374490\pi\)
\(132\) −1428.00 −0.941602
\(133\) 76.0000 0.0495491
\(134\) −904.000 −0.582789
\(135\) 0 0
\(136\) −1290.00 −0.813357
\(137\) 1254.00 0.782018 0.391009 0.920387i \(-0.372126\pi\)
0.391009 + 0.920387i \(0.372126\pi\)
\(138\) 54.0000 0.0333100
\(139\) −1300.00 −0.793270 −0.396635 0.917976i \(-0.629822\pi\)
−0.396635 + 0.917976i \(0.629822\pi\)
\(140\) 0 0
\(141\) −342.000 −0.204267
\(142\) 988.000 0.583881
\(143\) 5576.00 3.26076
\(144\) 369.000 0.213542
\(145\) 0 0
\(146\) −488.000 −0.276624
\(147\) 981.000 0.550418
\(148\) −238.000 −0.132186
\(149\) 1810.00 0.995174 0.497587 0.867414i \(-0.334219\pi\)
0.497587 + 0.867414i \(0.334219\pi\)
\(150\) 0 0
\(151\) 1662.00 0.895706 0.447853 0.894107i \(-0.352189\pi\)
0.447853 + 0.894107i \(0.352189\pi\)
\(152\) 285.000 0.152083
\(153\) −774.000 −0.408982
\(154\) 272.000 0.142327
\(155\) 0 0
\(156\) −1722.00 −0.883784
\(157\) −706.000 −0.358885 −0.179442 0.983768i \(-0.557429\pi\)
−0.179442 + 0.983768i \(0.557429\pi\)
\(158\) 530.000 0.266864
\(159\) 1086.00 0.541669
\(160\) 0 0
\(161\) 72.0000 0.0352447
\(162\) −81.0000 −0.0392837
\(163\) −1462.00 −0.702532 −0.351266 0.936276i \(-0.614249\pi\)
−0.351266 + 0.936276i \(0.614249\pi\)
\(164\) −364.000 −0.173315
\(165\) 0 0
\(166\) 1032.00 0.482522
\(167\) 624.000 0.289141 0.144571 0.989494i \(-0.453820\pi\)
0.144571 + 0.989494i \(0.453820\pi\)
\(168\) −180.000 −0.0826625
\(169\) 4527.00 2.06054
\(170\) 0 0
\(171\) 171.000 0.0764719
\(172\) 3374.00 1.49573
\(173\) 3198.00 1.40543 0.702715 0.711471i \(-0.251971\pi\)
0.702715 + 0.711471i \(0.251971\pi\)
\(174\) 90.0000 0.0392120
\(175\) 0 0
\(176\) −2788.00 −1.19405
\(177\) 630.000 0.267535
\(178\) 880.000 0.370555
\(179\) −1710.00 −0.714030 −0.357015 0.934099i \(-0.616206\pi\)
−0.357015 + 0.934099i \(0.616206\pi\)
\(180\) 0 0
\(181\) 312.000 0.128126 0.0640629 0.997946i \(-0.479594\pi\)
0.0640629 + 0.997946i \(0.479594\pi\)
\(182\) 328.000 0.133588
\(183\) 2154.00 0.870100
\(184\) 270.000 0.108178
\(185\) 0 0
\(186\) −894.000 −0.352426
\(187\) 5848.00 2.28689
\(188\) −798.000 −0.309575
\(189\) −108.000 −0.0415653
\(190\) 0 0
\(191\) 2472.00 0.936480 0.468240 0.883601i \(-0.344888\pi\)
0.468240 + 0.883601i \(0.344888\pi\)
\(192\) 501.000 0.188315
\(193\) −2422.00 −0.903313 −0.451656 0.892192i \(-0.649167\pi\)
−0.451656 + 0.892192i \(0.649167\pi\)
\(194\) 246.000 0.0910401
\(195\) 0 0
\(196\) 2289.00 0.834184
\(197\) 3984.00 1.44085 0.720427 0.693531i \(-0.243946\pi\)
0.720427 + 0.693531i \(0.243946\pi\)
\(198\) 612.000 0.219661
\(199\) −2000.00 −0.712443 −0.356222 0.934401i \(-0.615935\pi\)
−0.356222 + 0.934401i \(0.615935\pi\)
\(200\) 0 0
\(201\) −2712.00 −0.951690
\(202\) 858.000 0.298855
\(203\) 120.000 0.0414894
\(204\) −1806.00 −0.619830
\(205\) 0 0
\(206\) −1088.00 −0.367983
\(207\) 162.000 0.0543951
\(208\) −3362.00 −1.12073
\(209\) −1292.00 −0.427605
\(210\) 0 0
\(211\) −4768.00 −1.55565 −0.777826 0.628479i \(-0.783678\pi\)
−0.777826 + 0.628479i \(0.783678\pi\)
\(212\) 2534.00 0.820924
\(213\) 2964.00 0.953474
\(214\) 436.000 0.139273
\(215\) 0 0
\(216\) −405.000 −0.127578
\(217\) −1192.00 −0.372895
\(218\) 1680.00 0.521945
\(219\) −1464.00 −0.451726
\(220\) 0 0
\(221\) 7052.00 2.14647
\(222\) 102.000 0.0308369
\(223\) 3248.00 0.975346 0.487673 0.873026i \(-0.337846\pi\)
0.487673 + 0.873026i \(0.337846\pi\)
\(224\) −644.000 −0.192094
\(225\) 0 0
\(226\) 762.000 0.224281
\(227\) 5444.00 1.59177 0.795883 0.605450i \(-0.207007\pi\)
0.795883 + 0.605450i \(0.207007\pi\)
\(228\) 399.000 0.115897
\(229\) −3490.00 −1.00710 −0.503550 0.863966i \(-0.667973\pi\)
−0.503550 + 0.863966i \(0.667973\pi\)
\(230\) 0 0
\(231\) 816.000 0.232419
\(232\) 450.000 0.127345
\(233\) −4202.00 −1.18147 −0.590734 0.806866i \(-0.701162\pi\)
−0.590734 + 0.806866i \(0.701162\pi\)
\(234\) 738.000 0.206173
\(235\) 0 0
\(236\) 1470.00 0.405461
\(237\) 1590.00 0.435787
\(238\) 344.000 0.0936899
\(239\) 6400.00 1.73214 0.866070 0.499922i \(-0.166638\pi\)
0.866070 + 0.499922i \(0.166638\pi\)
\(240\) 0 0
\(241\) 3142.00 0.839809 0.419905 0.907568i \(-0.362064\pi\)
0.419905 + 0.907568i \(0.362064\pi\)
\(242\) −3293.00 −0.874719
\(243\) −243.000 −0.0641500
\(244\) 5026.00 1.31867
\(245\) 0 0
\(246\) 156.000 0.0404317
\(247\) −1558.00 −0.401349
\(248\) −4470.00 −1.14454
\(249\) 3096.00 0.787956
\(250\) 0 0
\(251\) −3988.00 −1.00287 −0.501435 0.865195i \(-0.667194\pi\)
−0.501435 + 0.865195i \(0.667194\pi\)
\(252\) −252.000 −0.0629941
\(253\) −1224.00 −0.304159
\(254\) −624.000 −0.154147
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) −606.000 −0.147087 −0.0735433 0.997292i \(-0.523431\pi\)
−0.0735433 + 0.997292i \(0.523431\pi\)
\(258\) −1446.00 −0.348930
\(259\) 136.000 0.0326279
\(260\) 0 0
\(261\) 270.000 0.0640329
\(262\) −1152.00 −0.271644
\(263\) −2262.00 −0.530346 −0.265173 0.964201i \(-0.585429\pi\)
−0.265173 + 0.964201i \(0.585429\pi\)
\(264\) 3060.00 0.713371
\(265\) 0 0
\(266\) −76.0000 −0.0175183
\(267\) 2640.00 0.605114
\(268\) −6328.00 −1.44233
\(269\) 1170.00 0.265190 0.132595 0.991170i \(-0.457669\pi\)
0.132595 + 0.991170i \(0.457669\pi\)
\(270\) 0 0
\(271\) −7728.00 −1.73226 −0.866130 0.499818i \(-0.833400\pi\)
−0.866130 + 0.499818i \(0.833400\pi\)
\(272\) −3526.00 −0.786012
\(273\) 984.000 0.218148
\(274\) −1254.00 −0.276485
\(275\) 0 0
\(276\) 378.000 0.0824381
\(277\) −3386.00 −0.734459 −0.367229 0.930130i \(-0.619694\pi\)
−0.367229 + 0.930130i \(0.619694\pi\)
\(278\) 1300.00 0.280463
\(279\) −2682.00 −0.575509
\(280\) 0 0
\(281\) −1708.00 −0.362600 −0.181300 0.983428i \(-0.558031\pi\)
−0.181300 + 0.983428i \(0.558031\pi\)
\(282\) 342.000 0.0722192
\(283\) 7378.00 1.54974 0.774870 0.632120i \(-0.217815\pi\)
0.774870 + 0.632120i \(0.217815\pi\)
\(284\) 6916.00 1.44503
\(285\) 0 0
\(286\) −5576.00 −1.15285
\(287\) 208.000 0.0427800
\(288\) −1449.00 −0.296469
\(289\) 2483.00 0.505394
\(290\) 0 0
\(291\) 738.000 0.148668
\(292\) −3416.00 −0.684611
\(293\) 2038.00 0.406352 0.203176 0.979142i \(-0.434874\pi\)
0.203176 + 0.979142i \(0.434874\pi\)
\(294\) −981.000 −0.194602
\(295\) 0 0
\(296\) 510.000 0.100146
\(297\) 1836.00 0.358705
\(298\) −1810.00 −0.351847
\(299\) −1476.00 −0.285483
\(300\) 0 0
\(301\) −1928.00 −0.369196
\(302\) −1662.00 −0.316680
\(303\) 2574.00 0.488028
\(304\) 779.000 0.146969
\(305\) 0 0
\(306\) 774.000 0.144597
\(307\) −1636.00 −0.304142 −0.152071 0.988370i \(-0.548594\pi\)
−0.152071 + 0.988370i \(0.548594\pi\)
\(308\) 1904.00 0.352242
\(309\) −3264.00 −0.600914
\(310\) 0 0
\(311\) −1848.00 −0.336947 −0.168473 0.985706i \(-0.553884\pi\)
−0.168473 + 0.985706i \(0.553884\pi\)
\(312\) 3690.00 0.669568
\(313\) 4908.00 0.886315 0.443157 0.896444i \(-0.353858\pi\)
0.443157 + 0.896444i \(0.353858\pi\)
\(314\) 706.000 0.126885
\(315\) 0 0
\(316\) 3710.00 0.660455
\(317\) −4526.00 −0.801910 −0.400955 0.916098i \(-0.631322\pi\)
−0.400955 + 0.916098i \(0.631322\pi\)
\(318\) −1086.00 −0.191509
\(319\) −2040.00 −0.358050
\(320\) 0 0
\(321\) 1308.00 0.227431
\(322\) −72.0000 −0.0124609
\(323\) −1634.00 −0.281480
\(324\) −567.000 −0.0972222
\(325\) 0 0
\(326\) 1462.00 0.248382
\(327\) 5040.00 0.852332
\(328\) 780.000 0.131306
\(329\) 456.000 0.0764137
\(330\) 0 0
\(331\) −6388.00 −1.06077 −0.530387 0.847756i \(-0.677953\pi\)
−0.530387 + 0.847756i \(0.677953\pi\)
\(332\) 7224.00 1.19418
\(333\) 306.000 0.0503564
\(334\) −624.000 −0.102227
\(335\) 0 0
\(336\) −492.000 −0.0798833
\(337\) −286.000 −0.0462297 −0.0231149 0.999733i \(-0.507358\pi\)
−0.0231149 + 0.999733i \(0.507358\pi\)
\(338\) −4527.00 −0.728510
\(339\) 2286.00 0.366249
\(340\) 0 0
\(341\) 20264.0 3.21806
\(342\) −171.000 −0.0270369
\(343\) −2680.00 −0.421885
\(344\) −7230.00 −1.13318
\(345\) 0 0
\(346\) −3198.00 −0.496895
\(347\) 8904.00 1.37750 0.688749 0.725000i \(-0.258160\pi\)
0.688749 + 0.725000i \(0.258160\pi\)
\(348\) 630.000 0.0970447
\(349\) 7670.00 1.17641 0.588203 0.808713i \(-0.299836\pi\)
0.588203 + 0.808713i \(0.299836\pi\)
\(350\) 0 0
\(351\) 2214.00 0.336680
\(352\) 10948.0 1.65776
\(353\) −2.00000 −0.000301556 0 −0.000150778 1.00000i \(-0.500048\pi\)
−0.000150778 1.00000i \(0.500048\pi\)
\(354\) −630.000 −0.0945879
\(355\) 0 0
\(356\) 6160.00 0.917077
\(357\) 1032.00 0.152995
\(358\) 1710.00 0.252448
\(359\) −1120.00 −0.164656 −0.0823278 0.996605i \(-0.526235\pi\)
−0.0823278 + 0.996605i \(0.526235\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) −312.000 −0.0452993
\(363\) −9879.00 −1.42841
\(364\) 2296.00 0.330613
\(365\) 0 0
\(366\) −2154.00 −0.307627
\(367\) 1984.00 0.282191 0.141095 0.989996i \(-0.454938\pi\)
0.141095 + 0.989996i \(0.454938\pi\)
\(368\) 738.000 0.104541
\(369\) 468.000 0.0660247
\(370\) 0 0
\(371\) −1448.00 −0.202632
\(372\) −6258.00 −0.872210
\(373\) 2058.00 0.285682 0.142841 0.989746i \(-0.454376\pi\)
0.142841 + 0.989746i \(0.454376\pi\)
\(374\) −5848.00 −0.808537
\(375\) 0 0
\(376\) 1710.00 0.234539
\(377\) −2460.00 −0.336065
\(378\) 108.000 0.0146956
\(379\) −10640.0 −1.44206 −0.721029 0.692905i \(-0.756331\pi\)
−0.721029 + 0.692905i \(0.756331\pi\)
\(380\) 0 0
\(381\) −1872.00 −0.251720
\(382\) −2472.00 −0.331096
\(383\) −5892.00 −0.786076 −0.393038 0.919522i \(-0.628576\pi\)
−0.393038 + 0.919522i \(0.628576\pi\)
\(384\) −4365.00 −0.580079
\(385\) 0 0
\(386\) 2422.00 0.319369
\(387\) −4338.00 −0.569801
\(388\) 1722.00 0.225313
\(389\) 990.000 0.129036 0.0645180 0.997917i \(-0.479449\pi\)
0.0645180 + 0.997917i \(0.479449\pi\)
\(390\) 0 0
\(391\) −1548.00 −0.200219
\(392\) −4905.00 −0.631990
\(393\) −3456.00 −0.443593
\(394\) −3984.00 −0.509419
\(395\) 0 0
\(396\) 4284.00 0.543634
\(397\) −526.000 −0.0664967 −0.0332483 0.999447i \(-0.510585\pi\)
−0.0332483 + 0.999447i \(0.510585\pi\)
\(398\) 2000.00 0.251887
\(399\) −228.000 −0.0286072
\(400\) 0 0
\(401\) 9612.00 1.19701 0.598504 0.801120i \(-0.295762\pi\)
0.598504 + 0.801120i \(0.295762\pi\)
\(402\) 2712.00 0.336473
\(403\) 24436.0 3.02046
\(404\) 6006.00 0.739628
\(405\) 0 0
\(406\) −120.000 −0.0146687
\(407\) −2312.00 −0.281576
\(408\) 3870.00 0.469592
\(409\) −9110.00 −1.10137 −0.550685 0.834713i \(-0.685634\pi\)
−0.550685 + 0.834713i \(0.685634\pi\)
\(410\) 0 0
\(411\) −3762.00 −0.451498
\(412\) −7616.00 −0.910712
\(413\) −840.000 −0.100082
\(414\) −162.000 −0.0192316
\(415\) 0 0
\(416\) 13202.0 1.55596
\(417\) 3900.00 0.457995
\(418\) 1292.00 0.151181
\(419\) 13920.0 1.62300 0.811499 0.584353i \(-0.198652\pi\)
0.811499 + 0.584353i \(0.198652\pi\)
\(420\) 0 0
\(421\) −9588.00 −1.10995 −0.554977 0.831866i \(-0.687273\pi\)
−0.554977 + 0.831866i \(0.687273\pi\)
\(422\) 4768.00 0.550006
\(423\) 1026.00 0.117933
\(424\) −5430.00 −0.621944
\(425\) 0 0
\(426\) −2964.00 −0.337104
\(427\) −2872.00 −0.325494
\(428\) 3052.00 0.344682
\(429\) −16728.0 −1.88260
\(430\) 0 0
\(431\) −4968.00 −0.555221 −0.277610 0.960694i \(-0.589542\pi\)
−0.277610 + 0.960694i \(0.589542\pi\)
\(432\) −1107.00 −0.123288
\(433\) −11342.0 −1.25880 −0.629402 0.777080i \(-0.716700\pi\)
−0.629402 + 0.777080i \(0.716700\pi\)
\(434\) 1192.00 0.131838
\(435\) 0 0
\(436\) 11760.0 1.29175
\(437\) 342.000 0.0374373
\(438\) 1464.00 0.159709
\(439\) 3710.00 0.403345 0.201673 0.979453i \(-0.435362\pi\)
0.201673 + 0.979453i \(0.435362\pi\)
\(440\) 0 0
\(441\) −2943.00 −0.317784
\(442\) −7052.00 −0.758890
\(443\) −10772.0 −1.15529 −0.577645 0.816288i \(-0.696028\pi\)
−0.577645 + 0.816288i \(0.696028\pi\)
\(444\) 714.000 0.0763174
\(445\) 0 0
\(446\) −3248.00 −0.344837
\(447\) −5430.00 −0.574564
\(448\) −668.000 −0.0704465
\(449\) −1720.00 −0.180784 −0.0903918 0.995906i \(-0.528812\pi\)
−0.0903918 + 0.995906i \(0.528812\pi\)
\(450\) 0 0
\(451\) −3536.00 −0.369188
\(452\) 5334.00 0.555067
\(453\) −4986.00 −0.517136
\(454\) −5444.00 −0.562774
\(455\) 0 0
\(456\) −855.000 −0.0878049
\(457\) −1456.00 −0.149035 −0.0745173 0.997220i \(-0.523742\pi\)
−0.0745173 + 0.997220i \(0.523742\pi\)
\(458\) 3490.00 0.356063
\(459\) 2322.00 0.236126
\(460\) 0 0
\(461\) −6218.00 −0.628202 −0.314101 0.949390i \(-0.601703\pi\)
−0.314101 + 0.949390i \(0.601703\pi\)
\(462\) −816.000 −0.0821726
\(463\) −13892.0 −1.39442 −0.697209 0.716867i \(-0.745575\pi\)
−0.697209 + 0.716867i \(0.745575\pi\)
\(464\) 1230.00 0.123063
\(465\) 0 0
\(466\) 4202.00 0.417712
\(467\) 6004.00 0.594929 0.297465 0.954733i \(-0.403859\pi\)
0.297465 + 0.954733i \(0.403859\pi\)
\(468\) 5166.00 0.510253
\(469\) 3616.00 0.356016
\(470\) 0 0
\(471\) 2118.00 0.207202
\(472\) −3150.00 −0.307183
\(473\) 32776.0 3.18614
\(474\) −1590.00 −0.154074
\(475\) 0 0
\(476\) 2408.00 0.231871
\(477\) −3258.00 −0.312733
\(478\) −6400.00 −0.612404
\(479\) 4800.00 0.457866 0.228933 0.973442i \(-0.426476\pi\)
0.228933 + 0.973442i \(0.426476\pi\)
\(480\) 0 0
\(481\) −2788.00 −0.264287
\(482\) −3142.00 −0.296917
\(483\) −216.000 −0.0203485
\(484\) −23051.0 −2.16482
\(485\) 0 0
\(486\) 243.000 0.0226805
\(487\) −12616.0 −1.17389 −0.586946 0.809626i \(-0.699670\pi\)
−0.586946 + 0.809626i \(0.699670\pi\)
\(488\) −10770.0 −0.999047
\(489\) 4386.00 0.405607
\(490\) 0 0
\(491\) 4232.00 0.388977 0.194488 0.980905i \(-0.437695\pi\)
0.194488 + 0.980905i \(0.437695\pi\)
\(492\) 1092.00 0.100063
\(493\) −2580.00 −0.235694
\(494\) 1558.00 0.141898
\(495\) 0 0
\(496\) −12218.0 −1.10606
\(497\) −3952.00 −0.356683
\(498\) −3096.00 −0.278584
\(499\) 6340.00 0.568772 0.284386 0.958710i \(-0.408210\pi\)
0.284386 + 0.958710i \(0.408210\pi\)
\(500\) 0 0
\(501\) −1872.00 −0.166936
\(502\) 3988.00 0.354568
\(503\) 14878.0 1.31884 0.659421 0.751774i \(-0.270802\pi\)
0.659421 + 0.751774i \(0.270802\pi\)
\(504\) 540.000 0.0477252
\(505\) 0 0
\(506\) 1224.00 0.107536
\(507\) −13581.0 −1.18965
\(508\) −4368.00 −0.381493
\(509\) −6090.00 −0.530323 −0.265162 0.964204i \(-0.585425\pi\)
−0.265162 + 0.964204i \(0.585425\pi\)
\(510\) 0 0
\(511\) 1952.00 0.168985
\(512\) −11521.0 −0.994455
\(513\) −513.000 −0.0441511
\(514\) 606.000 0.0520029
\(515\) 0 0
\(516\) −10122.0 −0.863559
\(517\) −7752.00 −0.659444
\(518\) −136.000 −0.0115357
\(519\) −9594.00 −0.811426
\(520\) 0 0
\(521\) 12612.0 1.06054 0.530270 0.847829i \(-0.322090\pi\)
0.530270 + 0.847829i \(0.322090\pi\)
\(522\) −270.000 −0.0226390
\(523\) 8828.00 0.738091 0.369045 0.929411i \(-0.379685\pi\)
0.369045 + 0.929411i \(0.379685\pi\)
\(524\) −8064.00 −0.672285
\(525\) 0 0
\(526\) 2262.00 0.187505
\(527\) 25628.0 2.11836
\(528\) 8364.00 0.689387
\(529\) −11843.0 −0.973371
\(530\) 0 0
\(531\) −1890.00 −0.154461
\(532\) −532.000 −0.0433555
\(533\) −4264.00 −0.346518
\(534\) −2640.00 −0.213940
\(535\) 0 0
\(536\) 13560.0 1.09273
\(537\) 5130.00 0.412246
\(538\) −1170.00 −0.0937589
\(539\) 22236.0 1.77694
\(540\) 0 0
\(541\) −20938.0 −1.66395 −0.831973 0.554816i \(-0.812789\pi\)
−0.831973 + 0.554816i \(0.812789\pi\)
\(542\) 7728.00 0.612447
\(543\) −936.000 −0.0739735
\(544\) 13846.0 1.09125
\(545\) 0 0
\(546\) −984.000 −0.0771269
\(547\) −6316.00 −0.493698 −0.246849 0.969054i \(-0.579395\pi\)
−0.246849 + 0.969054i \(0.579395\pi\)
\(548\) −8778.00 −0.684266
\(549\) −6462.00 −0.502352
\(550\) 0 0
\(551\) 570.000 0.0440704
\(552\) −810.000 −0.0624563
\(553\) −2120.00 −0.163023
\(554\) 3386.00 0.259670
\(555\) 0 0
\(556\) 9100.00 0.694111
\(557\) −14776.0 −1.12402 −0.562010 0.827130i \(-0.689972\pi\)
−0.562010 + 0.827130i \(0.689972\pi\)
\(558\) 2682.00 0.203473
\(559\) 39524.0 2.99050
\(560\) 0 0
\(561\) −17544.0 −1.32034
\(562\) 1708.00 0.128199
\(563\) −7932.00 −0.593773 −0.296886 0.954913i \(-0.595948\pi\)
−0.296886 + 0.954913i \(0.595948\pi\)
\(564\) 2394.00 0.178733
\(565\) 0 0
\(566\) −7378.00 −0.547916
\(567\) 324.000 0.0239977
\(568\) −14820.0 −1.09478
\(569\) −8280.00 −0.610045 −0.305023 0.952345i \(-0.598664\pi\)
−0.305023 + 0.952345i \(0.598664\pi\)
\(570\) 0 0
\(571\) −1868.00 −0.136906 −0.0684530 0.997654i \(-0.521806\pi\)
−0.0684530 + 0.997654i \(0.521806\pi\)
\(572\) −39032.0 −2.85316
\(573\) −7416.00 −0.540677
\(574\) −208.000 −0.0151250
\(575\) 0 0
\(576\) −1503.00 −0.108724
\(577\) −1656.00 −0.119480 −0.0597402 0.998214i \(-0.519027\pi\)
−0.0597402 + 0.998214i \(0.519027\pi\)
\(578\) −2483.00 −0.178684
\(579\) 7266.00 0.521528
\(580\) 0 0
\(581\) −4128.00 −0.294765
\(582\) −738.000 −0.0525620
\(583\) 24616.0 1.74870
\(584\) 7320.00 0.518671
\(585\) 0 0
\(586\) −2038.00 −0.143667
\(587\) 20664.0 1.45297 0.726486 0.687181i \(-0.241152\pi\)
0.726486 + 0.687181i \(0.241152\pi\)
\(588\) −6867.00 −0.481616
\(589\) −5662.00 −0.396093
\(590\) 0 0
\(591\) −11952.0 −0.831877
\(592\) 1394.00 0.0967788
\(593\) −11702.0 −0.810360 −0.405180 0.914237i \(-0.632791\pi\)
−0.405180 + 0.914237i \(0.632791\pi\)
\(594\) −1836.00 −0.126822
\(595\) 0 0
\(596\) −12670.0 −0.870778
\(597\) 6000.00 0.411329
\(598\) 1476.00 0.100933
\(599\) 22680.0 1.54704 0.773522 0.633769i \(-0.218493\pi\)
0.773522 + 0.633769i \(0.218493\pi\)
\(600\) 0 0
\(601\) 13742.0 0.932692 0.466346 0.884602i \(-0.345570\pi\)
0.466346 + 0.884602i \(0.345570\pi\)
\(602\) 1928.00 0.130531
\(603\) 8136.00 0.549459
\(604\) −11634.0 −0.783743
\(605\) 0 0
\(606\) −2574.00 −0.172544
\(607\) 4184.00 0.279775 0.139887 0.990167i \(-0.455326\pi\)
0.139887 + 0.990167i \(0.455326\pi\)
\(608\) −3059.00 −0.204044
\(609\) −360.000 −0.0239539
\(610\) 0 0
\(611\) −9348.00 −0.618952
\(612\) 5418.00 0.357859
\(613\) 1098.00 0.0723455 0.0361728 0.999346i \(-0.488483\pi\)
0.0361728 + 0.999346i \(0.488483\pi\)
\(614\) 1636.00 0.107530
\(615\) 0 0
\(616\) −4080.00 −0.266863
\(617\) −21426.0 −1.39802 −0.699010 0.715112i \(-0.746376\pi\)
−0.699010 + 0.715112i \(0.746376\pi\)
\(618\) 3264.00 0.212455
\(619\) 8020.00 0.520761 0.260380 0.965506i \(-0.416152\pi\)
0.260380 + 0.965506i \(0.416152\pi\)
\(620\) 0 0
\(621\) −486.000 −0.0314050
\(622\) 1848.00 0.119129
\(623\) −3520.00 −0.226366
\(624\) 10086.0 0.647056
\(625\) 0 0
\(626\) −4908.00 −0.313360
\(627\) 3876.00 0.246878
\(628\) 4942.00 0.314024
\(629\) −2924.00 −0.185354
\(630\) 0 0
\(631\) 6292.00 0.396958 0.198479 0.980105i \(-0.436400\pi\)
0.198479 + 0.980105i \(0.436400\pi\)
\(632\) −7950.00 −0.500370
\(633\) 14304.0 0.898156
\(634\) 4526.00 0.283518
\(635\) 0 0
\(636\) −7602.00 −0.473961
\(637\) 26814.0 1.66783
\(638\) 2040.00 0.126590
\(639\) −8892.00 −0.550488
\(640\) 0 0
\(641\) 19332.0 1.19121 0.595607 0.803276i \(-0.296912\pi\)
0.595607 + 0.803276i \(0.296912\pi\)
\(642\) −1308.00 −0.0804091
\(643\) −20702.0 −1.26968 −0.634842 0.772642i \(-0.718935\pi\)
−0.634842 + 0.772642i \(0.718935\pi\)
\(644\) −504.000 −0.0308391
\(645\) 0 0
\(646\) 1634.00 0.0995184
\(647\) 11754.0 0.714215 0.357108 0.934063i \(-0.383763\pi\)
0.357108 + 0.934063i \(0.383763\pi\)
\(648\) 1215.00 0.0736570
\(649\) 14280.0 0.863697
\(650\) 0 0
\(651\) 3576.00 0.215291
\(652\) 10234.0 0.614715
\(653\) 448.000 0.0268478 0.0134239 0.999910i \(-0.495727\pi\)
0.0134239 + 0.999910i \(0.495727\pi\)
\(654\) −5040.00 −0.301345
\(655\) 0 0
\(656\) 2132.00 0.126891
\(657\) 4392.00 0.260804
\(658\) −456.000 −0.0270163
\(659\) −28910.0 −1.70891 −0.854457 0.519523i \(-0.826110\pi\)
−0.854457 + 0.519523i \(0.826110\pi\)
\(660\) 0 0
\(661\) −8748.00 −0.514762 −0.257381 0.966310i \(-0.582860\pi\)
−0.257381 + 0.966310i \(0.582860\pi\)
\(662\) 6388.00 0.375040
\(663\) −21156.0 −1.23926
\(664\) −15480.0 −0.904730
\(665\) 0 0
\(666\) −306.000 −0.0178037
\(667\) 540.000 0.0313477
\(668\) −4368.00 −0.252998
\(669\) −9744.00 −0.563116
\(670\) 0 0
\(671\) 48824.0 2.80899
\(672\) 1932.00 0.110906
\(673\) −5002.00 −0.286498 −0.143249 0.989687i \(-0.545755\pi\)
−0.143249 + 0.989687i \(0.545755\pi\)
\(674\) 286.000 0.0163447
\(675\) 0 0
\(676\) −31689.0 −1.80297
\(677\) −26706.0 −1.51609 −0.758046 0.652201i \(-0.773846\pi\)
−0.758046 + 0.652201i \(0.773846\pi\)
\(678\) −2286.00 −0.129489
\(679\) −984.000 −0.0556148
\(680\) 0 0
\(681\) −16332.0 −0.919007
\(682\) −20264.0 −1.13775
\(683\) 22668.0 1.26994 0.634968 0.772538i \(-0.281013\pi\)
0.634968 + 0.772538i \(0.281013\pi\)
\(684\) −1197.00 −0.0669129
\(685\) 0 0
\(686\) 2680.00 0.149159
\(687\) 10470.0 0.581449
\(688\) −19762.0 −1.09509
\(689\) 29684.0 1.64132
\(690\) 0 0
\(691\) −21228.0 −1.16867 −0.584335 0.811512i \(-0.698645\pi\)
−0.584335 + 0.811512i \(0.698645\pi\)
\(692\) −22386.0 −1.22975
\(693\) −2448.00 −0.134187
\(694\) −8904.00 −0.487019
\(695\) 0 0
\(696\) −1350.00 −0.0735224
\(697\) −4472.00 −0.243026
\(698\) −7670.00 −0.415922
\(699\) 12606.0 0.682121
\(700\) 0 0
\(701\) −22158.0 −1.19386 −0.596930 0.802293i \(-0.703613\pi\)
−0.596930 + 0.802293i \(0.703613\pi\)
\(702\) −2214.00 −0.119034
\(703\) 646.000 0.0346577
\(704\) 11356.0 0.607948
\(705\) 0 0
\(706\) 2.00000 0.000106616 0
\(707\) −3432.00 −0.182565
\(708\) −4410.00 −0.234093
\(709\) −10850.0 −0.574725 −0.287363 0.957822i \(-0.592779\pi\)
−0.287363 + 0.957822i \(0.592779\pi\)
\(710\) 0 0
\(711\) −4770.00 −0.251602
\(712\) −13200.0 −0.694791
\(713\) −5364.00 −0.281744
\(714\) −1032.00 −0.0540919
\(715\) 0 0
\(716\) 11970.0 0.624776
\(717\) −19200.0 −1.00005
\(718\) 1120.00 0.0582145
\(719\) 23160.0 1.20128 0.600641 0.799519i \(-0.294912\pi\)
0.600641 + 0.799519i \(0.294912\pi\)
\(720\) 0 0
\(721\) 4352.00 0.224795
\(722\) −361.000 −0.0186081
\(723\) −9426.00 −0.484864
\(724\) −2184.00 −0.112110
\(725\) 0 0
\(726\) 9879.00 0.505019
\(727\) 7144.00 0.364452 0.182226 0.983257i \(-0.441670\pi\)
0.182226 + 0.983257i \(0.441670\pi\)
\(728\) −4920.00 −0.250477
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 41452.0 2.09734
\(732\) −15078.0 −0.761337
\(733\) −7242.00 −0.364924 −0.182462 0.983213i \(-0.558407\pi\)
−0.182462 + 0.983213i \(0.558407\pi\)
\(734\) −1984.00 −0.0997694
\(735\) 0 0
\(736\) −2898.00 −0.145138
\(737\) −61472.0 −3.07239
\(738\) −468.000 −0.0233432
\(739\) −3380.00 −0.168248 −0.0841240 0.996455i \(-0.526809\pi\)
−0.0841240 + 0.996455i \(0.526809\pi\)
\(740\) 0 0
\(741\) 4674.00 0.231719
\(742\) 1448.00 0.0716412
\(743\) 3848.00 0.189999 0.0949996 0.995477i \(-0.469715\pi\)
0.0949996 + 0.995477i \(0.469715\pi\)
\(744\) 13410.0 0.660799
\(745\) 0 0
\(746\) −2058.00 −0.101004
\(747\) −9288.00 −0.454927
\(748\) −40936.0 −2.00103
\(749\) −1744.00 −0.0850793
\(750\) 0 0
\(751\) −22558.0 −1.09608 −0.548038 0.836453i \(-0.684625\pi\)
−0.548038 + 0.836453i \(0.684625\pi\)
\(752\) 4674.00 0.226653
\(753\) 11964.0 0.579007
\(754\) 2460.00 0.118817
\(755\) 0 0
\(756\) 756.000 0.0363696
\(757\) −15866.0 −0.761770 −0.380885 0.924623i \(-0.624381\pi\)
−0.380885 + 0.924623i \(0.624381\pi\)
\(758\) 10640.0 0.509845
\(759\) 3672.00 0.175606
\(760\) 0 0
\(761\) 462.000 0.0220072 0.0110036 0.999939i \(-0.496497\pi\)
0.0110036 + 0.999939i \(0.496497\pi\)
\(762\) 1872.00 0.0889966
\(763\) −6720.00 −0.318847
\(764\) −17304.0 −0.819420
\(765\) 0 0
\(766\) 5892.00 0.277920
\(767\) 17220.0 0.810663
\(768\) 357.000 0.0167736
\(769\) −22210.0 −1.04150 −0.520750 0.853709i \(-0.674348\pi\)
−0.520750 + 0.853709i \(0.674348\pi\)
\(770\) 0 0
\(771\) 1818.00 0.0849205
\(772\) 16954.0 0.790399
\(773\) 658.000 0.0306166 0.0153083 0.999883i \(-0.495127\pi\)
0.0153083 + 0.999883i \(0.495127\pi\)
\(774\) 4338.00 0.201455
\(775\) 0 0
\(776\) −3690.00 −0.170700
\(777\) −408.000 −0.0188377
\(778\) −990.000 −0.0456211
\(779\) 988.000 0.0454413
\(780\) 0 0
\(781\) 67184.0 3.07815
\(782\) 1548.00 0.0707882
\(783\) −810.000 −0.0369694
\(784\) −13407.0 −0.610742
\(785\) 0 0
\(786\) 3456.00 0.156834
\(787\) −36016.0 −1.63130 −0.815649 0.578547i \(-0.803620\pi\)
−0.815649 + 0.578547i \(0.803620\pi\)
\(788\) −27888.0 −1.26075
\(789\) 6786.00 0.306195
\(790\) 0 0
\(791\) −3048.00 −0.137009
\(792\) −9180.00 −0.411865
\(793\) 58876.0 2.63650
\(794\) 526.000 0.0235101
\(795\) 0 0
\(796\) 14000.0 0.623388
\(797\) −5346.00 −0.237597 −0.118799 0.992918i \(-0.537904\pi\)
−0.118799 + 0.992918i \(0.537904\pi\)
\(798\) 228.000 0.0101142
\(799\) −9804.00 −0.434093
\(800\) 0 0
\(801\) −7920.00 −0.349363
\(802\) −9612.00 −0.423206
\(803\) −33184.0 −1.45833
\(804\) 18984.0 0.832729
\(805\) 0 0
\(806\) −24436.0 −1.06789
\(807\) −3510.00 −0.153108
\(808\) −12870.0 −0.560353
\(809\) −24170.0 −1.05040 −0.525199 0.850979i \(-0.676009\pi\)
−0.525199 + 0.850979i \(0.676009\pi\)
\(810\) 0 0
\(811\) 13932.0 0.603229 0.301614 0.953430i \(-0.402474\pi\)
0.301614 + 0.953430i \(0.402474\pi\)
\(812\) −840.000 −0.0363032
\(813\) 23184.0 1.00012
\(814\) 2312.00 0.0995523
\(815\) 0 0
\(816\) 10578.0 0.453804
\(817\) −9158.00 −0.392164
\(818\) 9110.00 0.389393
\(819\) −2952.00 −0.125948
\(820\) 0 0
\(821\) 14202.0 0.603719 0.301859 0.953352i \(-0.402393\pi\)
0.301859 + 0.953352i \(0.402393\pi\)
\(822\) 3762.00 0.159629
\(823\) 2688.00 0.113849 0.0569245 0.998378i \(-0.481871\pi\)
0.0569245 + 0.998378i \(0.481871\pi\)
\(824\) 16320.0 0.689969
\(825\) 0 0
\(826\) 840.000 0.0353842
\(827\) −4236.00 −0.178114 −0.0890569 0.996027i \(-0.528385\pi\)
−0.0890569 + 0.996027i \(0.528385\pi\)
\(828\) −1134.00 −0.0475957
\(829\) −20800.0 −0.871428 −0.435714 0.900085i \(-0.643504\pi\)
−0.435714 + 0.900085i \(0.643504\pi\)
\(830\) 0 0
\(831\) 10158.0 0.424040
\(832\) 13694.0 0.570618
\(833\) 28122.0 1.16971
\(834\) −3900.00 −0.161926
\(835\) 0 0
\(836\) 9044.00 0.374155
\(837\) 8046.00 0.332271
\(838\) −13920.0 −0.573817
\(839\) 1020.00 0.0419718 0.0209859 0.999780i \(-0.493319\pi\)
0.0209859 + 0.999780i \(0.493319\pi\)
\(840\) 0 0
\(841\) −23489.0 −0.963098
\(842\) 9588.00 0.392428
\(843\) 5124.00 0.209347
\(844\) 33376.0 1.36120
\(845\) 0 0
\(846\) −1026.00 −0.0416958
\(847\) 13172.0 0.534351
\(848\) −14842.0 −0.601033
\(849\) −22134.0 −0.894743
\(850\) 0 0
\(851\) 612.000 0.0246523
\(852\) −20748.0 −0.834290
\(853\) −32102.0 −1.28857 −0.644286 0.764785i \(-0.722845\pi\)
−0.644286 + 0.764785i \(0.722845\pi\)
\(854\) 2872.00 0.115079
\(855\) 0 0
\(856\) −6540.00 −0.261136
\(857\) 31434.0 1.25293 0.626467 0.779448i \(-0.284500\pi\)
0.626467 + 0.779448i \(0.284500\pi\)
\(858\) 16728.0 0.665600
\(859\) 25660.0 1.01922 0.509609 0.860406i \(-0.329790\pi\)
0.509609 + 0.860406i \(0.329790\pi\)
\(860\) 0 0
\(861\) −624.000 −0.0246990
\(862\) 4968.00 0.196300
\(863\) −14212.0 −0.560582 −0.280291 0.959915i \(-0.590431\pi\)
−0.280291 + 0.959915i \(0.590431\pi\)
\(864\) 4347.00 0.171167
\(865\) 0 0
\(866\) 11342.0 0.445054
\(867\) −7449.00 −0.291789
\(868\) 8344.00 0.326283
\(869\) 36040.0 1.40687
\(870\) 0 0
\(871\) −74128.0 −2.88373
\(872\) −25200.0 −0.978646
\(873\) −2214.00 −0.0858334
\(874\) −342.000 −0.0132361
\(875\) 0 0
\(876\) 10248.0 0.395260
\(877\) 46294.0 1.78248 0.891241 0.453529i \(-0.149835\pi\)
0.891241 + 0.453529i \(0.149835\pi\)
\(878\) −3710.00 −0.142604
\(879\) −6114.00 −0.234608
\(880\) 0 0
\(881\) −7558.00 −0.289030 −0.144515 0.989503i \(-0.546162\pi\)
−0.144515 + 0.989503i \(0.546162\pi\)
\(882\) 2943.00 0.112354
\(883\) −27202.0 −1.03672 −0.518358 0.855164i \(-0.673457\pi\)
−0.518358 + 0.855164i \(0.673457\pi\)
\(884\) −49364.0 −1.87816
\(885\) 0 0
\(886\) 10772.0 0.408456
\(887\) −36196.0 −1.37017 −0.685086 0.728462i \(-0.740235\pi\)
−0.685086 + 0.728462i \(0.740235\pi\)
\(888\) −1530.00 −0.0578192
\(889\) 2496.00 0.0941655
\(890\) 0 0
\(891\) −5508.00 −0.207099
\(892\) −22736.0 −0.853428
\(893\) 2166.00 0.0811673
\(894\) 5430.00 0.203139
\(895\) 0 0
\(896\) 5820.00 0.217001
\(897\) 4428.00 0.164823
\(898\) 1720.00 0.0639166
\(899\) −8940.00 −0.331664
\(900\) 0 0
\(901\) 31132.0 1.15112
\(902\) 3536.00 0.130528
\(903\) 5784.00 0.213156
\(904\) −11430.0 −0.420527
\(905\) 0 0
\(906\) 4986.00 0.182835
\(907\) 2424.00 0.0887405 0.0443702 0.999015i \(-0.485872\pi\)
0.0443702 + 0.999015i \(0.485872\pi\)
\(908\) −38108.0 −1.39280
\(909\) −7722.00 −0.281763
\(910\) 0 0
\(911\) 37252.0 1.35479 0.677395 0.735619i \(-0.263109\pi\)
0.677395 + 0.735619i \(0.263109\pi\)
\(912\) −2337.00 −0.0848529
\(913\) 70176.0 2.54380
\(914\) 1456.00 0.0526917
\(915\) 0 0
\(916\) 24430.0 0.881212
\(917\) 4608.00 0.165943
\(918\) −2322.00 −0.0834830
\(919\) −45980.0 −1.65042 −0.825212 0.564823i \(-0.808945\pi\)
−0.825212 + 0.564823i \(0.808945\pi\)
\(920\) 0 0
\(921\) 4908.00 0.175596
\(922\) 6218.00 0.222103
\(923\) 81016.0 2.88914
\(924\) −5712.00 −0.203367
\(925\) 0 0
\(926\) 13892.0 0.493002
\(927\) 9792.00 0.346938
\(928\) −4830.00 −0.170854
\(929\) −34470.0 −1.21736 −0.608678 0.793417i \(-0.708300\pi\)
−0.608678 + 0.793417i \(0.708300\pi\)
\(930\) 0 0
\(931\) −6213.00 −0.218714
\(932\) 29414.0 1.03378
\(933\) 5544.00 0.194536
\(934\) −6004.00 −0.210339
\(935\) 0 0
\(936\) −11070.0 −0.386575
\(937\) 12764.0 0.445018 0.222509 0.974931i \(-0.428575\pi\)
0.222509 + 0.974931i \(0.428575\pi\)
\(938\) −3616.00 −0.125871
\(939\) −14724.0 −0.511714
\(940\) 0 0
\(941\) −55538.0 −1.92400 −0.962002 0.273044i \(-0.911970\pi\)
−0.962002 + 0.273044i \(0.911970\pi\)
\(942\) −2118.00 −0.0732571
\(943\) 936.000 0.0323228
\(944\) −8610.00 −0.296856
\(945\) 0 0
\(946\) −32776.0 −1.12647
\(947\) 8604.00 0.295240 0.147620 0.989044i \(-0.452839\pi\)
0.147620 + 0.989044i \(0.452839\pi\)
\(948\) −11130.0 −0.381314
\(949\) −40016.0 −1.36878
\(950\) 0 0
\(951\) 13578.0 0.462983
\(952\) −5160.00 −0.175669
\(953\) 18018.0 0.612445 0.306223 0.951960i \(-0.400935\pi\)
0.306223 + 0.951960i \(0.400935\pi\)
\(954\) 3258.00 0.110568
\(955\) 0 0
\(956\) −44800.0 −1.51562
\(957\) 6120.00 0.206720
\(958\) −4800.00 −0.161880
\(959\) 5016.00 0.168900
\(960\) 0 0
\(961\) 59013.0 1.98090
\(962\) 2788.00 0.0934394
\(963\) −3924.00 −0.131308
\(964\) −21994.0 −0.734833
\(965\) 0 0
\(966\) 216.000 0.00719429
\(967\) −45496.0 −1.51298 −0.756491 0.654005i \(-0.773088\pi\)
−0.756491 + 0.654005i \(0.773088\pi\)
\(968\) 49395.0 1.64010
\(969\) 4902.00 0.162513
\(970\) 0 0
\(971\) 37722.0 1.24671 0.623356 0.781938i \(-0.285769\pi\)
0.623356 + 0.781938i \(0.285769\pi\)
\(972\) 1701.00 0.0561313
\(973\) −5200.00 −0.171330
\(974\) 12616.0 0.415034
\(975\) 0 0
\(976\) −29438.0 −0.965458
\(977\) 43474.0 1.42360 0.711800 0.702383i \(-0.247880\pi\)
0.711800 + 0.702383i \(0.247880\pi\)
\(978\) −4386.00 −0.143404
\(979\) 59840.0 1.95352
\(980\) 0 0
\(981\) −15120.0 −0.492094
\(982\) −4232.00 −0.137524
\(983\) −13032.0 −0.422845 −0.211422 0.977395i \(-0.567810\pi\)
−0.211422 + 0.977395i \(0.567810\pi\)
\(984\) −2340.00 −0.0758094
\(985\) 0 0
\(986\) 2580.00 0.0833306
\(987\) −1368.00 −0.0441174
\(988\) 10906.0 0.351180
\(989\) −8676.00 −0.278949
\(990\) 0 0
\(991\) −52978.0 −1.69819 −0.849093 0.528244i \(-0.822851\pi\)
−0.849093 + 0.528244i \(0.822851\pi\)
\(992\) 47978.0 1.53559
\(993\) 19164.0 0.612438
\(994\) 3952.00 0.126106
\(995\) 0 0
\(996\) −21672.0 −0.689461
\(997\) 1774.00 0.0563522 0.0281761 0.999603i \(-0.491030\pi\)
0.0281761 + 0.999603i \(0.491030\pi\)
\(998\) −6340.00 −0.201091
\(999\) −918.000 −0.0290733
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.4.a.b.1.1 1
5.2 odd 4 285.4.c.a.229.1 2
5.3 odd 4 285.4.c.a.229.2 yes 2
5.4 even 2 1425.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.4.c.a.229.1 2 5.2 odd 4
285.4.c.a.229.2 yes 2 5.3 odd 4
1425.4.a.b.1.1 1 1.1 even 1 trivial
1425.4.a.d.1.1 1 5.4 even 2