Properties

Label 1425.4.a.a
Level $1425$
Weight $4$
Character orbit 1425.a
Self dual yes
Analytic conductor $84.078$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,4,Mod(1,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(84.0777217582\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} - 4 q^{4} - 6 q^{6} + 9 q^{7} + 24 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 3 q^{3} - 4 q^{4} - 6 q^{6} + 9 q^{7} + 24 q^{8} + 9 q^{9} - 62 q^{11} - 12 q^{12} - 38 q^{13} - 18 q^{14} - 16 q^{16} + 76 q^{17} - 18 q^{18} - 19 q^{19} + 27 q^{21} + 124 q^{22} + 42 q^{23} + 72 q^{24} + 76 q^{26} + 27 q^{27} - 36 q^{28} - 259 q^{29} - 120 q^{31} - 160 q^{32} - 186 q^{33} - 152 q^{34} - 36 q^{36} + 230 q^{37} + 38 q^{38} - 114 q^{39} + 455 q^{41} - 54 q^{42} + 340 q^{43} + 248 q^{44} - 84 q^{46} - 224 q^{47} - 48 q^{48} - 262 q^{49} + 228 q^{51} + 152 q^{52} + 61 q^{53} - 54 q^{54} + 216 q^{56} - 57 q^{57} + 518 q^{58} - 119 q^{59} - 113 q^{61} + 240 q^{62} + 81 q^{63} + 448 q^{64} + 372 q^{66} - 468 q^{67} - 304 q^{68} + 126 q^{69} + 995 q^{71} + 216 q^{72} + 271 q^{73} - 460 q^{74} + 76 q^{76} - 558 q^{77} + 228 q^{78} + 318 q^{79} + 81 q^{81} - 910 q^{82} + 336 q^{83} - 108 q^{84} - 680 q^{86} - 777 q^{87} - 1488 q^{88} - 945 q^{89} - 342 q^{91} - 168 q^{92} - 360 q^{93} + 448 q^{94} - 480 q^{96} + 872 q^{97} + 524 q^{98} - 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 −4.00000 0 −6.00000 9.00000 24.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.4.a.a 1
5.b even 2 1 1425.4.a.e yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1425.4.a.a 1 1.a even 1 1 trivial
1425.4.a.e yes 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1425))\):

\( T_{2} + 2 \) Copy content Toggle raw display
\( T_{7} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 9 \) Copy content Toggle raw display
$11$ \( T + 62 \) Copy content Toggle raw display
$13$ \( T + 38 \) Copy content Toggle raw display
$17$ \( T - 76 \) Copy content Toggle raw display
$19$ \( T + 19 \) Copy content Toggle raw display
$23$ \( T - 42 \) Copy content Toggle raw display
$29$ \( T + 259 \) Copy content Toggle raw display
$31$ \( T + 120 \) Copy content Toggle raw display
$37$ \( T - 230 \) Copy content Toggle raw display
$41$ \( T - 455 \) Copy content Toggle raw display
$43$ \( T - 340 \) Copy content Toggle raw display
$47$ \( T + 224 \) Copy content Toggle raw display
$53$ \( T - 61 \) Copy content Toggle raw display
$59$ \( T + 119 \) Copy content Toggle raw display
$61$ \( T + 113 \) Copy content Toggle raw display
$67$ \( T + 468 \) Copy content Toggle raw display
$71$ \( T - 995 \) Copy content Toggle raw display
$73$ \( T - 271 \) Copy content Toggle raw display
$79$ \( T - 318 \) Copy content Toggle raw display
$83$ \( T - 336 \) Copy content Toggle raw display
$89$ \( T + 945 \) Copy content Toggle raw display
$97$ \( T - 872 \) Copy content Toggle raw display
show more
show less