Properties

Label 1425.2.c.o.799.1
Level $1425$
Weight $2$
Character 1425.799
Analytic conductor $11.379$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1425,2,Mod(799,1425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1425.799");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3786822880\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.44836416.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(-2.52892i\) of defining polynomial
Character \(\chi\) \(=\) 1425.799
Dual form 1425.2.c.o.799.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52892i q^{2} -1.00000i q^{3} -4.39543 q^{4} -2.52892 q^{6} -4.92434i q^{7} +6.05784i q^{8} -1.00000 q^{9} -1.13349 q^{11} +4.39543i q^{12} -4.00000i q^{13} -12.4533 q^{14} +6.52892 q^{16} -6.79085i q^{17} +2.52892i q^{18} +1.00000 q^{19} -4.92434 q^{21} +2.86651i q^{22} -1.92434i q^{23} +6.05784 q^{24} -10.1157 q^{26} +1.00000i q^{27} +21.6446i q^{28} +5.00000 q^{29} +5.13349 q^{31} -4.39543i q^{32} +1.13349i q^{33} -17.1735 q^{34} +4.39543 q^{36} +9.05784i q^{37} -2.52892i q^{38} -4.00000 q^{39} +3.86651 q^{41} +12.4533i q^{42} -4.00000i q^{43} +4.98218 q^{44} -4.86651 q^{46} +4.26698i q^{47} -6.52892i q^{48} -17.2492 q^{49} -6.79085 q^{51} +17.5817i q^{52} +13.1157i q^{53} +2.52892 q^{54} +29.8309 q^{56} -1.00000i q^{57} -12.6446i q^{58} -9.19133 q^{59} +0.733016 q^{61} -12.9822i q^{62} +4.92434i q^{63} +1.94216 q^{64} +2.86651 q^{66} +4.86651i q^{67} +29.8487i q^{68} -1.92434 q^{69} +11.1913 q^{71} -6.05784i q^{72} -11.1157i q^{73} +22.9065 q^{74} -4.39543 q^{76} +5.58170i q^{77} +10.1157i q^{78} +13.7730 q^{79} +1.00000 q^{81} -9.77808i q^{82} -0.866508i q^{83} +21.6446 q^{84} -10.1157 q^{86} -5.00000i q^{87} -6.86651i q^{88} +10.8487 q^{89} -19.6974 q^{91} +8.45831i q^{92} -5.13349i q^{93} +10.7909 q^{94} -4.39543 q^{96} -9.32482i q^{97} +43.6217i q^{98} +1.13349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{4} - 6 q^{9} - 6 q^{11} - 30 q^{14} + 24 q^{16} + 6 q^{19} + 6 q^{24} + 30 q^{29} + 30 q^{31} - 12 q^{34} + 12 q^{36} - 24 q^{39} + 24 q^{41} - 30 q^{44} - 30 q^{46} - 42 q^{49} - 12 q^{51}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times\).

\(n\) \(476\) \(1027\) \(1351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.52892i − 1.78822i −0.447852 0.894108i \(-0.647811\pi\)
0.447852 0.894108i \(-0.352189\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −4.39543 −2.19771
\(5\) 0 0
\(6\) −2.52892 −1.03243
\(7\) − 4.92434i − 1.86123i −0.366003 0.930614i \(-0.619274\pi\)
0.366003 0.930614i \(-0.380726\pi\)
\(8\) 6.05784i 2.14177i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.13349 −0.341761 −0.170880 0.985292i \(-0.554661\pi\)
−0.170880 + 0.985292i \(0.554661\pi\)
\(12\) 4.39543i 1.26885i
\(13\) − 4.00000i − 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) −12.4533 −3.32827
\(15\) 0 0
\(16\) 6.52892 1.63223
\(17\) − 6.79085i − 1.64702i −0.567299 0.823512i \(-0.692012\pi\)
0.567299 0.823512i \(-0.307988\pi\)
\(18\) 2.52892i 0.596072i
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −4.92434 −1.07458
\(22\) 2.86651i 0.611142i
\(23\) − 1.92434i − 0.401253i −0.979668 0.200627i \(-0.935702\pi\)
0.979668 0.200627i \(-0.0642978\pi\)
\(24\) 6.05784 1.23655
\(25\) 0 0
\(26\) −10.1157 −1.98385
\(27\) 1.00000i 0.192450i
\(28\) 21.6446i 4.09044i
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 5.13349 0.922002 0.461001 0.887400i \(-0.347490\pi\)
0.461001 + 0.887400i \(0.347490\pi\)
\(32\) − 4.39543i − 0.777009i
\(33\) 1.13349i 0.197316i
\(34\) −17.1735 −2.94523
\(35\) 0 0
\(36\) 4.39543 0.732571
\(37\) 9.05784i 1.48910i 0.667567 + 0.744550i \(0.267336\pi\)
−0.667567 + 0.744550i \(0.732664\pi\)
\(38\) − 2.52892i − 0.410245i
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 3.86651 0.603847 0.301924 0.953332i \(-0.402371\pi\)
0.301924 + 0.953332i \(0.402371\pi\)
\(42\) 12.4533i 1.92158i
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 4.98218 0.751092
\(45\) 0 0
\(46\) −4.86651 −0.717527
\(47\) 4.26698i 0.622404i 0.950344 + 0.311202i \(0.100732\pi\)
−0.950344 + 0.311202i \(0.899268\pi\)
\(48\) − 6.52892i − 0.942368i
\(49\) −17.2492 −2.46417
\(50\) 0 0
\(51\) −6.79085 −0.950909
\(52\) 17.5817i 2.43814i
\(53\) 13.1157i 1.80158i 0.434259 + 0.900788i \(0.357010\pi\)
−0.434259 + 0.900788i \(0.642990\pi\)
\(54\) 2.52892 0.344142
\(55\) 0 0
\(56\) 29.8309 3.98632
\(57\) − 1.00000i − 0.132453i
\(58\) − 12.6446i − 1.66032i
\(59\) −9.19133 −1.19661 −0.598304 0.801269i \(-0.704159\pi\)
−0.598304 + 0.801269i \(0.704159\pi\)
\(60\) 0 0
\(61\) 0.733016 0.0938531 0.0469266 0.998898i \(-0.485057\pi\)
0.0469266 + 0.998898i \(0.485057\pi\)
\(62\) − 12.9822i − 1.64874i
\(63\) 4.92434i 0.620409i
\(64\) 1.94216 0.242771
\(65\) 0 0
\(66\) 2.86651 0.352843
\(67\) 4.86651i 0.594539i 0.954794 + 0.297269i \(0.0960759\pi\)
−0.954794 + 0.297269i \(0.903924\pi\)
\(68\) 29.8487i 3.61969i
\(69\) −1.92434 −0.231664
\(70\) 0 0
\(71\) 11.1913 1.32817 0.664083 0.747659i \(-0.268822\pi\)
0.664083 + 0.747659i \(0.268822\pi\)
\(72\) − 6.05784i − 0.713923i
\(73\) − 11.1157i − 1.30099i −0.759510 0.650495i \(-0.774561\pi\)
0.759510 0.650495i \(-0.225439\pi\)
\(74\) 22.9065 2.66283
\(75\) 0 0
\(76\) −4.39543 −0.504190
\(77\) 5.58170i 0.636094i
\(78\) 10.1157i 1.14537i
\(79\) 13.7730 1.54959 0.774794 0.632214i \(-0.217854\pi\)
0.774794 + 0.632214i \(0.217854\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 9.77808i − 1.07981i
\(83\) − 0.866508i − 0.0951116i −0.998869 0.0475558i \(-0.984857\pi\)
0.998869 0.0475558i \(-0.0151432\pi\)
\(84\) 21.6446 2.36162
\(85\) 0 0
\(86\) −10.1157 −1.09080
\(87\) − 5.00000i − 0.536056i
\(88\) − 6.86651i − 0.731972i
\(89\) 10.8487 1.14996 0.574979 0.818168i \(-0.305010\pi\)
0.574979 + 0.818168i \(0.305010\pi\)
\(90\) 0 0
\(91\) −19.6974 −2.06485
\(92\) 8.45831i 0.881840i
\(93\) − 5.13349i − 0.532318i
\(94\) 10.7909 1.11299
\(95\) 0 0
\(96\) −4.39543 −0.448606
\(97\) − 9.32482i − 0.946792i −0.880850 0.473396i \(-0.843028\pi\)
0.880850 0.473396i \(-0.156972\pi\)
\(98\) 43.6217i 4.40646i
\(99\) 1.13349 0.113920
\(100\) 0 0
\(101\) −2.79085 −0.277700 −0.138850 0.990313i \(-0.544341\pi\)
−0.138850 + 0.990313i \(0.544341\pi\)
\(102\) 17.1735i 1.70043i
\(103\) − 15.0979i − 1.48764i −0.668382 0.743818i \(-0.733013\pi\)
0.668382 0.743818i \(-0.266987\pi\)
\(104\) 24.2313 2.37608
\(105\) 0 0
\(106\) 33.1685 3.22161
\(107\) 13.0400i 1.26063i 0.776341 + 0.630313i \(0.217073\pi\)
−0.776341 + 0.630313i \(0.782927\pi\)
\(108\) − 4.39543i − 0.422950i
\(109\) −10.6395 −1.01908 −0.509542 0.860446i \(-0.670185\pi\)
−0.509542 + 0.860446i \(0.670185\pi\)
\(110\) 0 0
\(111\) 9.05784 0.859732
\(112\) − 32.1506i − 3.03795i
\(113\) 0.332540i 0.0312828i 0.999878 + 0.0156414i \(0.00497901\pi\)
−0.999878 + 0.0156414i \(0.995021\pi\)
\(114\) −2.52892 −0.236855
\(115\) 0 0
\(116\) −21.9771 −2.04053
\(117\) 4.00000i 0.369800i
\(118\) 23.2441i 2.13979i
\(119\) −33.4405 −3.06548
\(120\) 0 0
\(121\) −9.71520 −0.883200
\(122\) − 1.85374i − 0.167830i
\(123\) − 3.86651i − 0.348631i
\(124\) −22.5639 −2.02630
\(125\) 0 0
\(126\) 12.4533 1.10942
\(127\) 8.45831i 0.750554i 0.926913 + 0.375277i \(0.122452\pi\)
−0.926913 + 0.375277i \(0.877548\pi\)
\(128\) − 13.7024i − 1.21113i
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) 10.9822 0.959518 0.479759 0.877400i \(-0.340724\pi\)
0.479759 + 0.877400i \(0.340724\pi\)
\(132\) − 4.98218i − 0.433643i
\(133\) − 4.92434i − 0.426995i
\(134\) 12.3070 1.06316
\(135\) 0 0
\(136\) 41.1379 3.52754
\(137\) 4.90652i 0.419193i 0.977788 + 0.209596i \(0.0672150\pi\)
−0.977788 + 0.209596i \(0.932785\pi\)
\(138\) 4.86651i 0.414265i
\(139\) −2.92434 −0.248040 −0.124020 0.992280i \(-0.539579\pi\)
−0.124020 + 0.992280i \(0.539579\pi\)
\(140\) 0 0
\(141\) 4.26698 0.359345
\(142\) − 28.3019i − 2.37505i
\(143\) 4.53397i 0.379149i
\(144\) −6.52892 −0.544076
\(145\) 0 0
\(146\) −28.1106 −2.32645
\(147\) 17.2492i 1.42269i
\(148\) − 39.8130i − 3.27261i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 4.67518 0.380461 0.190230 0.981739i \(-0.439077\pi\)
0.190230 + 0.981739i \(0.439077\pi\)
\(152\) 6.05784i 0.491355i
\(153\) 6.79085i 0.549008i
\(154\) 14.1157 1.13747
\(155\) 0 0
\(156\) 17.5817 1.40766
\(157\) − 13.4482i − 1.07328i −0.843810 0.536642i \(-0.819693\pi\)
0.843810 0.536642i \(-0.180307\pi\)
\(158\) − 34.8309i − 2.77100i
\(159\) 13.1157 1.04014
\(160\) 0 0
\(161\) −9.47613 −0.746824
\(162\) − 2.52892i − 0.198691i
\(163\) − 21.5740i − 1.68980i −0.534920 0.844902i \(-0.679658\pi\)
0.534920 0.844902i \(-0.320342\pi\)
\(164\) −16.9950 −1.32708
\(165\) 0 0
\(166\) −2.19133 −0.170080
\(167\) − 9.07566i − 0.702295i −0.936320 0.351148i \(-0.885792\pi\)
0.936320 0.351148i \(-0.114208\pi\)
\(168\) − 29.8309i − 2.30150i
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 17.5817i 1.34059i
\(173\) − 6.46603i − 0.491603i −0.969320 0.245802i \(-0.920949\pi\)
0.969320 0.245802i \(-0.0790512\pi\)
\(174\) −12.6446 −0.958584
\(175\) 0 0
\(176\) −7.40048 −0.557832
\(177\) 9.19133i 0.690863i
\(178\) − 27.4354i − 2.05637i
\(179\) 11.3070 0.845125 0.422562 0.906334i \(-0.361131\pi\)
0.422562 + 0.906334i \(0.361131\pi\)
\(180\) 0 0
\(181\) −22.6496 −1.68353 −0.841767 0.539841i \(-0.818484\pi\)
−0.841767 + 0.539841i \(0.818484\pi\)
\(182\) 49.8130i 3.69239i
\(183\) − 0.733016i − 0.0541861i
\(184\) 11.6574 0.859392
\(185\) 0 0
\(186\) −12.9822 −0.951900
\(187\) 7.69738i 0.562888i
\(188\) − 18.7552i − 1.36786i
\(189\) 4.92434 0.358193
\(190\) 0 0
\(191\) 24.2969 1.75806 0.879031 0.476765i \(-0.158191\pi\)
0.879031 + 0.476765i \(0.158191\pi\)
\(192\) − 1.94216i − 0.140164i
\(193\) − 6.67518i − 0.480490i −0.970712 0.240245i \(-0.922772\pi\)
0.970712 0.240245i \(-0.0772278\pi\)
\(194\) −23.5817 −1.69307
\(195\) 0 0
\(196\) 75.8174 5.41553
\(197\) 23.2892i 1.65929i 0.558295 + 0.829643i \(0.311456\pi\)
−0.558295 + 0.829643i \(0.688544\pi\)
\(198\) − 2.86651i − 0.203714i
\(199\) −25.0400 −1.77504 −0.887520 0.460770i \(-0.847573\pi\)
−0.887520 + 0.460770i \(0.847573\pi\)
\(200\) 0 0
\(201\) 4.86651 0.343257
\(202\) 7.05784i 0.496588i
\(203\) − 24.6217i − 1.72811i
\(204\) 29.8487 2.08983
\(205\) 0 0
\(206\) −38.1812 −2.66021
\(207\) 1.92434i 0.133751i
\(208\) − 26.1157i − 1.81080i
\(209\) −1.13349 −0.0784053
\(210\) 0 0
\(211\) −11.7730 −0.810489 −0.405244 0.914208i \(-0.632814\pi\)
−0.405244 + 0.914208i \(0.632814\pi\)
\(212\) − 57.6490i − 3.95935i
\(213\) − 11.1913i − 0.766817i
\(214\) 32.9771 2.25427
\(215\) 0 0
\(216\) −6.05784 −0.412184
\(217\) − 25.2791i − 1.71606i
\(218\) 26.9065i 1.82234i
\(219\) −11.1157 −0.751127
\(220\) 0 0
\(221\) −27.1634 −1.82721
\(222\) − 22.9065i − 1.53739i
\(223\) 3.92434i 0.262794i 0.991330 + 0.131397i \(0.0419462\pi\)
−0.991330 + 0.131397i \(0.958054\pi\)
\(224\) −21.6446 −1.44619
\(225\) 0 0
\(226\) 0.840967 0.0559403
\(227\) − 1.60962i − 0.106834i −0.998572 0.0534172i \(-0.982989\pi\)
0.998572 0.0534172i \(-0.0170113\pi\)
\(228\) 4.39543i 0.291094i
\(229\) 1.93444 0.127832 0.0639158 0.997955i \(-0.479641\pi\)
0.0639158 + 0.997955i \(0.479641\pi\)
\(230\) 0 0
\(231\) 5.58170 0.367249
\(232\) 30.2892i 1.98858i
\(233\) 1.84869i 0.121112i 0.998165 + 0.0605558i \(0.0192873\pi\)
−0.998165 + 0.0605558i \(0.980713\pi\)
\(234\) 10.1157 0.661282
\(235\) 0 0
\(236\) 40.3998 2.62980
\(237\) − 13.7730i − 0.894655i
\(238\) 84.5683i 5.48175i
\(239\) −2.25688 −0.145986 −0.0729929 0.997332i \(-0.523255\pi\)
−0.0729929 + 0.997332i \(0.523255\pi\)
\(240\) 0 0
\(241\) −19.0578 −1.22762 −0.613812 0.789453i \(-0.710365\pi\)
−0.613812 + 0.789453i \(0.710365\pi\)
\(242\) 24.5689i 1.57935i
\(243\) − 1.00000i − 0.0641500i
\(244\) −3.22192 −0.206262
\(245\) 0 0
\(246\) −9.77808 −0.623428
\(247\) − 4.00000i − 0.254514i
\(248\) 31.0979i 1.97472i
\(249\) −0.866508 −0.0549127
\(250\) 0 0
\(251\) 26.7909 1.69102 0.845512 0.533957i \(-0.179295\pi\)
0.845512 + 0.533957i \(0.179295\pi\)
\(252\) − 21.6446i − 1.36348i
\(253\) 2.18123i 0.137133i
\(254\) 21.3904 1.34215
\(255\) 0 0
\(256\) −30.7680 −1.92300
\(257\) 16.3147i 1.01768i 0.860860 + 0.508842i \(0.169926\pi\)
−0.860860 + 0.508842i \(0.830074\pi\)
\(258\) 10.1157i 0.629774i
\(259\) 44.6039 2.77155
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) − 27.7730i − 1.71582i
\(263\) − 1.92434i − 0.118660i −0.998238 0.0593301i \(-0.981104\pi\)
0.998238 0.0593301i \(-0.0188964\pi\)
\(264\) −6.86651 −0.422604
\(265\) 0 0
\(266\) −12.4533 −0.763558
\(267\) − 10.8487i − 0.663929i
\(268\) − 21.3904i − 1.30663i
\(269\) −19.5817 −1.19392 −0.596959 0.802272i \(-0.703624\pi\)
−0.596959 + 0.802272i \(0.703624\pi\)
\(270\) 0 0
\(271\) 11.1913 0.679825 0.339912 0.940457i \(-0.389603\pi\)
0.339912 + 0.940457i \(0.389603\pi\)
\(272\) − 44.3369i − 2.68832i
\(273\) 19.6974i 1.19214i
\(274\) 12.4082 0.749607
\(275\) 0 0
\(276\) 8.45831 0.509131
\(277\) 16.3147i 0.980257i 0.871650 + 0.490128i \(0.163050\pi\)
−0.871650 + 0.490128i \(0.836950\pi\)
\(278\) 7.39543i 0.443548i
\(279\) −5.13349 −0.307334
\(280\) 0 0
\(281\) −2.75084 −0.164101 −0.0820506 0.996628i \(-0.526147\pi\)
−0.0820506 + 0.996628i \(0.526147\pi\)
\(282\) − 10.7909i − 0.642586i
\(283\) 20.2313i 1.20263i 0.799013 + 0.601314i \(0.205356\pi\)
−0.799013 + 0.601314i \(0.794644\pi\)
\(284\) −49.1907 −2.91893
\(285\) 0 0
\(286\) 11.4660 0.678001
\(287\) − 19.0400i − 1.12390i
\(288\) 4.39543i 0.259003i
\(289\) −29.1157 −1.71269
\(290\) 0 0
\(291\) −9.32482 −0.546631
\(292\) 48.8581i 2.85920i
\(293\) − 22.9822i − 1.34263i −0.741171 0.671317i \(-0.765729\pi\)
0.741171 0.671317i \(-0.234271\pi\)
\(294\) 43.6217 2.54407
\(295\) 0 0
\(296\) −54.8709 −3.18931
\(297\) − 1.13349i − 0.0657719i
\(298\) 0 0
\(299\) −7.69738 −0.445151
\(300\) 0 0
\(301\) −19.6974 −1.13534
\(302\) − 11.8231i − 0.680346i
\(303\) 2.79085i 0.160330i
\(304\) 6.52892 0.374459
\(305\) 0 0
\(306\) 17.1735 0.981744
\(307\) 8.59952i 0.490801i 0.969422 + 0.245400i \(0.0789194\pi\)
−0.969422 + 0.245400i \(0.921081\pi\)
\(308\) − 24.5340i − 1.39795i
\(309\) −15.0979 −0.858887
\(310\) 0 0
\(311\) −12.2313 −0.693576 −0.346788 0.937944i \(-0.612728\pi\)
−0.346788 + 0.937944i \(0.612728\pi\)
\(312\) − 24.2313i − 1.37183i
\(313\) 7.51615i 0.424838i 0.977179 + 0.212419i \(0.0681341\pi\)
−0.977179 + 0.212419i \(0.931866\pi\)
\(314\) −34.0094 −1.91926
\(315\) 0 0
\(316\) −60.5383 −3.40555
\(317\) − 26.5817i − 1.49298i −0.665398 0.746489i \(-0.731738\pi\)
0.665398 0.746489i \(-0.268262\pi\)
\(318\) − 33.1685i − 1.85999i
\(319\) −5.66746 −0.317317
\(320\) 0 0
\(321\) 13.0400 0.727823
\(322\) 23.9644i 1.33548i
\(323\) − 6.79085i − 0.377853i
\(324\) −4.39543 −0.244190
\(325\) 0 0
\(326\) −54.5588 −3.02173
\(327\) 10.6395i 0.588368i
\(328\) 23.4227i 1.29330i
\(329\) 21.0121 1.15843
\(330\) 0 0
\(331\) 19.3648 1.06439 0.532194 0.846623i \(-0.321368\pi\)
0.532194 + 0.846623i \(0.321368\pi\)
\(332\) 3.80867i 0.209028i
\(333\) − 9.05784i − 0.496366i
\(334\) −22.9516 −1.25586
\(335\) 0 0
\(336\) −32.1506 −1.75396
\(337\) − 17.8487i − 0.972280i −0.873881 0.486140i \(-0.838405\pi\)
0.873881 0.486140i \(-0.161595\pi\)
\(338\) 7.58675i 0.412665i
\(339\) 0.332540 0.0180611
\(340\) 0 0
\(341\) −5.81877 −0.315104
\(342\) 2.52892i 0.136748i
\(343\) 50.4704i 2.72515i
\(344\) 24.2313 1.30647
\(345\) 0 0
\(346\) −16.3521 −0.879092
\(347\) 19.0578i 1.02308i 0.859260 + 0.511539i \(0.170924\pi\)
−0.859260 + 0.511539i \(0.829076\pi\)
\(348\) 21.9771i 1.17810i
\(349\) −22.9644 −1.22925 −0.614627 0.788818i \(-0.710693\pi\)
−0.614627 + 0.788818i \(0.710693\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 4.98218i 0.265551i
\(353\) 25.5817i 1.36158i 0.732480 + 0.680788i \(0.238363\pi\)
−0.732480 + 0.680788i \(0.761637\pi\)
\(354\) 23.2441 1.23541
\(355\) 0 0
\(356\) −47.6846 −2.52728
\(357\) 33.4405i 1.76986i
\(358\) − 28.5945i − 1.51126i
\(359\) 27.3248 1.44215 0.721074 0.692858i \(-0.243649\pi\)
0.721074 + 0.692858i \(0.243649\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 57.2791i 3.01052i
\(363\) 9.71520i 0.509916i
\(364\) 86.5784 4.53794
\(365\) 0 0
\(366\) −1.85374 −0.0968964
\(367\) − 20.3827i − 1.06397i −0.846755 0.531983i \(-0.821447\pi\)
0.846755 0.531983i \(-0.178553\pi\)
\(368\) − 12.5639i − 0.654938i
\(369\) −3.86651 −0.201282
\(370\) 0 0
\(371\) 64.5861 3.35314
\(372\) 22.5639i 1.16988i
\(373\) − 2.52387i − 0.130681i −0.997863 0.0653405i \(-0.979187\pi\)
0.997863 0.0653405i \(-0.0208133\pi\)
\(374\) 19.4660 1.00656
\(375\) 0 0
\(376\) −25.8487 −1.33304
\(377\) − 20.0000i − 1.03005i
\(378\) − 12.4533i − 0.640527i
\(379\) 9.44049 0.484925 0.242463 0.970161i \(-0.422045\pi\)
0.242463 + 0.970161i \(0.422045\pi\)
\(380\) 0 0
\(381\) 8.45831 0.433332
\(382\) − 61.4449i − 3.14379i
\(383\) − 11.1557i − 0.570029i −0.958523 0.285015i \(-0.908002\pi\)
0.958523 0.285015i \(-0.0919984\pi\)
\(384\) −13.7024 −0.699249
\(385\) 0 0
\(386\) −16.8810 −0.859219
\(387\) 4.00000i 0.203331i
\(388\) 40.9866i 2.08078i
\(389\) −28.3827 −1.43906 −0.719529 0.694463i \(-0.755642\pi\)
−0.719529 + 0.694463i \(0.755642\pi\)
\(390\) 0 0
\(391\) −13.0679 −0.660874
\(392\) − 104.493i − 5.27767i
\(393\) − 10.9822i − 0.553978i
\(394\) 58.8964 2.96716
\(395\) 0 0
\(396\) −4.98218 −0.250364
\(397\) − 1.40048i − 0.0702879i −0.999382 0.0351439i \(-0.988811\pi\)
0.999382 0.0351439i \(-0.0111890\pi\)
\(398\) 63.3241i 3.17415i
\(399\) −4.92434 −0.246526
\(400\) 0 0
\(401\) 3.51615 0.175588 0.0877940 0.996139i \(-0.472018\pi\)
0.0877940 + 0.996139i \(0.472018\pi\)
\(402\) − 12.3070i − 0.613817i
\(403\) − 20.5340i − 1.02287i
\(404\) 12.2670 0.610305
\(405\) 0 0
\(406\) −62.2663 −3.09023
\(407\) − 10.2670i − 0.508915i
\(408\) − 41.1379i − 2.03663i
\(409\) 31.1379 1.53967 0.769834 0.638244i \(-0.220339\pi\)
0.769834 + 0.638244i \(0.220339\pi\)
\(410\) 0 0
\(411\) 4.90652 0.242021
\(412\) 66.3615i 3.26940i
\(413\) 45.2613i 2.22716i
\(414\) 4.86651 0.239176
\(415\) 0 0
\(416\) −17.5817 −0.862014
\(417\) 2.92434i 0.143206i
\(418\) 2.86651i 0.140205i
\(419\) −20.4983 −1.00141 −0.500704 0.865618i \(-0.666926\pi\)
−0.500704 + 0.865618i \(0.666926\pi\)
\(420\) 0 0
\(421\) −3.06794 −0.149522 −0.0747610 0.997201i \(-0.523819\pi\)
−0.0747610 + 0.997201i \(0.523819\pi\)
\(422\) 29.7730i 1.44933i
\(423\) − 4.26698i − 0.207468i
\(424\) −79.4526 −3.85856
\(425\) 0 0
\(426\) −28.3019 −1.37123
\(427\) − 3.60962i − 0.174682i
\(428\) − 57.3164i − 2.77049i
\(429\) 4.53397 0.218902
\(430\) 0 0
\(431\) 5.34264 0.257346 0.128673 0.991687i \(-0.458928\pi\)
0.128673 + 0.991687i \(0.458928\pi\)
\(432\) 6.52892i 0.314123i
\(433\) 6.00000i 0.288342i 0.989553 + 0.144171i \(0.0460515\pi\)
−0.989553 + 0.144171i \(0.953949\pi\)
\(434\) −63.9287 −3.06868
\(435\) 0 0
\(436\) 46.7653 2.23965
\(437\) − 1.92434i − 0.0920539i
\(438\) 28.1106i 1.34318i
\(439\) −3.27470 −0.156293 −0.0781466 0.996942i \(-0.524900\pi\)
−0.0781466 + 0.996942i \(0.524900\pi\)
\(440\) 0 0
\(441\) 17.2492 0.821389
\(442\) 68.6940i 3.26744i
\(443\) 35.8988i 1.70560i 0.522235 + 0.852802i \(0.325098\pi\)
−0.522235 + 0.852802i \(0.674902\pi\)
\(444\) −39.8130 −1.88944
\(445\) 0 0
\(446\) 9.92434 0.469931
\(447\) 0 0
\(448\) − 9.56388i − 0.451851i
\(449\) −1.26698 −0.0597927 −0.0298963 0.999553i \(-0.509518\pi\)
−0.0298963 + 0.999553i \(0.509518\pi\)
\(450\) 0 0
\(451\) −4.38266 −0.206371
\(452\) − 1.46166i − 0.0687505i
\(453\) − 4.67518i − 0.219659i
\(454\) −4.07061 −0.191043
\(455\) 0 0
\(456\) 6.05784 0.283684
\(457\) 1.48385i 0.0694117i 0.999398 + 0.0347058i \(0.0110494\pi\)
−0.999398 + 0.0347058i \(0.988951\pi\)
\(458\) − 4.89205i − 0.228590i
\(459\) 6.79085 0.316970
\(460\) 0 0
\(461\) −4.90652 −0.228520 −0.114260 0.993451i \(-0.536450\pi\)
−0.114260 + 0.993451i \(0.536450\pi\)
\(462\) − 14.1157i − 0.656720i
\(463\) 13.8843i 0.645259i 0.946525 + 0.322630i \(0.104567\pi\)
−0.946525 + 0.322630i \(0.895433\pi\)
\(464\) 32.6446 1.51549
\(465\) 0 0
\(466\) 4.67518 0.216574
\(467\) − 29.5060i − 1.36538i −0.730709 0.682689i \(-0.760811\pi\)
0.730709 0.682689i \(-0.239189\pi\)
\(468\) − 17.5817i − 0.812715i
\(469\) 23.9644 1.10657
\(470\) 0 0
\(471\) −13.4482 −0.619661
\(472\) − 55.6796i − 2.56286i
\(473\) 4.53397i 0.208472i
\(474\) −34.8309 −1.59983
\(475\) 0 0
\(476\) 146.985 6.73706
\(477\) − 13.1157i − 0.600525i
\(478\) 5.70748i 0.261054i
\(479\) −10.8766 −0.496965 −0.248482 0.968636i \(-0.579932\pi\)
−0.248482 + 0.968636i \(0.579932\pi\)
\(480\) 0 0
\(481\) 36.2313 1.65201
\(482\) 48.1957i 2.19525i
\(483\) 9.47613i 0.431179i
\(484\) 42.7024 1.94102
\(485\) 0 0
\(486\) −2.52892 −0.114714
\(487\) − 33.2791i − 1.50802i −0.656863 0.754010i \(-0.728117\pi\)
0.656863 0.754010i \(-0.271883\pi\)
\(488\) 4.44049i 0.201012i
\(489\) −21.5740 −0.975609
\(490\) 0 0
\(491\) −4.90652 −0.221428 −0.110714 0.993852i \(-0.535314\pi\)
−0.110714 + 0.993852i \(0.535314\pi\)
\(492\) 16.9950i 0.766192i
\(493\) − 33.9543i − 1.52922i
\(494\) −10.1157 −0.455126
\(495\) 0 0
\(496\) 33.5161 1.50492
\(497\) − 55.1099i − 2.47202i
\(498\) 2.19133i 0.0981957i
\(499\) −2.00772 −0.0898779 −0.0449390 0.998990i \(-0.514309\pi\)
−0.0449390 + 0.998990i \(0.514309\pi\)
\(500\) 0 0
\(501\) −9.07566 −0.405470
\(502\) − 67.7519i − 3.02391i
\(503\) 7.69738i 0.343209i 0.985166 + 0.171605i \(0.0548951\pi\)
−0.985166 + 0.171605i \(0.945105\pi\)
\(504\) −29.8309 −1.32877
\(505\) 0 0
\(506\) 5.51615 0.245223
\(507\) 3.00000i 0.133235i
\(508\) − 37.1779i − 1.64950i
\(509\) −27.1157 −1.20188 −0.600941 0.799294i \(-0.705207\pi\)
−0.600941 + 0.799294i \(0.705207\pi\)
\(510\) 0 0
\(511\) −54.7374 −2.42144
\(512\) 50.4049i 2.22760i
\(513\) 1.00000i 0.0441511i
\(514\) 41.2586 1.81984
\(515\) 0 0
\(516\) 17.5817 0.773991
\(517\) − 4.83659i − 0.212713i
\(518\) − 112.800i − 4.95613i
\(519\) −6.46603 −0.283827
\(520\) 0 0
\(521\) 17.0800 0.748290 0.374145 0.927370i \(-0.377936\pi\)
0.374145 + 0.927370i \(0.377936\pi\)
\(522\) 12.6446i 0.553439i
\(523\) − 9.70748i − 0.424478i −0.977218 0.212239i \(-0.931924\pi\)
0.977218 0.212239i \(-0.0680756\pi\)
\(524\) −48.2714 −2.10874
\(525\) 0 0
\(526\) −4.86651 −0.212190
\(527\) − 34.8608i − 1.51856i
\(528\) 7.40048i 0.322064i
\(529\) 19.2969 0.838996
\(530\) 0 0
\(531\) 9.19133 0.398870
\(532\) 21.6446i 0.938412i
\(533\) − 15.4660i − 0.669908i
\(534\) −27.4354 −1.18725
\(535\) 0 0
\(536\) −29.4805 −1.27336
\(537\) − 11.3070i − 0.487933i
\(538\) 49.5205i 2.13498i
\(539\) 19.5518 0.842155
\(540\) 0 0
\(541\) 27.7475 1.19296 0.596479 0.802629i \(-0.296566\pi\)
0.596479 + 0.802629i \(0.296566\pi\)
\(542\) − 28.3019i − 1.21567i
\(543\) 22.6496i 0.971989i
\(544\) −29.8487 −1.27975
\(545\) 0 0
\(546\) 49.8130 2.13180
\(547\) − 2.04002i − 0.0872248i −0.999049 0.0436124i \(-0.986113\pi\)
0.999049 0.0436124i \(-0.0138867\pi\)
\(548\) − 21.5663i − 0.921265i
\(549\) −0.733016 −0.0312844
\(550\) 0 0
\(551\) 5.00000 0.213007
\(552\) − 11.6574i − 0.496170i
\(553\) − 67.8231i − 2.88413i
\(554\) 41.2586 1.75291
\(555\) 0 0
\(556\) 12.8537 0.545120
\(557\) − 24.5340i − 1.03954i −0.854307 0.519769i \(-0.826018\pi\)
0.854307 0.519769i \(-0.173982\pi\)
\(558\) 12.9822i 0.549579i
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) 7.69738 0.324983
\(562\) 6.95664i 0.293448i
\(563\) 38.0878i 1.60521i 0.596513 + 0.802604i \(0.296553\pi\)
−0.596513 + 0.802604i \(0.703447\pi\)
\(564\) −18.7552 −0.789737
\(565\) 0 0
\(566\) 51.1634 2.15056
\(567\) − 4.92434i − 0.206803i
\(568\) 67.7952i 2.84462i
\(569\) 24.4005 1.02292 0.511461 0.859307i \(-0.329105\pi\)
0.511461 + 0.859307i \(0.329105\pi\)
\(570\) 0 0
\(571\) −13.0400 −0.545708 −0.272854 0.962055i \(-0.587968\pi\)
−0.272854 + 0.962055i \(0.587968\pi\)
\(572\) − 19.9287i − 0.833262i
\(573\) − 24.2969i − 1.01502i
\(574\) −48.1506 −2.00977
\(575\) 0 0
\(576\) −1.94216 −0.0809235
\(577\) − 13.0979i − 0.545271i −0.962117 0.272635i \(-0.912105\pi\)
0.962117 0.272635i \(-0.0878953\pi\)
\(578\) 73.6311i 3.06265i
\(579\) −6.67518 −0.277411
\(580\) 0 0
\(581\) −4.26698 −0.177024
\(582\) 23.5817i 0.977493i
\(583\) − 14.8665i − 0.615708i
\(584\) 67.3369 2.78642
\(585\) 0 0
\(586\) −58.1200 −2.40092
\(587\) − 30.4227i − 1.25568i −0.778343 0.627839i \(-0.783940\pi\)
0.778343 0.627839i \(-0.216060\pi\)
\(588\) − 75.8174i − 3.12666i
\(589\) 5.13349 0.211522
\(590\) 0 0
\(591\) 23.2892 0.957989
\(592\) 59.1379i 2.43055i
\(593\) − 30.3470i − 1.24620i −0.782141 0.623101i \(-0.785872\pi\)
0.782141 0.623101i \(-0.214128\pi\)
\(594\) −2.86651 −0.117614
\(595\) 0 0
\(596\) 0 0
\(597\) 25.0400i 1.02482i
\(598\) 19.4660i 0.796025i
\(599\) 43.3948 1.77306 0.886531 0.462670i \(-0.153108\pi\)
0.886531 + 0.462670i \(0.153108\pi\)
\(600\) 0 0
\(601\) 7.84869 0.320155 0.160077 0.987104i \(-0.448826\pi\)
0.160077 + 0.987104i \(0.448826\pi\)
\(602\) 49.8130i 2.03023i
\(603\) − 4.86651i − 0.198180i
\(604\) −20.5494 −0.836144
\(605\) 0 0
\(606\) 7.05784 0.286705
\(607\) 13.8087i 0.560477i 0.959930 + 0.280238i \(0.0904135\pi\)
−0.959930 + 0.280238i \(0.909586\pi\)
\(608\) − 4.39543i − 0.178258i
\(609\) −24.6217 −0.997722
\(610\) 0 0
\(611\) 17.0679 0.690495
\(612\) − 29.8487i − 1.20656i
\(613\) 9.98218i 0.403176i 0.979470 + 0.201588i \(0.0646103\pi\)
−0.979470 + 0.201588i \(0.935390\pi\)
\(614\) 21.7475 0.877657
\(615\) 0 0
\(616\) −33.8130 −1.36237
\(617\) 0.115672i 0.00465677i 0.999997 + 0.00232839i \(0.000741149\pi\)
−0.999997 + 0.00232839i \(0.999259\pi\)
\(618\) 38.1812i 1.53587i
\(619\) 5.45831 0.219388 0.109694 0.993965i \(-0.465013\pi\)
0.109694 + 0.993965i \(0.465013\pi\)
\(620\) 0 0
\(621\) 1.92434 0.0772213
\(622\) 30.9321i 1.24026i
\(623\) − 53.4227i − 2.14033i
\(624\) −26.1157 −1.04546
\(625\) 0 0
\(626\) 19.0077 0.759701
\(627\) 1.13349i 0.0452673i
\(628\) 59.1106i 2.35877i
\(629\) 61.5104 2.45258
\(630\) 0 0
\(631\) 45.8130 1.82379 0.911894 0.410425i \(-0.134620\pi\)
0.911894 + 0.410425i \(0.134620\pi\)
\(632\) 83.4348i 3.31886i
\(633\) 11.7730i 0.467936i
\(634\) −67.2229 −2.66976
\(635\) 0 0
\(636\) −57.6490 −2.28593
\(637\) 68.9967i 2.73375i
\(638\) 14.3325i 0.567431i
\(639\) −11.1913 −0.442722
\(640\) 0 0
\(641\) −37.1634 −1.46787 −0.733933 0.679222i \(-0.762317\pi\)
−0.733933 + 0.679222i \(0.762317\pi\)
\(642\) − 32.9771i − 1.30150i
\(643\) 11.4583i 0.451872i 0.974142 + 0.225936i \(0.0725440\pi\)
−0.974142 + 0.225936i \(0.927456\pi\)
\(644\) 41.6516 1.64130
\(645\) 0 0
\(646\) −17.1735 −0.675683
\(647\) − 34.7952i − 1.36794i −0.729509 0.683971i \(-0.760252\pi\)
0.729509 0.683971i \(-0.239748\pi\)
\(648\) 6.05784i 0.237974i
\(649\) 10.4183 0.408954
\(650\) 0 0
\(651\) −25.2791 −0.990765
\(652\) 94.8268i 3.71371i
\(653\) − 25.2791i − 0.989247i −0.869107 0.494623i \(-0.835306\pi\)
0.869107 0.494623i \(-0.164694\pi\)
\(654\) 26.9065 1.05213
\(655\) 0 0
\(656\) 25.2441 0.985617
\(657\) 11.1157i 0.433664i
\(658\) − 53.1379i − 2.07153i
\(659\) −47.6261 −1.85525 −0.927625 0.373514i \(-0.878153\pi\)
−0.927625 + 0.373514i \(0.878153\pi\)
\(660\) 0 0
\(661\) −14.4882 −0.563527 −0.281763 0.959484i \(-0.590919\pi\)
−0.281763 + 0.959484i \(0.590919\pi\)
\(662\) − 48.9721i − 1.90335i
\(663\) 27.1634i 1.05494i
\(664\) 5.24916 0.203707
\(665\) 0 0
\(666\) −22.9065 −0.887610
\(667\) − 9.62172i − 0.372554i
\(668\) 39.8914i 1.54344i
\(669\) 3.92434 0.151724
\(670\) 0 0
\(671\) −0.830868 −0.0320753
\(672\) 21.6446i 0.834958i
\(673\) − 15.6974i − 0.605089i −0.953135 0.302545i \(-0.902164\pi\)
0.953135 0.302545i \(-0.0978362\pi\)
\(674\) −45.1379 −1.73865
\(675\) 0 0
\(676\) 13.1863 0.507165
\(677\) 26.8130i 1.03051i 0.857037 + 0.515255i \(0.172303\pi\)
−0.857037 + 0.515255i \(0.827697\pi\)
\(678\) − 0.840967i − 0.0322972i
\(679\) −45.9186 −1.76219
\(680\) 0 0
\(681\) −1.60962 −0.0616809
\(682\) 14.7152i 0.563474i
\(683\) 36.4704i 1.39550i 0.716341 + 0.697751i \(0.245816\pi\)
−0.716341 + 0.697751i \(0.754184\pi\)
\(684\) 4.39543 0.168063
\(685\) 0 0
\(686\) 127.636 4.87315
\(687\) − 1.93444i − 0.0738036i
\(688\) − 26.1157i − 0.995651i
\(689\) 52.4627 1.99867
\(690\) 0 0
\(691\) 13.1990 0.502115 0.251058 0.967972i \(-0.419222\pi\)
0.251058 + 0.967972i \(0.419222\pi\)
\(692\) 28.4210i 1.08040i
\(693\) − 5.58170i − 0.212031i
\(694\) 48.1957 1.82948
\(695\) 0 0
\(696\) 30.2892 1.14811
\(697\) − 26.2569i − 0.994550i
\(698\) 58.0750i 2.19817i
\(699\) 1.84869 0.0699238
\(700\) 0 0
\(701\) 37.7075 1.42419 0.712096 0.702082i \(-0.247746\pi\)
0.712096 + 0.702082i \(0.247746\pi\)
\(702\) − 10.1157i − 0.381791i
\(703\) 9.05784i 0.341623i
\(704\) −2.20143 −0.0829694
\(705\) 0 0
\(706\) 64.6940 2.43479
\(707\) 13.7431i 0.516863i
\(708\) − 40.3998i − 1.51832i
\(709\) −15.9166 −0.597761 −0.298881 0.954290i \(-0.596613\pi\)
−0.298881 + 0.954290i \(0.596613\pi\)
\(710\) 0 0
\(711\) −13.7730 −0.516529
\(712\) 65.7196i 2.46295i
\(713\) − 9.87860i − 0.369957i
\(714\) 84.5683 3.16489
\(715\) 0 0
\(716\) −49.6991 −1.85734
\(717\) 2.25688i 0.0842849i
\(718\) − 69.1022i − 2.57887i
\(719\) −1.43612 −0.0535581 −0.0267790 0.999641i \(-0.508525\pi\)
−0.0267790 + 0.999641i \(0.508525\pi\)
\(720\) 0 0
\(721\) −74.3470 −2.76883
\(722\) − 2.52892i − 0.0941166i
\(723\) 19.0578i 0.708769i
\(724\) 99.5548 3.69993
\(725\) 0 0
\(726\) 24.5689 0.911839
\(727\) 34.3191i 1.27282i 0.771349 + 0.636412i \(0.219582\pi\)
−0.771349 + 0.636412i \(0.780418\pi\)
\(728\) − 119.323i − 4.42242i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −27.1634 −1.00467
\(732\) 3.22192i 0.119086i
\(733\) − 43.3114i − 1.59974i −0.600172 0.799871i \(-0.704901\pi\)
0.600172 0.799871i \(-0.295099\pi\)
\(734\) −51.5461 −1.90260
\(735\) 0 0
\(736\) −8.45831 −0.311778
\(737\) − 5.51615i − 0.203190i
\(738\) 9.77808i 0.359936i
\(739\) −25.4583 −0.936499 −0.468250 0.883596i \(-0.655115\pi\)
−0.468250 + 0.883596i \(0.655115\pi\)
\(740\) 0 0
\(741\) −4.00000 −0.146944
\(742\) − 163.333i − 5.99614i
\(743\) 22.2391i 0.815872i 0.913010 + 0.407936i \(0.133751\pi\)
−0.913010 + 0.407936i \(0.866249\pi\)
\(744\) 31.0979 1.14010
\(745\) 0 0
\(746\) −6.38266 −0.233686
\(747\) 0.866508i 0.0317039i
\(748\) − 33.8332i − 1.23707i
\(749\) 64.2135 2.34631
\(750\) 0 0
\(751\) 25.0323 0.913441 0.456721 0.889610i \(-0.349024\pi\)
0.456721 + 0.889610i \(0.349024\pi\)
\(752\) 27.8588i 1.01591i
\(753\) − 26.7909i − 0.976313i
\(754\) −50.5784 −1.84196
\(755\) 0 0
\(756\) −21.6446 −0.787206
\(757\) 36.7330i 1.33508i 0.744572 + 0.667542i \(0.232654\pi\)
−0.744572 + 0.667542i \(0.767346\pi\)
\(758\) − 23.8742i − 0.867151i
\(759\) 2.18123 0.0791736
\(760\) 0 0
\(761\) −22.0901 −0.800767 −0.400383 0.916348i \(-0.631123\pi\)
−0.400383 + 0.916348i \(0.631123\pi\)
\(762\) − 21.3904i − 0.774892i
\(763\) 52.3928i 1.89675i
\(764\) −106.795 −3.86372
\(765\) 0 0
\(766\) −28.2118 −1.01933
\(767\) 36.7653i 1.32752i
\(768\) 30.7680i 1.11024i
\(769\) 34.5817 1.24705 0.623524 0.781804i \(-0.285700\pi\)
0.623524 + 0.781804i \(0.285700\pi\)
\(770\) 0 0
\(771\) 16.3147 0.587560
\(772\) 29.3403i 1.05598i
\(773\) − 28.0622i − 1.00933i −0.863316 0.504664i \(-0.831616\pi\)
0.863316 0.504664i \(-0.168384\pi\)
\(774\) 10.1157 0.363600
\(775\) 0 0
\(776\) 56.4882 2.02781
\(777\) − 44.6039i − 1.60016i
\(778\) 71.7774i 2.57334i
\(779\) 3.86651 0.138532
\(780\) 0 0
\(781\) −12.6853 −0.453915
\(782\) 33.0477i 1.18178i
\(783\) 5.00000i 0.178685i
\(784\) −112.618 −4.02208
\(785\) 0 0
\(786\) −27.7730 −0.990631
\(787\) 7.54169i 0.268832i 0.990925 + 0.134416i \(0.0429159\pi\)
−0.990925 + 0.134416i \(0.957084\pi\)
\(788\) − 102.366i − 3.64663i
\(789\) −1.92434 −0.0685085
\(790\) 0 0
\(791\) 1.63754 0.0582243
\(792\) 6.86651i 0.243991i
\(793\) − 2.93206i − 0.104121i
\(794\) −3.54169 −0.125690
\(795\) 0 0
\(796\) 110.062 3.90103
\(797\) 17.4126i 0.616785i 0.951259 + 0.308392i \(0.0997910\pi\)
−0.951259 + 0.308392i \(0.900209\pi\)
\(798\) 12.4533i 0.440841i
\(799\) 28.9765 1.02511
\(800\) 0 0
\(801\) −10.8487 −0.383320
\(802\) − 8.89205i − 0.313989i
\(803\) 12.5995i 0.444628i
\(804\) −21.3904 −0.754380
\(805\) 0 0
\(806\) −51.9287 −1.82911
\(807\) 19.5817i 0.689309i
\(808\) − 16.9065i − 0.594769i
\(809\) 5.84869 0.205629 0.102814 0.994701i \(-0.467215\pi\)
0.102814 + 0.994701i \(0.467215\pi\)
\(810\) 0 0
\(811\) −4.02992 −0.141510 −0.0707548 0.997494i \(-0.522541\pi\)
−0.0707548 + 0.997494i \(0.522541\pi\)
\(812\) 108.223i 3.79788i
\(813\) − 11.1913i − 0.392497i
\(814\) −25.9644 −0.910050
\(815\) 0 0
\(816\) −44.3369 −1.55210
\(817\) − 4.00000i − 0.139942i
\(818\) − 78.7451i − 2.75326i
\(819\) 19.6974 0.688282
\(820\) 0 0
\(821\) 3.97446 0.138710 0.0693548 0.997592i \(-0.477906\pi\)
0.0693548 + 0.997592i \(0.477906\pi\)
\(822\) − 12.4082i − 0.432786i
\(823\) − 1.07566i − 0.0374950i −0.999824 0.0187475i \(-0.994032\pi\)
0.999824 0.0187475i \(-0.00596787\pi\)
\(824\) 91.4603 3.18617
\(825\) 0 0
\(826\) 114.462 3.98264
\(827\) 12.2313i 0.425325i 0.977126 + 0.212663i \(0.0682136\pi\)
−0.977126 + 0.212663i \(0.931786\pi\)
\(828\) − 8.45831i − 0.293947i
\(829\) 48.0444 1.66865 0.834325 0.551272i \(-0.185857\pi\)
0.834325 + 0.551272i \(0.185857\pi\)
\(830\) 0 0
\(831\) 16.3147 0.565951
\(832\) − 7.76866i − 0.269330i
\(833\) 117.137i 4.05854i
\(834\) 7.39543 0.256083
\(835\) 0 0
\(836\) 4.98218 0.172312
\(837\) 5.13349i 0.177439i
\(838\) 51.8386i 1.79073i
\(839\) −41.6695 −1.43859 −0.719295 0.694705i \(-0.755535\pi\)
−0.719295 + 0.694705i \(0.755535\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 7.75856i 0.267378i
\(843\) 2.75084i 0.0947438i
\(844\) 51.7475 1.78122
\(845\) 0 0
\(846\) −10.7909 −0.370997
\(847\) 47.8410i 1.64384i
\(848\) 85.6311i 2.94059i
\(849\) 20.2313 0.694338
\(850\) 0 0
\(851\) 17.4304 0.597506
\(852\) 49.1907i 1.68524i
\(853\) 25.4126i 0.870110i 0.900404 + 0.435055i \(0.143271\pi\)
−0.900404 + 0.435055i \(0.856729\pi\)
\(854\) −9.12844 −0.312369
\(855\) 0 0
\(856\) −78.9943 −2.69997
\(857\) − 8.09785i − 0.276617i −0.990389 0.138309i \(-0.955833\pi\)
0.990389 0.138309i \(-0.0441666\pi\)
\(858\) − 11.4660i − 0.391444i
\(859\) 45.8208 1.56338 0.781692 0.623664i \(-0.214357\pi\)
0.781692 + 0.623664i \(0.214357\pi\)
\(860\) 0 0
\(861\) −19.0400 −0.648882
\(862\) − 13.5111i − 0.460190i
\(863\) − 17.7051i − 0.602688i −0.953515 0.301344i \(-0.902565\pi\)
0.953515 0.301344i \(-0.0974353\pi\)
\(864\) 4.39543 0.149535
\(865\) 0 0
\(866\) 15.1735 0.515617
\(867\) 29.1157i 0.988820i
\(868\) 111.112i 3.77140i
\(869\) −15.6116 −0.529588
\(870\) 0 0
\(871\) 19.4660 0.659581
\(872\) − 64.4526i − 2.18264i
\(873\) 9.32482i 0.315597i
\(874\) −4.86651 −0.164612
\(875\) 0 0
\(876\) 48.8581 1.65076
\(877\) − 12.9166i − 0.436163i −0.975931 0.218082i \(-0.930020\pi\)
0.975931 0.218082i \(-0.0699799\pi\)
\(878\) 8.28146i 0.279486i
\(879\) −22.9822 −0.775170
\(880\) 0 0
\(881\) 14.1157 0.475569 0.237785 0.971318i \(-0.423579\pi\)
0.237785 + 0.971318i \(0.423579\pi\)
\(882\) − 43.6217i − 1.46882i
\(883\) − 7.70510i − 0.259297i −0.991560 0.129649i \(-0.958615\pi\)
0.991560 0.129649i \(-0.0413849\pi\)
\(884\) 119.395 4.01568
\(885\) 0 0
\(886\) 90.7851 3.04999
\(887\) 34.6294i 1.16274i 0.813638 + 0.581371i \(0.197484\pi\)
−0.813638 + 0.581371i \(0.802516\pi\)
\(888\) 54.8709i 1.84135i
\(889\) 41.6516 1.39695
\(890\) 0 0
\(891\) −1.13349 −0.0379734
\(892\) − 17.2492i − 0.577545i
\(893\) 4.26698i 0.142789i
\(894\) 0 0
\(895\) 0 0
\(896\) −67.4755 −2.25420
\(897\) 7.69738i 0.257008i
\(898\) 3.20410i 0.106922i
\(899\) 25.6675 0.856058
\(900\) 0 0
\(901\) 89.0666 2.96724
\(902\) 11.0834i 0.369036i
\(903\) 19.6974i 0.655488i
\(904\) −2.01448 −0.0670004
\(905\) 0 0
\(906\) −11.8231 −0.392798
\(907\) − 28.0699i − 0.932047i −0.884772 0.466023i \(-0.845686\pi\)
0.884772 0.466023i \(-0.154314\pi\)
\(908\) 7.07498i 0.234792i
\(909\) 2.79085 0.0925667
\(910\) 0 0
\(911\) −6.35474 −0.210542 −0.105271 0.994444i \(-0.533571\pi\)
−0.105271 + 0.994444i \(0.533571\pi\)
\(912\) − 6.52892i − 0.216194i
\(913\) 0.982180i 0.0325054i
\(914\) 3.75254 0.124123
\(915\) 0 0
\(916\) −8.50270 −0.280937
\(917\) − 54.0800i − 1.78588i
\(918\) − 17.1735i − 0.566810i
\(919\) −10.8887 −0.359185 −0.179593 0.983741i \(-0.557478\pi\)
−0.179593 + 0.983741i \(0.557478\pi\)
\(920\) 0 0
\(921\) 8.59952 0.283364
\(922\) 12.4082i 0.408642i
\(923\) − 44.7653i − 1.47347i
\(924\) −24.5340 −0.807108
\(925\) 0 0
\(926\) 35.1123 1.15386
\(927\) 15.0979i 0.495879i
\(928\) − 21.9771i − 0.721435i
\(929\) −22.7552 −0.746574 −0.373287 0.927716i \(-0.621769\pi\)
−0.373287 + 0.927716i \(0.621769\pi\)
\(930\) 0 0
\(931\) −17.2492 −0.565319
\(932\) − 8.12577i − 0.266168i
\(933\) 12.2313i 0.400436i
\(934\) −74.6184 −2.44159
\(935\) 0 0
\(936\) −24.2313 −0.792026
\(937\) − 45.9822i − 1.50217i −0.660204 0.751086i \(-0.729530\pi\)
0.660204 0.751086i \(-0.270470\pi\)
\(938\) − 60.6039i − 1.97879i
\(939\) 7.51615 0.245280
\(940\) 0 0
\(941\) −16.5639 −0.539967 −0.269984 0.962865i \(-0.587018\pi\)
−0.269984 + 0.962865i \(0.587018\pi\)
\(942\) 34.0094i 1.10809i
\(943\) − 7.44049i − 0.242296i
\(944\) −60.0094 −1.95314
\(945\) 0 0
\(946\) 11.4660 0.372793
\(947\) − 4.53397i − 0.147334i −0.997283 0.0736671i \(-0.976530\pi\)
0.997283 0.0736671i \(-0.0234702\pi\)
\(948\) 60.5383i 1.96619i
\(949\) −44.4627 −1.44332
\(950\) 0 0
\(951\) −26.5817 −0.861971
\(952\) − 202.577i − 6.56556i
\(953\) 36.4304i 1.18010i 0.807368 + 0.590048i \(0.200891\pi\)
−0.807368 + 0.590048i \(0.799109\pi\)
\(954\) −33.1685 −1.07387
\(955\) 0 0
\(956\) 9.91997 0.320835
\(957\) 5.66746i 0.183203i
\(958\) 27.5060i 0.888680i
\(959\) 24.1614 0.780213
\(960\) 0 0
\(961\) −4.64726 −0.149912
\(962\) − 91.6261i − 2.95414i
\(963\) − 13.0400i − 0.420209i
\(964\) 83.7673 2.69796
\(965\) 0 0
\(966\) 23.9644 0.771041
\(967\) 41.0044i 1.31861i 0.751875 + 0.659306i \(0.229150\pi\)
−0.751875 + 0.659306i \(0.770850\pi\)
\(968\) − 58.8531i − 1.89161i
\(969\) −6.79085 −0.218154
\(970\) 0 0
\(971\) 3.58942 0.115190 0.0575951 0.998340i \(-0.481657\pi\)
0.0575951 + 0.998340i \(0.481657\pi\)
\(972\) 4.39543i 0.140983i
\(973\) 14.4005i 0.461658i
\(974\) −84.1601 −2.69666
\(975\) 0 0
\(976\) 4.78580 0.153190
\(977\) 42.2313i 1.35110i 0.737314 + 0.675550i \(0.236094\pi\)
−0.737314 + 0.675550i \(0.763906\pi\)
\(978\) 54.5588i 1.74460i
\(979\) −12.2969 −0.393011
\(980\) 0 0
\(981\) 10.6395 0.339694
\(982\) 12.4082i 0.395961i
\(983\) 36.0800i 1.15077i 0.817881 + 0.575387i \(0.195149\pi\)
−0.817881 + 0.575387i \(0.804851\pi\)
\(984\) 23.4227 0.746687
\(985\) 0 0
\(986\) −85.8675 −2.73458
\(987\) − 21.0121i − 0.668822i
\(988\) 17.5817i 0.559349i
\(989\) −7.69738 −0.244762
\(990\) 0 0
\(991\) 19.3648 0.615144 0.307572 0.951525i \(-0.400483\pi\)
0.307572 + 0.951525i \(0.400483\pi\)
\(992\) − 22.5639i − 0.716404i
\(993\) − 19.3648i − 0.614524i
\(994\) −139.369 −4.42050
\(995\) 0 0
\(996\) 3.80867 0.120682
\(997\) − 20.5639i − 0.651265i −0.945496 0.325632i \(-0.894423\pi\)
0.945496 0.325632i \(-0.105577\pi\)
\(998\) 5.07736i 0.160721i
\(999\) −9.05784 −0.286577
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1425.2.c.o.799.1 6
5.2 odd 4 1425.2.a.t.1.3 3
5.3 odd 4 1425.2.a.w.1.1 yes 3
5.4 even 2 inner 1425.2.c.o.799.6 6
15.2 even 4 4275.2.a.bf.1.1 3
15.8 even 4 4275.2.a.bg.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1425.2.a.t.1.3 3 5.2 odd 4
1425.2.a.w.1.1 yes 3 5.3 odd 4
1425.2.c.o.799.1 6 1.1 even 1 trivial
1425.2.c.o.799.6 6 5.4 even 2 inner
4275.2.a.bf.1.1 3 15.2 even 4
4275.2.a.bg.1.3 3 15.8 even 4