# Properties

 Label 1425.2.c.d Level $1425$ Weight $2$ Character orbit 1425.c Analytic conductor $11.379$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1425,2,Mod(799,1425)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1425, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1425.799");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1425 = 3 \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1425.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$11.3786822880$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 285) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} + i q^{3} + q^{4} - q^{6} - 2 i q^{7} + 3 i q^{8} - q^{9} +O(q^{10})$$ q + i * q^2 + i * q^3 + q^4 - q^6 - 2*i * q^7 + 3*i * q^8 - q^9 $$q + i q^{2} + i q^{3} + q^{4} - q^{6} - 2 i q^{7} + 3 i q^{8} - q^{9} - 2 q^{11} + i q^{12} + 4 i q^{13} + 2 q^{14} - q^{16} + 2 i q^{17} - i q^{18} + q^{19} + 2 q^{21} - 2 i q^{22} + 4 i q^{23} - 3 q^{24} - 4 q^{26} - i q^{27} - 2 i q^{28} - 4 q^{29} + 5 i q^{32} - 2 i q^{33} - 2 q^{34} - q^{36} + i q^{38} - 4 q^{39} + 2 i q^{42} + 10 i q^{43} - 2 q^{44} - 4 q^{46} + 12 i q^{47} - i q^{48} + 3 q^{49} - 2 q^{51} + 4 i q^{52} + 2 i q^{53} + q^{54} + 6 q^{56} + i q^{57} - 4 i q^{58} - 4 q^{59} + 2 q^{61} + 2 i q^{63} - 7 q^{64} + 2 q^{66} - 16 i q^{67} + 2 i q^{68} - 4 q^{69} - 3 i q^{72} + 2 i q^{73} + q^{76} + 4 i q^{77} - 4 i q^{78} + 8 q^{79} + q^{81} + 12 i q^{83} + 2 q^{84} - 10 q^{86} - 4 i q^{87} - 6 i q^{88} + 8 q^{91} + 4 i q^{92} - 12 q^{94} - 5 q^{96} - 16 i q^{97} + 3 i q^{98} + 2 q^{99} +O(q^{100})$$ q + i * q^2 + i * q^3 + q^4 - q^6 - 2*i * q^7 + 3*i * q^8 - q^9 - 2 * q^11 + i * q^12 + 4*i * q^13 + 2 * q^14 - q^16 + 2*i * q^17 - i * q^18 + q^19 + 2 * q^21 - 2*i * q^22 + 4*i * q^23 - 3 * q^24 - 4 * q^26 - i * q^27 - 2*i * q^28 - 4 * q^29 + 5*i * q^32 - 2*i * q^33 - 2 * q^34 - q^36 + i * q^38 - 4 * q^39 + 2*i * q^42 + 10*i * q^43 - 2 * q^44 - 4 * q^46 + 12*i * q^47 - i * q^48 + 3 * q^49 - 2 * q^51 + 4*i * q^52 + 2*i * q^53 + q^54 + 6 * q^56 + i * q^57 - 4*i * q^58 - 4 * q^59 + 2 * q^61 + 2*i * q^63 - 7 * q^64 + 2 * q^66 - 16*i * q^67 + 2*i * q^68 - 4 * q^69 - 3*i * q^72 + 2*i * q^73 + q^76 + 4*i * q^77 - 4*i * q^78 + 8 * q^79 + q^81 + 12*i * q^83 + 2 * q^84 - 10 * q^86 - 4*i * q^87 - 6*i * q^88 + 8 * q^91 + 4*i * q^92 - 12 * q^94 - 5 * q^96 - 16*i * q^97 + 3*i * q^98 + 2 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{4} - 2 q^{6} - 2 q^{9}+O(q^{10})$$ 2 * q + 2 * q^4 - 2 * q^6 - 2 * q^9 $$2 q + 2 q^{4} - 2 q^{6} - 2 q^{9} - 4 q^{11} + 4 q^{14} - 2 q^{16} + 2 q^{19} + 4 q^{21} - 6 q^{24} - 8 q^{26} - 8 q^{29} - 4 q^{34} - 2 q^{36} - 8 q^{39} - 4 q^{44} - 8 q^{46} + 6 q^{49} - 4 q^{51} + 2 q^{54} + 12 q^{56} - 8 q^{59} + 4 q^{61} - 14 q^{64} + 4 q^{66} - 8 q^{69} + 2 q^{76} + 16 q^{79} + 2 q^{81} + 4 q^{84} - 20 q^{86} + 16 q^{91} - 24 q^{94} - 10 q^{96} + 4 q^{99}+O(q^{100})$$ 2 * q + 2 * q^4 - 2 * q^6 - 2 * q^9 - 4 * q^11 + 4 * q^14 - 2 * q^16 + 2 * q^19 + 4 * q^21 - 6 * q^24 - 8 * q^26 - 8 * q^29 - 4 * q^34 - 2 * q^36 - 8 * q^39 - 4 * q^44 - 8 * q^46 + 6 * q^49 - 4 * q^51 + 2 * q^54 + 12 * q^56 - 8 * q^59 + 4 * q^61 - 14 * q^64 + 4 * q^66 - 8 * q^69 + 2 * q^76 + 16 * q^79 + 2 * q^81 + 4 * q^84 - 20 * q^86 + 16 * q^91 - 24 * q^94 - 10 * q^96 + 4 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1425\mathbb{Z}\right)^\times$$.

 $$n$$ $$476$$ $$1027$$ $$1351$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
799.1
 − 1.00000i 1.00000i
1.00000i 1.00000i 1.00000 0 −1.00000 2.00000i 3.00000i −1.00000 0
799.2 1.00000i 1.00000i 1.00000 0 −1.00000 2.00000i 3.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1425.2.c.d 2
5.b even 2 1 inner 1425.2.c.d 2
5.c odd 4 1 285.2.a.b 1
5.c odd 4 1 1425.2.a.d 1
15.e even 4 1 855.2.a.b 1
15.e even 4 1 4275.2.a.o 1
20.e even 4 1 4560.2.a.v 1
95.g even 4 1 5415.2.a.c 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
285.2.a.b 1 5.c odd 4 1
855.2.a.b 1 15.e even 4 1
1425.2.a.d 1 5.c odd 4 1
1425.2.c.d 2 1.a even 1 1 trivial
1425.2.c.d 2 5.b even 2 1 inner
4275.2.a.o 1 15.e even 4 1
4560.2.a.v 1 20.e even 4 1
5415.2.a.c 1 95.g even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1425, [\chi])$$:

 $$T_{2}^{2} + 1$$ T2^2 + 1 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11} + 2$$ T11 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 4$$
$11$ $$(T + 2)^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$T^{2} + 4$$
$19$ $$(T - 1)^{2}$$
$23$ $$T^{2} + 16$$
$29$ $$(T + 4)^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 100$$
$47$ $$T^{2} + 144$$
$53$ $$T^{2} + 4$$
$59$ $$(T + 4)^{2}$$
$61$ $$(T - 2)^{2}$$
$67$ $$T^{2} + 256$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 256$$