Properties

Label 1425.2.bo
Level $1425$
Weight $2$
Character orbit 1425.bo
Rep. character $\chi_{1425}(224,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $696$
Sturm bound $400$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.bo (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q(\zeta_{18})\)
Sturm bound: \(400\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1425, [\chi])\).

Total New Old
Modular forms 1272 744 528
Cusp forms 1128 696 432
Eisenstein series 144 48 96

Trace form

\( 696q + 12q^{4} - 12q^{6} + 12q^{9} + O(q^{10}) \) \( 696q + 12q^{4} - 12q^{6} + 12q^{9} - 60q^{16} + 12q^{19} + 6q^{21} + 24q^{24} - 36q^{31} - 60q^{34} - 36q^{36} - 24q^{39} - 108q^{46} + 336q^{49} - 78q^{51} + 36q^{54} - 78q^{61} + 360q^{64} - 174q^{66} + 18q^{69} + 96q^{76} - 24q^{79} - 60q^{81} - 198q^{84} - 42q^{91} - 24q^{96} + 54q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1425, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1425, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)