Properties

Label 1425.2.b
Level $1425$
Weight $2$
Character orbit 1425.b
Rep. character $\chi_{1425}(1424,\cdot)$
Character field $\Q$
Dimension $116$
Sturm bound $400$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1425 = 3 \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1425.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q\)
Sturm bound: \(400\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1425, [\chi])\).

Total New Old
Modular forms 212 124 88
Cusp forms 188 116 72
Eisenstein series 24 8 16

Trace form

\( 116q - 96q^{4} - 12q^{6} + 4q^{9} + O(q^{10}) \) \( 116q - 96q^{4} - 12q^{6} + 4q^{9} + 72q^{16} + 14q^{19} + 28q^{24} - 44q^{36} - 8q^{39} - 96q^{49} - 40q^{54} + 12q^{61} + 40q^{64} + 28q^{66} - 92q^{76} - 68q^{81} + 16q^{96} - 52q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1425, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1425, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)